Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring
|
|
|
- Liana Susman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung Jl. Prof. Soemantri Brojonegoro No. 1 Bandar Lampung [email protected] Abstrak.Misalkan R ring dengan elemen satuan,(s,, ) monoid terurut tegas, dan : S End(R) homomorfisma monoid. Himpunan semua fungsi dari S ke R dengan support Artin dan narrow yang dilengkapi dengan operasi penjumlahan dan pergandaan, merupakan suatu ring yang disebut Ring Deret Pangkat Teritlak Miring (RDPTM) dan dinotasikan dengan R[[S,, ]] ataur[[s, ]]. Jika I ideal dari R, maka dapat dibentuk himpunan yang merupakan ring yang disebut dengan ring faktor. Dalam tulisan ini dibahas tentang pembentukan ring faktor pada RDPTM, yaitu ring faktor dengan I[[S, ]] adalah ideal di RDPTM R[[S, ]]. Selanjutnya ditunjukkan juga bahwa ring faktor pada RDPTM isomorfik dengan RDPTM atas ring faktor, yaitu ( )[, -]. Kata Kunci: Ring Deret Pangkat Teritlak Miring (RDPTM), Ideal RDPTM,Ring Faktor, Isomorfima Ring. PENDAHULUAN Misalkan S himpunan tak kosong, relasi biner pada S disebut relasi urutan parsial jika memenuhi sifat refleksif, anti simetris, dan transitif. Himpunan S yang dilengkapi dengan suatu urutan parsial disebut himpunan terurut dan dinotasikan dengan.urutan dikatakan urutan trivial jika(, dan S dikatakan terurut trivial[1]. Himpunan tak kosong S dengan operasi biner yang assosiatif dan mempunyai elemen identitasdisebut monoid [3]. Himpunan dikatakan monoid terurut tegas jika urutannya compatible tegas, yaitu ( ) [6]. dikatakan Artin jika setiap barisan turun tegas dari anggota-anggotas berhingga, dikatakan narrow jika setiap himpunan bagians yang terurut trivial berhingga. Jika Artin dan narrow,maka sebarang himpunan bagian X S juga Artin dan narrow [6]. Misalkan R ring dengan elemen satuan, monoid terurut tegas, dan homomorfisma monoid. Untuk sebarang, melambangkan image dari s atas, yaitu. Dibentuk himpunan A, yaitu himpunan semua pemetaan dengan * +Artin dan narrow. Dengan operasi penjumlahan biasa dan operasi pergandaan yang didefiniskan sebagai berikut:, ( ) dan * +, himpunan Amerupakan suatu ring yang disebut Ring Deret Pangkat Semirata 2013 FMIPA Unila 1
2 Ahmad Faisol: Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring Teritlak Miring (RDPTM), dandinotasikan Misalkan r R. Pemetaaan c r, e s R[[S, ]] didefinisikan sebagai { dan {. RDPTM merupakan generalisasi dari Ring Deret Pangkat Teritlak (RDPT). Sedangkan RDPT merupakan generalisasi dari ring deret pangkat formal R[[X]] dan ring monoid R[S], yaitu himpunan semua fungsi dari monoid terurut tegas S ke ring komutatif dengan elemen satuan R dengan * + Artin dan narrow, yang dilengkapi dengan operasi penjumlahan dan pergandaan yang sama pada ring monoid R[S]. RDPT dinotasikan dengan,, -- atau R[[S]] [6]. dapat dibentuk himpunan yang juga merupakan ring yang disebut dengan ring faktor dari R oleh I. Jika adalah homomorfisma ring, maka merupakan ideal dari R dan merupakan subring di T. Sehingga berlaku. Persamaan ini dikenal sebagai Teorema Homomorfisma Ring 1 [1]. [, -] *,, -- +merupakan ideal dari RDPTR[[S]][6], dan juga berlaku,, --,, -- ( ),, -- [5]. [, -] *,, -- + merupakan ideal dari ring R[[S, ]] [2]. Sehingga dapat dibentuk ring faktor dari R[[S, ]] oleh I[[S, ]], yaitu ring.karena RDPTM merupakan generalisasi dari RDPT, maka pada penelitian ini akan diselidiki apakah ring faktor pada RDPTM isomorfik dengan RDPTM atas ring faktor, yaitu ( ),, --, dengani ideal ring R, monoid terurut tegas, dan ( ) homomorfisma monoid. METODE PENELITIAN Metode yang digunakan dalam penelitian ini adalah studi literatur. Langkah-langkah yang digunakan adalah sebagai berikut.mendefinisikan ideali[[s, ]] dari RDPTM R[[S, ]]. Membentuk ring faktor dari R[[S, ]] oleh I[[S, ]], yaitu ring. Menyelidiki apakah berlaku ( ),, --. HASIL DAN PEMBAHASAN Pada bagian ini dibahas tentang ideal RDPTM dan pembentukan ring faktor pada RDPTM serta pembuktian isomorfis antara ring faktor pada RDPTM dengan RDPTM atas ring faktor. Lemma 1[2]. [, -] { [, -] }merupak an ideal dari ring [, -]. Untuk sebarang [, -], akan ditunjukkan [, -]. Jelas bahwa untuk setiap. Karena I ideal R, maka berakibat untuk setiap. Dengan kata lain terbukti [, -]. 2 Semirata 2013 FMIPA Unila
