UJI HIPOTESIS UNTUK PROPORSI
|
|
|
- Yanti Atmadjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PENGUJIAN HIPOTESIS
2 UJI HIPOTESIS UNTUK PROPORSI
3 Uji Hipotesis untuk Proporsi Data statistik sampel: - = Proporsi kejadian sukses dalam sampel - p = Proporsi kejadian sukses dalam populasi - - Statistik uji: ~ N (0,1) Jika : X = banyaknya kejadian sukses dalam sampel Maka ~ N (0,1)
4 Uji Hipotesis untuk Proporsi Langkah-langkah pengujian : a. Uji hipotesis H 0 : p = p0 H 1 : p p0 Tingkat signifikansi : α Statistik uji : ~ N(0; 1) Daerah kritis (Daerah penolakan H0) Zhitung < - Zα/2 atau Zhitung > Zα/2 Daerah penerimaan H0 - Zα/2 Zhitung Zα/2
5 Uji Hipotesis untuk Proporsi b. Uji hipotesis H0 : p = p0 H1 : p > p0 Tingkat signifikansi : α Statistik uji : ~ N(0; 1) Daerah kritis (Daerah penolakan H 0 ) Zhitung > Zα Daerah penerimaan H 0 Zhitung Zα 5
6 Uji Hipotesis untuk Proporsi c. Uji hipotesis H0 : p = p0 H1 : p < p0 Tingkat signifikansi : α Statistik uji : ~ N(0; 1) Daerah kritis (Daerah penolakan H0) Zhitung < - Zα Daerah penerimaan H0 Zhitung - Zα
7 Uji Hipotesis untuk Proporsi Contoh: Dikatakan bahwa 60% dari pemakai sepeda motor akan memilih sepeda motor merek A. Untuk menguji pernyataan tersebut, diambil sampel sebanyak 50 orang dan ternyata 20 orang diantaranya memilih merek A. Dengan tingkat signifikansi 5%, ujilah apakah pernyataan diatas benar.
8 Uji Hipotesis untuk Proporsi Data sampel n = 50 X = 20 Uji hipotesis H0 : p = 0,6 H1 : p 0,6 Tingkat signifikansi : α =0,05 Statistik uji : Daerah kritis (Daerah penolakan H0) Zhitung < - 1,96 atau Zhitung > 1,96 Kesimpulan: karena Zhitung = -2,9 < Ztabel = -1,96, maka tolak H 0 dengan signifikansi 5%. Artinya tidak benar bahwa 60% pemakai sepeda motor memilih merek A
9 Uji Hipotesis untuk Proporsi Contoh: Seorang pengusaha pabrik obat mengatakan bahwa obat produksinya 90% efektif bisa menyembuhkan alergi dalam waktu 8 jam. Dari sebuah sampel random berukuran 200 orang yang menderita alergi, 160 orang diantaranya menyatakan sembuhdengan obat tersebut dalam waktu 8 jam. Buktikan apakah pernyataan pengusaha tersebut benar? Gunakan α = 1%
10 UJI HIPOTESIS UNTUK PERBEDAAAN PROPORSI 10
11 Uji Hipotesis untuk perbedaan Proporsi Contoh penggunaan : Satu perusahaan mempunyai 2 distribution centre, yaitu Surabaya dan Malang. Pimpinan perusahaan ingin mengetahui proporsi produk yang rusak akibat material handling di Malang lebih besar daripada yang di Surabaya
12 Uji Hipotesis untuk perbedaan Proporsi Data statistik sampel: - = Proporsi kejadian sukses dalam sampel 1 - = Proporsi kejadian sukses dalam sampel 2 - p1 = Proporsi kejadian sukses dalam populasi 1 - p2 = Proporsi kejadian sukses dalam populasi ; p diestimasikan dengan Statistik uji: ~ N (0,1)