3 Untuk sebarang dan [, -], akan ditunjukkan [, -]. Jelas bahwa untuk setiap. Karena I ideal R, maka untuk sebarang berlaku dan untuk setiap. Dengan kata lain terbukti [, -]. Jadi terbukti bahwa jika I ideal dari ring R, maka [, -] { [, -] }merupak an ideal dari RDPTM [, -]. Dengan definisi ideal pada Lemma 1, maka dapat dibentuk ring faktor pada RDPTM, yaitu himpunan terhadap operasi penjumlahan dan operasi pergandaan untuk setiap. Jika diberikan ring faktor, monoid terurut tegas, dan homomorfisma monoid ( ), maka dapat dibentuk RDPTM ( ),, --. Lemma 2. Diberikan RDPTM dan ( ),, --. Misalkan I ideal dari ring R dan homomorfisma proyeksi natural. Untuk sebarang,, -- dapat dibentuk pemetaan dengan ( ),, --. Akan ditunjukkan Artin dan narrow. Karena,, --, maka jelas Artin dan narrow. Sehingga cukup menunjukkan, karena jika Artin dan narrow, maka sebarang himpunan bagian X S juga Artin dan narrow [6]. Ambil sebarang, maka. Sehingga ( ), yang berakibat. Dengan kata lain diperoleh. Jadi terbukti, dengan kata lain terbukti Artin dan narrowatau ( ),, --. Teorema 3. Diberikan RDPTM dan ( ),, --. Misalkan I ideal dari ring R dan homomorfisma proyeksi natural. Jika untuk setiap, maka ( ),, -- Bentuk pemetaan ( ),, -- dengan definisi.akan ditunjukkan well-defined. Ambil sebarang dengan. Sehingga diperoleh, dengan kata lain. Jadi terbukti well-defined. Akan ditunjukkan merupakan homomorfisma ring.ambil sebarang dan, akan ditunjukkan. ( ) ( ) ( ) ( ) Jadi terbukti.selanjutnya, akan ditunjukkan. ( ) ( ) ( ( )) Semirata 2013 FMIPA Unila 3
4 Ahmad Faisol: Pembentukan Ring Faktor Pada Ring Deret Pangkat Teritlak Miring ( ( )) ( ) ( ( )) () () Jadi terbukti. Akan ditunjukkan( )[, -]. Dengan kata lain akan ditunjukkan surjektif, yaitu untuk setiap ( ),, --, terdapat sedemikian sehingga. Ambil Sebarang,, --, maka untuk setiap,. Karena homomorfisma proyeksi natural, maka ( ). Selanjutnya diambil suatu ( ), jelas jika, maka. Misalkan terdapat dengan, untuk setiap dan ( ). Akan ditunjukkan, yaitu Artin dan narrow. * + * + * + Karena Artin dan narrow, maka terbukti Artin dan narrow, dengan kata lain terbukti dan( ) ( ) untuk setiap. Jadi terbukti surjektif. Akan ditunjukkan [, -]. Pertama akan ditunjukkan [, -]. Ambil sebarang [, -], maka untuk setiap. Karena homomorfisma proyeksi natural, maka ( ). Akibatnya ( ) ( ), dengan kata lain untuk setiap [, -] [, -]. Jadi terbukti, atau [, -] Selanjutnya, akan ditunjukkan [, -]. Ambil sebarang, maka. Dengan kata lain ( ) untuk setiap, akibatnya untuk setiap. Jadi terbukti [, -], atau [, -].Jadi terbukti [, -].Dari (i), (ii), (iii), dan (iv), berdasarkan Teorema Isomorfisma Ring 1, diperoleh ( ),, --. KESIMPULAN Dari hasil yang telah diperoleh, dapat disimpulkan bahwa pembentukkan ring faktor pada RDPTM dapat dilakukan dengan terlebih dahulu mendefinisikan ideal di RDPTM dan terbukti bahwa ring faktor pada RDPTM isomorfik dengan RDPTM atas ring faktor R oleh I.Untuk penelitian selanjutnya, dapat diselidiki tentang teorema isomorfisma ring 2 dan 3 pada RDPTM. DAFTAR PUSTAKA Adkins, W.A and Weintraub,S.H.(1992).Algebra, An Aproach via Module Theory. Springer- Verlag. Faisol, A. (2010). Ideal Ring Deret Pangkat Teritlak Miring. Prosiding Seminar Nasional Sains MIPA dan Aplikasinya Howie, J.M.(1976).An Introduction to Semigroup Theory.Academic Press Inc., London. Mazurek, R. and Ziembowski, M.(2007). Uniserial Rings of Skew Generalized Power Series.Journal of Algebra. Vol.318, Semirata 2013 FMIPA Unila
5 Minqing Xiao and Lin Xin.(2003). Ideal and Idempotents of the Rings of Generalized Power Series. Vietnam Journal of Mathematics, 31(3): Ribenboim, P.(1990).Generalized Power Series Rings. In Lattice, Semigroups and Universal Algebra, Plenum Press, New York, Semirata 2013 FMIPA Unila 5
ENDOMORFISMA RIGID DAN COMPATIBLE PADA RING DERET PANGKAT TERGENERALISASI MIRING
ENDOMORFISMA RIGID DAN COMPATIBLE PADA RING DERET PANGKAT TERGENERALISASI MIRING Ahmad Faisol Jurusan Matematika FMIPA Universitas Lampung E-mail: [email protected] Abstract. Given a ring R,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Ring polinomial adalah himpunan semua fungsi dari himpunan semua bilangan bulat nonnegatif ke ring R dengan elemen identitas dan dilengkapi dengan operasi penjumlahan
Teorema Jacobson Density
Teorema Jacobson Density Budi Santoso 1, Fitriani 2, Ahmad Faisol 3 Jurusan Matematika FMIPA, Unila, Bandar Lampung, Indonesia 1,2,3 E-mail: [email protected] Abstrak. Misalkan adalah ring (tidak harus
HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 HUBUNGAN MODUL TERBANGKIT MODUL-R DAN TERBANGKIT MODUL-R [ S Budi Surodjo
IDEAL DIFERENSIAL DAN HOMOMORFISMA DIFERENSIAL. Na imah Hijriati, Saman Abdurrahman, Thresye
DEAL DFEENSAL DAN HOMOMOFSMA DFEENSAL Na imah Hijriati, Saman Abdurrahman, Thresye Program Studi Matematika Universitas Lambung Mangkurat l. end. A. Yani Km. 36 Kampus Unlam Banjarbaru Email : [email protected]
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini akan dibahas mengenai latar belakang masalah, perumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian serta sistematika penulisan dari penyusunan skripsi
II. TINJAUAN PUSTAKA. Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar
II. TINJAUAN PUSTAKA 2.1 Grup Pengkajian pertama, diulas tentang definisi grup yang merupakan bentuk dasar dari suatu ring dan modul. Definisi 2.1.1 Diberikan himpunan dan operasi biner disebut grup yang
Skew- Semifield dan Beberapa Sifatnya
Kode Makalah M-1 Skew- Semifield dan Beberapa Sifatnya K a r y a t i Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta E-mail: [email protected]
BAB I PENDAHULUAN. Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Struktur aljabar merupakan suatu himpunan tidak kosong yang dilengkapi dengan aksioma dan suatu operasi biner. Teori grup dan ring merupakan konsep yang memegang
PROSIDING ISBN : Dzikrullah Akbar 1), Sri Wahyuni 2)
Modul Strongly Supplemented A 6 Dzikrullah Akbar 1), Sri Wahyuni 2) 1) Mahasiswa S2 Matematika Jurusan Matematika FMIPA UGM Email : [email protected] 2) Dosen PS S2 Matematika Jurusan Matematika FMIPA
BAB I PENDAHULUAN. A. Latar Belakang. Struktur aljabar merupakan salah satu bidang kajian dalam matematika
1 BAB I PENDAHULUAN A. Latar Belakang Struktur aljabar merupakan salah satu bidang kajian dalam matematika yang dikembangkan untuk menunjang pemahaman mengenai struktur bilangan. Struktur atau sistem aljabar
Beberapa Sifat Ideal Bersih-N
JURNAL FOURIER Oktober 216, Vol. 5, No. 2, 61-66 ISSN 2252-763X; E-ISSN 2541-5239 Beberapa Sifat Ideal Bersih-N Uha Isnaini dan Indah Emilia Wijayanti Jurusan Matematika FMIPA UGM, Yogyakarta, Sekip Utara,
Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module)
Beberapa Sifat Modul Tersuplemen lemah (Weakly Supplemented Module) A 4 Didi Febrian 1, Sri Wahyuni 2 1 Mahasiswa S2 Jurusan Matematika Fakultas MIPA UGM, Dosen Univ. Dian Nusantara Medan email : [email protected]
PERAN TEOREMA COHEN DALAM TEOREMA BASIS HILBERT PADA RING DERET PANGKAT
PERAN TEOREMA COHEN DALAM TEOREMA BASIS HILBERT PADA RING DERET PANGKAT SKRIPSI Untuk memenuhi sebagai persyaratan Mencapai derajat Sarjana S-1 Program Studi Matematika Diajukan Oleh : Moch. Widiono 09610030