13 Uji Hipotesis untuk perbedaan Proporsi Langkah-langkah pengujian : a. Uji hipotesis H0 : p1 = p2 H1 : p1 p2 Tingkat signifikansi : α Daerah kritis (Daerah penolakan H0) Zhitung < - Zα/2 atau Zhitung > Zα/2 Daerah penerimaan H0 - Zα/2 Zhitung Zα/2
14 Uji Hipotesis untuk perbedaan Proporsi b. Uji hipotesis H0 : p1 = p2 H1 : p1 > p2 Tingkat signifikansi : α Daerah kritis (Daerah penolakan H0) Zhitung > Zα Daerah penerimaan H0 Zhitung Zα
15 Uji Hipotesis untuk perbedaan Proporsi c. Uji hipotesis H0 : p1 = p2 H1 : p1 < p2 Tingkat signifikansi : α Daerah kritis (Daerah penolakan H0) Zhitung < - Zα Daerah penerimaan H0 Zhitung - Zα
16 Uji Hipotesis untuk perbedaan Proporsi Contoh: Dari sebuah sampel yang diambil berdasarkan polling pendapat yang terdiri dari 300 orang dewasa dan 200 remaja, diperoleh data bahwa 56% dari orang dewasa dan 48% dari kelompok remaja menyukai merek produk tertentu. Ujilah hipotesis bahwa terdapat perbedaan minat orang dewasa dan remaja terhadap produk tersebut. Gunakan α= 1%
17 Uji Hipotesis untuk perbedaan Proporsi Data sampel n1 = 300 n2 = 200 Uji hipotesis H0 : p1 = p2 H1 : p1 p2 Tingkat signifikansi : α =0,01 Statistik uji : dengan Daerah kritis (Daerah penolakan H0) Zhitung < - 2,58 atau Zhitung > 2,58 Kesimpulan: karena Z0,005 = -2,58 Zhitung = 0,175 Z0,005 = 2,58; maka terima H0 dengan signifikansi 1%. Artinya tidak terdapat perbedaan yang signifikan antara minat kelompok orang dewasa dan remaja terhadap produk tersebut
18 UJI HIPOTESIS UNTUK VARIANSI/STANDARD DEVIASI
19 Uji Hipotesis untuk Variansi - Distribusi Chi Kuadrat bernilai + (jumlah kuadrat variabel random bebas) - Dasarnya adalah distribusi normal standar (Z) : nilai rata-rata / mean nol dan keragaman / varian satu - Bila distribusi normal standar dikuadratkan data akan terdistribusi chi square dengan derajat kebebasan satu Data statistik sampel: - = Variansi sampel - = Variansi populasi - Statistik uji ~
20 Uji Hipotesis untuk Variansi Langkah-langkah pengujian : a. Uji hipotesis H0 : σ = σ0 H1 : σ σ0 Tingkat signifikansi : α Statistik uji : Daerah kritis (Daerah penolakan H0) Daerah penerimaan H0
21 Uji Hipotesis untuk Variansi b. Uji hipotesis H0 : σ = σ0 H1 : σ > σ0 Tingkat signifikansi : α Statistik uji : Daerah kritis (Daerah penolakan H0) Daerah penerimaan H0
22 Uji Hipotesis untuk Variansi c. Uji hipotesis H0 : σ = σ0 H1 : σ < σ0 Tingkat signifikansi : α Statistik uji : Daerah kritis (Daerah penolakan H0) Daerah penerimaan H0
23 Uji Hipotesis untuk Variansi Contoh: Dalam kondisi normal, standard deviasi dari paket-paket produk dengan berat 40 ons yang dihasilkan suatu mesin adalah 0,25 ons. Setelah mesin berjalan beberapa waktu, diambil sampel produk sejumlah 20 paket, dari sampel tersebut diketahui standard deviasi beratnya adalah 0,32 ons. Apakah mesin tersebut masih bisa dikatakan bekerja dalam keadaan normal? Gunakan α = 0,05.