Y.D. Sumanto Jurusan Matematika FMIPA UNDIP. Abstrak
JURNAL MATEMATIKA DAN KOMPUTER Vol. 4. No. 2, 93-100, Agustus 2001, ISSN : 1410-8518 ELEMEN PEMBANGUN DALAM SEMIGRUP - Y.D. Sumanto Jurusan Matematika FMIPA UNDIP Abstrak Misalkan M himpunan tak kosong
Fahmi Ulfa Nur Hidayati dan Suryoto Program Studi Matematika Jurusan Matematika FSM UNDIP
DERIVASI BCC-ALJABAR Fahmi Ulfa Nur Hidayati dan Suryoto Program Studi Matematika Jurusan Matematika FSM UNDIP Abstrak Derivasi BCC-aljabar merupakan pemetaan dari BCC-aljabar ke dirinya sendiri dengan
Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler 1
Syarat Perlu dan Cukup Struktur Himpunan Transformasi Linear Membentuk Semigrup Reguler Karyati Jurusan Pendidikan Matematika Universitas Negeri Yogyakarta E-mail: yatiuny@yahoocom Abstrak Pada kajian
BAB II TINJAUAN PUSTAKA
6 BAB II TINJAUAN PUSTAKA A. Fungsi Definisi A.1 Diberikan A dan B adalah dua himpunan yang tidak kosong. Suatu cara atau aturan yang memasangkan atau mengaitkan setiap elemen dari himpunan A dengan tepat
Beberapa Sifat Ideal Bersih-N
JURNAL FOURIER Oktober 216, Vol. 5, No. 2, 65-7 ISSN 2252-763X; E-ISSN 2541-5239 Beberapa Sifat Ideal Bersih-N Uha Isnaini dan Indah Emilia Wijayanti Jurusan Matematika FMIPA UGM, Yogyakarta, Sekip Utara,
BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian, serta diakhiri dengan sistematika penulisan. 1.1 Latar
SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI
Jurnal Gammath, Volume 2 Nomor 1, Maret 2017 SUBMODUL PRIMA, SEMIPRIMA, DAN PRIMER DI MODUL DAN MODUL FRAKSI Lina Dwi Khusnawati FKIP Universitas Muhammadiyah Surakarta [email protected] Abstrak
R-SUBGRUP NORMAL FUZZY NEAR-RING
R-SUBGRUP NORMAL FUZZY NEAR-RING Saman Abdurrahman Email: [email protected] Program Studi Matematika Universitas Lambung Mangkurat Banjarbaru ABSTRAK Dalam tulisan ini akan dibahas R-subgrup normal fuzzy
Produk Cartesius Semipgrup Smarandache
Jurnal Matematika Vol. 2 No. 2, Desember 2012. ISSN : 1693-1394 Produk Cartesius Semipgrup Smarandache Yuliyanti Dian Pratiwi Sekolah Tinggi Teknik Wiworotomo Purwokerto e-mail: [email protected] Abstract:
Jurnal Matematika Murni dan Terapan Vol. 4 No. 2 Desember 2010: IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING
IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Penelitian ini membahas ideal near-ring yang
Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring
PRISMA (208) PRISMA, Prosiding Seminar Nasional Matematika https://journal.unnes.ac.id/sju/index.php/prisma/ Sifat-Sifat Ideal Utama dan Ideal Maksimal dalam Near-Ring Zulfia Memi Mayasari Fakultas MIPA,
SYARAT PERLU DAN CUKUP SUBMODUL TERKOMPLEMEN. Sri Wahyuni Jurusan Matematika FMIPA UGM. Abstrak
JURNAL MATEMATIKA DAN KOMPUTER Vol. 5. No. 1, 8-13, April 2002, IN : 1410-8518 YARAT PERLU DAN CUKUP UBMODUL TERKOMPLEMEN ri Wahyuni Jurusan Matematika FMIPA UGM Abstrak Dipresentasikan syarat perlu dan
II. TINJAUAN PUSTAKA. Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan
II. TINJAUAN PUSTAKA Pada bab ini akan diuraikan mengenai konsep teori grup, teorema lagrange dan autokomutator yang akan digunakan dalam penelitian. Pada bagian pertama ini akan dibahas tentang teori
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN Pada bab ini akan dijelaskan mengenai latar belakang masalah, batasan masalah, maksud dan tujuan penelitian, tinjauan pustaka, metode penelitian serta sistematika penulisan dari skripsi
TEORI HEMIRING ABSTRAK
TEORI HEMIRING Mahasiswa S1 Program Studi Matematika, Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Diponegoro Jl Prof H Soedarto, SH, Semarang Indonesia 50275 email :tri_matematika@yahoocom
BAB III. Standard Kompetensi. 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring dan menggunakannya dalam kehidupan sehari-hari.
BAB III Standard Kompetensi 3. Mahasiswa dapat menjelaskan pengertian homomorfisma ring menggunakannya dalam kehidupan sehari-hari. Kompetensi Dasar: Mahasiswa diharapkan dapat 3.1 Menyebutkan definisi
RANK MATRIKS ATAS RING KOMUTATIF
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 1 (2013), hal. 63 70. RANK MATRIKS ATAS RING KOMUTATIF Eka Wulan Ramadhani, Nilamsari Kusumastuti, Evi Noviani INTISARI Rank dari matriks
UNIVERSITAS GADJAH MADA. Bahan Ajar:
UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN
Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru
HOMOMORFISMA DARI LEVEL SUBNEAR-RING FUZZY Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru E-mail: [email protected] ABSTRAK Dalam
URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS- KELAS DARI SUATU SEMIGRUP
URUTAN PARSIAL PADA SEMIGRUP DAN PADA KELAS- KELAS DARI SUATU SEMIGRUP Irtrianta Pasangka 1, Drs. Y.D Sumanto, M.Si 2, Drs. Harjito, M.Kom 3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto,
HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING
E-Jurnal Matematika Vol 6 (2), Mei 2017, pp 116-123 ISSN: 2303-1751 HUBUNGAN DERIVASI PRIME NEAR-RING DENGAN SIFAT KOMUTATIF RING Pradita Z Triwulandari 1, Kartika Sari 2, Luh Putu Ida Harini 3 1 Jurusan
PROSIDING ISBN : Dhian Arista Istikomah, S.Si, M.Sc 1. Abstrak
KARAKTERISASI E SEMIGRUP Dhian Arista Istikomah, S.Si, M.Sc A- Universitas PGRI Yogyakarta [email protected] Abstrak Dalam suatu semigrup terdapat himpunan elemen idempoten yang menjadi latar E semigrup
Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah dan Ring Endomorfisma dari Modul Distributif Lemah
Syarat Perlu Suatu Modul Merupakan Modul Distributif Lemah Ring Endomorfisma dari Modul Distributif Lemah Fitriani Jurusan Matematika FMIPA Universitas Lampung Email: fitriani_mathunila@yahoocoid AbstrakMisalkan
Jurnal Matematika Murni dan Terapan Vol. 5 No.1 Juni 2011: TES FORMAL MODUL PROJEKTIF DAN MODUL BEBAS ATAS RING OPERATOR DIFERENSIAL
Jurnal Matematika Murni dan Terapan Vol 5 No Juni 0: 43-5 TES FORMAL MOUL PROJEKTIF AN MOUL BEBAS ATAS RING OPERATOR IFERENSIAL Na imah Hijriati Program Studi Matematika Universitas Lambung Mangkurat Jl
GRUP HOMOLOGI DARI RUANG TOPOLOGI. Denik Agustito 1, Sriwahyuni 2
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA Fakultas MIPA, Universitas Negeri Yogyakarta, 16 Mei 2009 GRUP HOMOLOGI DARI RUANG TOPOLOGI Denik Agustito 1, Sriwahyuni 2 Mahasiswa
K-ALJABAR. Iswati dan Suryoto Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S.H, Semarang 50275
K-ALJABAR Iswati Suryoto Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 ABSTRAK -aljabar adalah suatu struktur aljabar yang dibangun atas suatu grup sehingga sifat-sifat yang berlaku
KARAKTERISASI SUATU IDEAL DARI SEMIGRUP IMPLIKATIF
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 10 17 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND KARAKTERISASI SUATU IDEAL DARI SEMIGRUP IMPLIKATIF ELVA SUSANTI Program Studi Magister Matematika, Fakultas
Teorema-Teorema Utama Isomorphisma pada Near-Ring
urnal Gradien Vol 11 o 2 uli 2015 : 1112-1116 Teorema-Teorema Utama somorphisma pada ear-ring Zulfia Memi Mayasari, Yulian Fauzi, Ulfasari Rafflesia urusan Matematika, Fakultas Matematika dan lmu Pengetahuan
SEMI-HOMOMORFISMA BCK-ALJABAR. Deffyana Prastya A. 1 dan Suryoto 2. Program Studi Matematika FMIPA UNDIP Jl. Prof. Soedarto, SH, Semarang, 50275
SEMI-HOMOMORFISMA BCK-ALJABAR Deffyana Prastya A. 1 dan Suryoto 2 1,2 Program Studi Matematika FMIPA UNDIP Jl. Prof. Soedarto, SH, Semarang, 50275 Abstract. A BCK-algebra is one of the algebraic structure
SEMIGRUP BEBAS DAN MONOID BEBAS PADA HIMPUNAN WORD. Fakultas Matematika dan Ilmu Pengetahuan Alam Univeritas Riau Kampus Bina Widya Indonesia
SEMIGRUP BEBS DN MONOID BEBS PD HIMPUNN WORD Novia Yumitha Sarie, Sri Gemawati, Rolan Pane Mahasiswa Program S Matematika Dosen Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan lam Univeritas
FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL. Abstrak
Jurnal Euclid, Vol.4, No.2, pp.710 FUNGTOR HOM DAN FUNGTOR TENSOR PADA HOMOMORFISMA MODUL Denik Agustito Universitas Sarjanawiyata Tamansiwa; [email protected] Abstrak Sebuah modul adalah pasangan
MODUL FAKTOR DARI MODUL ENDOMORFISMA PADA HIMPUNAN BILANGAN BULAT ATAS GAUSSIAN INTEGER
Prosiding eminar Nasional Matematika dan Terapannya 2016 p-in : 2550-0384; e-in : 2550-0392 MODUL FAKTO DAI MODUL ENDOMOFIMA PADA HIMPUNAN BILANGAN BULAT ATA GAUIAN INTEGE Linda Octavia oelistyoningsih
PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017
PENGENALAN KONSEP-KONSEP DALAM RING MELALUI PENGAMATAN Disampaikan dalam Lecture Series on Algebra Universitas Andalas Padang, 29 September 2017 Indah Emilia Wijayanti Departemen Matematika FMIPA Universitas
Modul Faktor Dari Modul Supplemented
Modul Faktor Dari Modul Supplemented A 16 Puguh Wahyu Prasetyo S2 Matematika FMIPA UGM, Yogyakarta Email : [email protected] Ari Suparwanto Jurusan Matematika FMIPA UGM, Yogyakarta Email : [email protected]
RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES
J. Sains Dasar 2016 5(1) 28-39 RING FUZZY DAN SIFAT-SIFATNYA FUZZY RING AND ITS PROPERTIES Rifki Chandra Utama * dan Karyati Jurusan Pendidikan Matematika, FMIPA, Universitas Negeri Yogyakarta *email:
Isomorfisma dari Gelanggang Polinom Miring Kompleks ke Gelanggang Quaternion Riil
Vol. 1, No. 1, 1-8, Juli 015 Isomorfisma dari Gelanggang Polinom Miring Kompleks ke Gelanggang Quaternion Riil Amir Kamal Amir 1 Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu
K-ALJABAR. Jl. Prof. H. Soedarto, S.H, Semarang 50275
K-ALJABAR Iswati 1 Suryoto 2 1,2 Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, SH, Semarang 50275 Abstract K-algebra is an algebra structure built on a group so that characters of a group will apply
HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR. Jl. Prof. H. Soedarto, S.H. Semarang 50275
HIMPUNAN BILANGAN BULAT NON NEGATIF PADA SEMIRING LOKAL DAN SEMIRING FAKTOR Meryta Febrilian Fatimah 1, Nikken Prima Puspita 2, Farikhin 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof.