24 Uji Hipotesis untuk Variansi Data statistik: n = 20 s = 0,32 ons Uji hipotesis H 0 : σ = 0,25 H 1 : σ > 0,25 Tingkat signifikansi : α = 0,05 Statistik uji : = 0,25 dalam kondisi normal Daerah kritis (Daerah penolakan H0) Kesimpulan: karena maka H0 ditolak artinya mesin sudah tidak bekerja dalam kondisi normal
25 UJI HIPOTESIS UNTUK RASIO DUA VARIANSI/STANDARD DEVIASI
26 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi Data statistik sampel: - = Variansi sampel 1 - = Variansi sampel 2 - = Variansi populasi 1 - = Variansi populasi 2 - Statistik uji
27 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi Langkah-langkah pengujian : a. Uji hipotesis H0 : σ1 = σ2 H1 : σ1 σ2 Tingkat signifikansi : α Statistik uji : karena H0 : σ1 = σ2 maka: Daerah kritis (Daerah penolakan H0) Daerah penerimaan H0
28 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi b. Uji hipotesis H 0 : σ1 = σ2 H 1 : σ1 > σ2 Tingkat signifikansi : α Daerah kritis (Daerah penolakan H0) Daerah penerimaan H0
29 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi c. Uji hipotesis H 0 : σ1 = σ2 F(1 H 1 : σ1 < σ2 Tingkat signifikansi : α Daerah kritis (Daerah penolakan H0) )( v, v ) 1 2 F 1 ( )( v 2, v 1 ) Daerah penerimaan H0
30 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi Contoh: Untuk menguji keseragaman (homogenitas) panjang kawat yang dihasilkan oleh dua pabrik yang berbeda dilakukan uji ratio variansi. Dari pabrik pertama diambil sampel sejumlah 16 produk, dan diperoleh standard deviasi 9 cm. Dari pabrik kedua diambil sejumlah 25, diperoleh standard deviasi 12 cm. apakah kawat yang dihasilkan kedua pabrik tersebut cukup seragam? Gunakan α = 0,1
31 Uji Hipotesis untuk Rasio Dua Variansi/Standard Deviasi Data statistik sampel n1=16 s1 = 9 n2 = 25 s2 = 12 Uji hipotesis H0 : σ1 = σ2 H1 : σ1 σ2 Tingkat signifikansi : α = 0,1 Statistik uji : Daerah kritis (Daerah penolakan H0) Kesimpulan: karena maka terima H0 artinya kawat yang dihasilkan kedua pabrik tersebut relatif seragam
32 UJI HIPOTESIS UNTUK KESAMAAN BEBERAPA PROPORSI (UJI INDEPENDENSI)
33 Uji Hipotesis untuk Kesamaan Beberapa Proporsi (Uji Independensi) Langkah-langkah pengujian hipotesis: H0 : H1 : tidak semua sama (paling tidak ada satu yang tidak sama) Tingkat signifikansi : α Data sampel :
34 Uji Hipotesis untuk Kesamaan Beberapa Proporsi (Uji Independensi) Statistik uji Daerah kritis (Daerah penolakan H0) Frekuensi harapan (teoritis)
35 Uji Hipotesis untuk Kesamaan Beberapa Proporsi (Uji Independensi) Contoh: Tabel berikut menunjukkan dampak yang terjadi akibat perubahan temperatur terhadap 3 jenis material Gunakan tingkat signifikansi 0,05 untuk menguji apakah probabilitas akan terjadi keretakan pada ketiga material akibat temperatur tersebut sama.