BEBERAPA SIFAT DIMENSI KRULL DARI MODUL. Amir Kamal Amir 1)
Paradigma, Vol. 14 No. 2 Agustus 2010 hlm. 105 112 BEBERAPA SIFAT DIMENSI KRULL DARI MODUL Amir Kamal Amir 1) 1) Jurusan Matematika FMIPA Universitas Hasanuddin, Makassar 90245 E-mail: [email protected]
IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL
Vol 11, No 1, 71-76, Juli 2014 IDEAL PRIMA DAN IDEAL MAKSIMAL PADA GELANGGANG POLINOMIAL Qharnida Khariani, Amir Kamal Amir dan Nur Erawaty Abstrak Teori gelanggang merupakan salah satu bagian di matematika
ISOMORFISMA JUMLAH LANGSUNG DAN DARAP LANGSUNG DUA MODUL. (Skripsi) Oleh ALI ABDUL JABAR
ISOMORFISMA JUMLAH LANGSUNG DAN DARAP LANGSUNG DUA MODUL Skripsi Oleh ALI ABDUL JABAR FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR LAMPUNG 2017 ABSTRAK ISOMORFISMA JUMLAH LANGSUNG
Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( )
Vol. 8, No.2, 64-68, Januari 2012 Pembentukan Ideal Prim Gelanggang Polinom Miring Atas Daerah ( ) Amir Kamal Amir Abstrak Misalkan R adalah suatu gelanggang dengan identitas 1, adalah suatu endomorfisma
Kajian Teori Ideal Perluasan Subtraktif Pada Semiring Ternari
JURNAL SAINS DAN SENI ITS Vol. 6, No.1, (2017) 2337-3520 (2301-928X Print) A 12 Kajian Teori Ideal Perluasan Subtraktif Pada Semiring Ternari Nur Qomariah dan Dian Winda Setyawati Jurusan Matematika, Fakultas
DERET KOMPOSISI DARI SUATU MODUL
DERET KOMPOSISI DARI SUATU MODUL SKRIPSI Oleh : ANI NURHAYATI J2A 006 001 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2010
KLASIFIKASI NEAR-RING Classifications of Near Ring
Jurnal Barekeng Vol 8 No Hal 33 39 (14) KLASIFIKASI NEAR-RING Classifications of Near Ring ELVINUS RICHARD PERSULESSY Jurusan Matematika Fakultas MIPA Universitas Pattimura Jl Ir M Putuhena, Kampus Unpatti,
IDEAL FUZZY NEAR-RING. Saman Abdurrahman, Na imah Hijriati, Thresye
IDEAL FUZZY NEAR-RING Saman Abdurrahman, Na imah Hijriati, Thresye Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Dalam tulisan ini akan dibahas ideal
A4 : Subsemigrup Fuzzy Karyati, Sri Wahyuni, Budi Surodjo, Setiadji
Subsemigrup Fuzzy Oleh 1,2 Karyati, 3 Sri Wahyuni, 4 Budi Surodjo, 5 Setiadji 1 Mahasiswa S3, Jurusan Matematika, FMIPA, Universitas Gadjah Mada Sekip Utara, Yogyakarta 2 Jurusan Penddikan Matematika,
Karakteristik Koproduk Grup Hingga
Jurnal Matematika Integratif ISSN 1412-6184 Vol. 9 No. 2, Oktober 2013 pp. 31-37 Karakteristik Koproduk Grup Hingga Edi Kurniadi, Stanley P.Dewanto, Alit Kartiwa Jurusan Matematika FMIPA Universitas Padjadjaran
DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN INTISARI
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No. 3 (2013), hal. 183-190 DIAGONALISASI MATRIKS ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN Fidiah Kinanti, Nilamsari Kusumastuti, Evi Noviani
II. TINJAUAN PUSTAKA. modul yang akan digunakan dalam pembahasan hasil penelitian.
II. TINJAUAN PUSTAKA Pada bab ini akan diberikan konsep dasar (pengertian) tentang grup, ring, dan modul yang akan digunakan dalam pembahasan hasil penelitian. 2.1 Ring Sebelum didefinisikan pengertian
Saman Abdurrahman. Universitas Lambung Mangkurat,
Saman Abdurrahman Universitas Lambung Mangkurat, [email protected] Abstrak. Dalam tulisan ini akan dibahas dua permasalahan, yaitu jumlah antara ideal fuzzy dari near-ring, dan jumlah antara ideal normal
SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY
SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY Karyati 1), Dhoriva UW 2) 1) Jurusan Pendidikan Matematika, FMIPA, UNY Jl. Colombo No.1, Karangmalang, Yogyakarta, e-mail: [email protected]
HASIL KALI TENSOR: KONSTRUKSI, EKSISTENSI DAN KAITANNYA DENGAN BARISAN EKSAK
HASIL KALI TENSO: KONSTUKSI, EKSISTENSI AN KAITANNYA ENGAN BAISAN EKSAK Samsul Arifin [email protected] Mahasiswa S Matematika FMIPA UGM alam tulisan ini akan dibahas mengenai konstruksi hasil
ORDER UNSUR DARI GRUP S 4
Jurnal Matematika UNAND Vol. VI No. 1 Hal. 142 147 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ORDER UNSUR DARI GRUP S 4 FEBYOLA, YANITA, MONIKA RIANTI HELMI Program Studi Matematika, Fakultas Matematika
BAB II TINJAUAN PUSTAKA
4 BAB II TINJAUAN PUSTAKA Untuk mencapai tujuan penulisan penelitian diperlukan beberapa pengertian dan teori yang berkaitan dengan pembahasan. Dalam subbab ini akan diberikan beberapa teori berupa definisi,
Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian
Kriteria Struktur Aljabar Modul Noetherian dan Gelanggang Noetherian Rio Yohanes 1, Nora Hariadi 2, Kiki Ariyanti Sugeng 3 Departemen Matematika, FMIPA UI, Kampus UI Depok, 16424, Indonesia [email protected],
BAB I PENDAHULUAN. R S = { r s. untuk S subset multiplikatif dari R yang tidak memuat pembagi nol dan didefinisikan
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Topik "Hubungan Modul Dedekind Dengan Modul π Melalui Modul Invertibel dan Modul Padat" merupakan kajian atas 2(dua) jenis submodul yang muncul dari ide yang
MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL
MENENTUKAN DEVIASI DARI HIMPUNAN TERURUT PARSIAL Amir Kamal Amir Kelompok Keahlian Aljabar Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Hasanuddin (UNHAS) Jl. Perintis Kemerdekaan KM.0 Makassar
Kajian Sifat Sifat Graf Pembagi-Nol dari Ring Komutatif dengan Elemen Satuan
Kajian Sifat Sifat Graf Pembagi-Nol dari Ring Komutatif dengan Elemen Satuan Soleha 1, Dian W. Setyowati 2, Satrio A. W. 3 1 Institut Teknologi Sepuluh Nopember, [email protected] 2 Institut
SYARAT PERLU LAPANGAN PEMISAH. Bambang Irawanto Jurusan Matematika FMIPA UNDIP. Abstact. Keywords : extension fields, elemen algebra
JURNAL MATEMATIKA DAN KOMPUTER Vol 4 No 2, 65-70, Agustus 2001, ISSN : 1410-8518 SYARAT PERLU LAPANGAN PEMISAH Bambang Irawanto Jurusan Matematika FMIPA UNDIP Abstact Field is integral domain and is a
Antonius C. Prihandoko
Antonius C. Prihandoko Didanai oleh Proyek DIA-BERMUTU 2009 PROGRAM STUDI PENDIDIKAN MATEMATIKA Jurusan Pendidikan MIPA Fakultas Keguruan Dan Ilmu Pendidikan Universitas Jember Prakata Puji syukur ke hadirat
PENGANTAR PADA TEORI GRUP DAN RING
Handout MK Aljabar Abstract PENGANTAR PADA TEORI GRUP DAN RING Disusun oleh : Drs. Antonius Cahya Prihandoko, M.App.Sc, Ph.D e-mail: [email protected] Staf Pengajar Pada Program Studi Sistem
SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY
SEMIGRUP BENTUK BILINEAR TERURUT PARSIAL DALAM BATASAN SUBHIMPUNAN FUZZY Karyati 1), Dhoriva UW 2) 1) Jurusan Pendidikan Matematika, FMIPA, UNY Jl. Colombo No.1, Karangmalang, Yogyakarta, e-mail: [email protected]
Keberlakuan Teorema pada Beberapa Struktur Aljabar
PRISMA 1 (2018) https://journal.unnes.ac.id/sju/index.php/prisma/ Keberlakuan Teorema pada Beberapa Struktur Aljabar Mashuri, Kristina Wijayanti, Rahayu Budhiati Veronica, Isnarto Jurusan Matenmatika FMIPA
STRUKTUR ALJABAR: RING