36 Uji Hipotesis untuk Kesamaan Beberapa Proporsi (Uji Independensi) Penyelesaian: H0 : H1 : tidak semua sama (paling tidak ada satu yang tidak sama) Tingkat signifikansi 0,05 Data sampel
37 Uji Hipotesis untuk Kesamaan Beberapa Proporsi (Uji Independensi) Statistik uji Daerah kritis (Daerah penolakan H0) Kesimpulan: karena maka terima H0 artinya kemungkinan terjadinya keretakan akibat perubahan temperatur pada ketiga jenis material sama
38 UJI INDEPENDENSI UNTUK TABEL CONTINGENCY (R X C) 38
39 Uji Independensi Untuk Tabel Contingency (r x c) Langkah-langkah pengujian hipotesis: H0 : H1 : tidak semua sama (paling tidak ada satu yang tidak sama) Tingkat signifikansi : α Data sampel :
40 Uji Independensi Untuk Tabel Contingency (r x c) Statistik uji dengan : Daerah kritis (Daerah penolakan H0) :
41 Uji Independensi Untuk Tabel Contingency (r x c) Contoh: Untuk menentukan apakah terdapat hubungan antara performansi karyawan dalam program training yang diadakan perusahaan terhadap keberhasilan perusahaan mereka dalam tugas-tugas pekerjaannya, diambil sampel sebanyak 400 karyawan. Hasilnya disajikan dalam tabel berikut: Gunakan α = 0,01 untuk menguji hal tersebut
42 Uji Independensi Untuk Tabel Contingency (r x c) Penyelesaian: H0 : performansi dalam program training & keberhasilan dalam pekerjaan saling independen H1 : tidak semua sama (paling tidak ada satu yang tidak sama) Tingkat signifikansi : α = 0,01 Data sampel
43 Uji Independensi Untuk Tabel Contingency (r x c) Statistik uji Daerah kritis (Daerah penolakan H0) : Kesimpulan : karena maka tolak H0 artinya performansi dalam program training dan keberhasilan dalam pekerjaan saling dependen 43
PENGUJIAN HIPOTESIS (3)
PENGUJIAN HIPOTESIS (3) 3 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Proporsi 3 Uji Hipotesis
PENGUJIAN HIPOTESIS (3) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (3) 4 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Variansi/ Standard Deviasi 3 Uji Hipotesis untuk Variansi (1) 4 Data statistik
PENGUJIAN HIPOTESIS 1
PENGUJIAN HIPOTESIS 1 Pengertian Pengujian Hipotesis From: BAHASA YUNANI HUPO THESIS Lemah, kurang, di bawah Teori, proposisi, atau pernyataan yang disajikan sebagai bukti Hipotesis suatu pernyataan yang
PENGUJIAN HIPOTESIS (2) Debrina Puspita Andriani /
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Uji Hipotesis untuk Rata-rata Sampel Berukuran Besar 3 Uji Rata-rata untuk Sampel Berukuran
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Contingency Uji Homogenitas Referensi: Johnson, R. A., Statistics Principle and Methods, 4 th Ed. John Wiley & Sons, Inc., 001.
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI TIN 4004 Pertemuan 5 Outline: Uji Chi-Squared Uji F Uji Goodness-of-Fit Uji Contingency Uji Homogenitas Referensi: Montgomery, D.C., Runger, G.C., Applied Statistic and Probability
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 4 Outline: Uji Dua Sample Uji Z Uji t Uji t gabungan (pooled t-test) Uji t berpasangan (paired t-test) Uji proporsi Uji Chi-Square Referensi: Johnson, R. A., Statistics
PENGERTIAN PENGUJIAN HIPOTESIS
PENGUJIAN HIPOTESIS PENGERTIAN PENGUJIAN HIPOTESIS HUPO From: BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau
Pengertian Pengujian Hipotesis
PENGUJIAN HIPOTESIS Pengertian Pengujian Hipotesis HUPO BAHASA YUNANI THESIS Pernyataan yang mungkin benar atau mungkin salah terhadap suatu populasi Lemah, kurang, di bawah Teori, proposisi, atau pernyataan
PENGUJIAN HIPOTESIS (2)
PENGUJIAN HIPOTESIS (2) 2 Debrina Puspita Andriani Teknik Industri Universitas Brawijaya e-mail : [email protected] Blog : http://debrina.lecture.ub.ac.id/ 2 Outline Uji Hipotesis untuk Rata-rata Sampel
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah,, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah,, ST., MT UJI KERANDOMAN (RANDOMNESS TEST / RUN TEST) Uji KERANDOMAN Untuk menguji apakah data sampel yang diambil merupakan data yang acak / random Prosedur
BAB IV DESKRIPSI DAN ANALISIS DATA. evaluasi akhir pada materi Sistem Persamaan Linear Dua Variabel (SPLDV).