STRUKTUR ALJABAR: RING BAHAN AJAR Oleh: Rippi Maya Program Studi Magister Pendidikan Matematika Sekolah Tinggi Keguruan dan Ilmu Pendidikan (STKIP) SILIWANGI - Bandung 2016 1 Pada grup telah dipelajari
RING ABELIAN DAN MODUL ABELIAN. Oleh: Andri Novianto (1) Elah Nurlaelah (2) Ririn Sispiyati (2) ABSTRAK
RING ABELIAN DAN MODUL ABELIAN Oleh: Andri Novianto (1) Elah Nurlaelah (2) Ririn Sispiyati (2) ABSTRAK Dalam tulisan ini akan diperkenalkan modul abelian sebagai perluasan dari ring abelian. Misalkan suatu
SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL. Jl. Prof. H. Soedarto, SH, Tembalang, Semarang 50275
SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL 1 Suryoto, 2 Bambang Irawanto, 3 Nikken Prima Puspita 1, 2, 3 Departemen Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jl. Prof. H. Soedarto, SH,
UNIVERSITAS GADJAH MADA. Bahan Ajar:
UNIVERSITAS GADJAH MADA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematika, Yogyakarta - 55281 Bahan Ajar: BAB POKOK BAHASAN
Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)
UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA, PS S1 MATEMATIKA Sekip Utara, Gedung Jurusan Matematiika, Yogyakarta - 55281 Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester)
FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN
FUNGTOR KONTRAVARIAN DAN KATEGORI ABELIAN Agus Suryanto, Nikken Prima Puspita, Robertus Heri S. U. Jurusan Matematika Fakultas Sains dan Matematika Universitas Diponegoro Jalan Prof. H. Soedarto, SH. Tembalang
Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend. A. Yani km 36 Banjarbaru
Jurnal Matematika Murni dan Terapan psilon Vol. 07, No.02, Hal 20-25 KONPLEMEN IDEAL FUZZY DARI NEAR-RING Saman Abdurrahman Program Studi Matematika Fakultas MIPA Universitas Lambung Mangkurat Jl. Jend.
DEKOMPOSISI PRA A*-ALJABAR
Jurnal Matematika UNAND Vol. 1 No. 2 Hal. 13 20 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND DEKOMPOSISI PRA A*-ALJABAR RAHMIATI ABAS Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini dibahas mengenai latar belakang masalah, rumusan masalah, maksud dan tujuan, tinjauan pustaka, metodologi penelitian serta diakhiri dengan sistematika penulisan. 1.1. Latar
RING STABIL BERHINGGA
RING STABIL BERHINGGA Samsul Arifin Program Studi Pendidikan Matematika, STKIP Surya, Tangerang Email: [email protected] ABSTRACT Dalam tulisan ini akan dibahas mengenai karakteristik ring
ABSORBENT PENYARINGAN TERURUT DARI SEMIGRUP IMPLIKATIF
Jurnal Matematika UNAND Vol. 4 No. 1 Hal. 85 92 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ABSORBENT PENYARINGAN TERURUT DARI SEMIGRUP IMPLIKATIF TUTUT IRLA MULTI Program Studi Matematika, Fakultas
PERLUASAN DARI RING REGULAR
PERLUASAN DARI RING REGULAR Devi Anastasia Shinta 1, YD. Sumanto 2, Djuwandi 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H., Tembalang, Semarang [email protected]
Semigrup Legal Dan Beberapa Sifatnya
Semigrup Legal Dan Beberapa Sifatnya A 19 Oleh : Soffi Widyanesti P. 1, Sri Wahyuni 2 1) Soffi Widyanesti P.,Jurusan Pendidikan Matematika FKIP Universitas Ahmad Dahlan Yogyakarta [email protected]
ENUMERASI DIGRAF TIDAK ISOMORFIK
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 ENUMERASI DIGRAF TIDAK ISOMORFIK Mulyono Jurusan Matematika FMIPA UNNES Email:
HUBUNGAN BENTUK-BENTUK KHUSUS K-ALJABAR HIPER IMPLIKATIF
HUBUNGAN BENTUK-BENTUK KHUSUS K-ALJABAR HIPER IMPLIKATIF Ratna Kusuma Ayu, Drs. Djuwandi SU, Suryoto, S.Si, M.Si Program Studi Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang
MODUL BERSUPLEMEN UTAMA SEBAGAI GENERALISASI DARI MODUL BERSUPLEMEN
MODUL BERSUPLEMEN UTAMA SEBAGAI GENERALISASI DARI MODUL BERSUPLEMEN Fitriani Jurusan Matematika FMIPA Universitas Lampung Jl ProfDr Soemantri Brojonegoro No1 Bandar Lampung Abstract An R-e M is called
Restia Sarasworo Citra 1, Suryoto 2. Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang Jurusan Matematika FMIPA UNDIP
ENDOMORFISMA DARI BCH-AJABAR Restia Sarasworo Citra 1 Suryoto 1 Jurusan Matematika FMIPA UNDIP Jl. Prof. H. Soedarto S. H Tembalang Semarang Jurusan Matematika FMIPA UNDIP Abstract. BCH-algebras is an