40 BAB IV DESKRIPSI DAN ANALISIS DATA A. Deskripsi Data Data hasil penelitian ini berupa data kuantitatif, yaitu berupa skor tes evaluasi akhir pada materi Sistem Persamaan Linear Dua Variabel (SPLDV).
Bab 5 Distribusi Sampling
Bab 5 Distribusi Sampling Pendahuluan Untuk mempelajari populasi kita memerlukan sampel yang diambil dari populasi yang bersangkutan. Meskipun kita dapat mengambil lebih dari sebuah sampel berukuran n
Analisis Varians Satu Arah (One Way Anova)
Analisis Varians Satu Arah (One Way Anova) Fungsi Uji : Untuk mengetahui perbedaan antara 3 kelompok/ perlakuan atau lebih Asumsi : Data berskala minimal interval Data berdistribusi Normal Varians data
BAB 4 HASIL PENELITIAN Deskripsi Data Terdistribusi Kualitas Sistem Informasi Business
BAB 4 HASIL PENELITIAN 4.1 Deskripsi Data Hasil Penelitian 4.1.1 Deskripsi Data Terdistribusi Kualitas Sistem Informasi Business Trip Berdasarkan instrumen penelitian yang menggunakan skala 1 (satu) sampai
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 3 Outline: Uji Hipotesis: Uji Z: Proportional Populasi Uji Hipotesis 2 populasi: Uji Z Uji pooled t-test Uji paired t-test Referensi: Johnson, R. A., Statistics
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Directional & Nondirectional test Langkah-langkah Uji Hipotesis Error dalam Uji hipotesis (Error Type I) Jenis Uji Hipotesis satu populasi
Analisis of Varians (Anova) dan Chi-Square. 1/26/2010 Pengujian Hipotesis 1
Analisis of Varians (Anova) dan Chi-Square /6/00 Pengujian Hipotesis Chi Square Digunakan untuk menguji apakah dua atau lebih proporsi sama. Pengujian beda proporsi hanya untuk populasi namun chi square
METODE PENELITIAN. untuk menjawab tujuan penelitian berdasarkan data yang diperoleh dan dianalisis.
26 III. METODE PENELITIAN A. Konsep Dasar dan Definisi Operasional Konsep dasar dan definisi operasional merupakan cakupan makna yang digunakan untuk menjawab tujuan penelitian berdasarkan data yang diperoleh
ESTIMASI. Arna Fariza PENDAHULUAN
ESTIMASI Arna Fariza PENDAHULUAN MATERI LALU Karena adanya berbagai alasan seperti banyaknya individu dalam populasi amatan, maka penelitian keseluruhan terhadap populasi tersebut tidaklah ekonomis, baik
6.1 Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat. α Jika x berdistribusi χ 2 (v) dengan v = derajat kebebasan = n 1 maka P (c 1.
Pertemuan ke- BAB IV POPULASI, SAMPEL, DISTRIBUSI TEORITIS, VARIABEL KONTINU, DAN FUNGSI PROBABILITAS. Distribusi Chi Kuadrat Gambar distribusi Chi kuadrat α Jika x berdistribusi χ (v) dengan v = derajat
Uji Hipotesis Mengenai Rataan (Hypothesis Test on the Mean) Oleh Azimmatul Ihwah
Uji Hipotesis Mengenai Rataan (Hypothesis Test on the Mean) Oleh Azimmatul Ihwah Uji Hipotesis Mengenai Rataan dari Satu Sampel yang Berasal dari Populasi Berdistribusi Normal, Variansi Diketahui Hipotesis
Distribusi Probabilitas Diskret Teoritis
Distribusi robabilitas Diskret Teoritis Distribusi robabilitas Teoritis Diskret Distribusi seragam diskret (discrete uniform distribution) Distribusi hipergeometris (hypergeometric distribution) Distribusi
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN Metodologi penelitian adalah suatu kerangka yang memuat langkah-langkah yang ditempuh dalam menyelesaikan permasalahan yang dihadapi. Pada bagian ini akan dijelaskan secara
BIOSTATISTIK HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA ( ) NURTASMIA ( ) SOBRI ( )
BIOSTATISTIK UJI HIPOTESIS UNTUK PROPORSI MARIA ALMEIDA (20611003) NURTASMIA (20611022) SOBRI (20611027) : Tahapan-tahapan dalam uji hipotesis 1.Membuat hipotesis nol (H o ) dan hipotesis alternatif (H
BAB VII Inferensi Statistik Dua Populasi Normal
BAB VII Inferensi Statistik Dua Populasi Normal Bab ini membahas inferensi statistik selisih dua mean dan perbandingan dua variansi populasi normal, berdasarkan dua sampel independen. Disamping itu juga
BAB IV ANALISIS HASIL DAN PEMBAHASAN
BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Analisis Hasil Setelah melalui beberapa tahap kegiatan penelitian, dalam bab IV ini diuraikan analisis hasil penelitian dan pembahasan hasil penelitian. Analisis
PROSEDUR UMUM. Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 )
PENGUJIAN HIPOTESIS PROSEDUR UMUM Langkah 1 : tentukan hipotesis 0 (H 0 ) dan anti hipotesis (H 1 ) misalnya: H 0 : µ = 100 H 1 : μ 100 atau H 1 : μ> 100 atau H 1 : μ< 100 PROSEDUR UMUM Langkah : tentukan
Uji Mengenai Variansi dan Proporsi. Oleh Azimmatul Ihwah
Uji Mengenai Variansi dan Proporsi Oleh Azimmatul Ihwah Uji Hipotesis Mengenai Variansi Beda uji hipotesis mengenai variansi dengan uji hipotesis mengenai rataan adalah pada parameter penduga, yaitu menggunakan
BAB 7: UJI HIPOTESIS (1)
BAB 7: UJI HIPOTESIS (1) Uji hipotesis dilakukan untuk membuktikan kebenaran akan asumsi atas nilai parameter. Asumsi terhadap nilai parameter inilah yang kita sebut hipotesis. Untuk membuktikan benar/tidaknya
ANALISIS VARIAN Satu Jalur. Uji F
ANALISIS VARIAN Satu Jalur Uji F Anava/SAM/F.Psi.UA/006 Anava Uji t digunakan untuk pengujian dua sampel Uji F atau Anava digunakan untuk pengujian lebih dari dua sampel Keduanya sama-sama menguji perbedaan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi yang berarti peramalan, penaksiran, atau pendugaan pertama kali diperkenalkan pada tahun 1877 oleh Sir Francis Galton (1822-1911) sehubungan dengan penelitiannya
PERTEMUAN KE 3 UJI HIPOTESIS BEDA DUA RATA-RATA
PERTEMUAN KE 3 UJI HIPOTESIS BEDA DUA RATA-RATA Uji beda dua rata-rata sampel berpasangan (Paired test) Dibutuhkan untuk mencek perbedaan yang bermakna antara dua nilai rata-rata ketika sampel-sampel tersebut
Uji chi-kuadrat merupakan pengujian hipotesis tentang perbandingan antara frekuensi sampel yang benar-benar terjadi (selanjutnya disebut dengan
Uji chi-kuadrat merupakan pengujian hipotesis tentang perbandingan antara frekuensi sampel yang benar-benar terjadi (selanjutnya disebut dengan frekuensi observasi, dilambangkan dengan fo ) dengan frekuensi
Statistik Non Parametrik
Statistik Non Parametrik UJI FRIEDMAN (UJI X ) r X r UJI Friedman (uji ) Untuk k sampel berpasangan (k>) dengan data setidaknya data skala ordinal Sebagai alternatif dari analisis variansi dua arah bila
BAB IV ANALISIS HASIL DAN PEMBAHASAN
42 BAB IV ANALISIS HASIL DAN PEMBAHASAN A. Statisitik Deskriptif Statistik deskriptif digunakan untuk gambaran secara umum data yang telah dikumpulkan dalam penelitian ini. Dari 34 perusahaan barang konsumsi
STATISTIKA INDUSTRI 2 TIN 4004
STATISTIKA INDUSTRI 2 TIN 4004 Pertemuan 2 Outline: Uji Hipotesis: Langkah-langkah Uji Hipotesis Jenis Uji Hipotesis satu populasi Uji Z Referensi: Walpole, R.E., Myers, R.H., Myers, S.L., Ye, K., Probability
I. PENDAHULUAN II. TINJAUAN PUSTAKA
I. PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan sehari-hari pasti kita dihadapi oleh suatu pilihan dan masalah pengambilan keputusan. Salah satu ilmu yang dapat digunakan untuk membantu pengambilan keputusan
Uji Statistik Hipotesis
Modul 8 Uji Statistik Hipotesis Bambang Prasetyo, S.Sos. D PENDAHULUAN alam Modul 7, Anda sudah diperkenalkan pada inferensi. yang mencakup estimasi dan uji hipotesis. Dalam Modul 7, Anda juga sudah belajar
UJI HOMOGENITAS. Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih
UJI HOMOGENITAS Pada dasarnya uji homogenitas dimaksudkan untuk memperlihatkan bahwa dua atau lebih kelompok data sampel berasal dari populasi yang memiliki variansi yang sama. Uji homogenitas terbagi
ANALISIS DATA KATEGORIK
ANALISIS DATA KATEGORIK 7.1 Uji Independensi Khi Kuadrat Adakalanya kita menjumpai data yang bersifat kategorikal. Yang dimaksud dengan kategorikal di sini adalah data terkelompokkan berdasarkan kategori
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Penelitian Jenis penelitian kuantitatif yang akan dilakukan merupakan metode eksperimen yang berdesain posttest-only control design, karena tujuan dalam penelitian ini
BAB V INFERENSI STATISTIK SATU POPULASI NORMAL
BAB V INFERENSI STATISTIK SATU POPULASI NORMAL Bab ini membahas inferensi statistik untuk mean dan variansi satu populasi normal berdasarkan sampel random berukuran kecil dan besar. Untuk membahas hal
BAB III METODE PENELITIAN. di peroleh dari Website Bank Muamlat dalam bentuk Time series tahun 2009
17 BAB III METODE PENELITIAN 3.1. Jenis dan Sumber Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder yang di peroleh dari Website Bank Muamlat dalam bentuk Time series tahun 2009
BAB IV INFERENSI STATISTIK SATU POPULASI SEMBARANG
BAB IV INFERENSI STATISTIK SATU POPULASI SEMBARANG Bab ini akan membahas inferensi statistik terhadap mean suatu populasi sembarang dan proporsi suatu populasi dikotomi/binomial. Ukuran sampel random yang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Populasi dan Sampel Populasi adalah kelompok besar individu yang mempunyai karakteristik umum yang sama atau kumpulan dari individu dengan kualitas serta ciri-ciri yang telah ditetapkan.
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN A. Jenis dan Disain Penelitian Jenis penelitian yang akan dilakukan merupakan jenis quasi experiment. Sedangkan disain penelitian yang akan diterapkan berupa static group
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Statistik Non Parametrik Penelitian di bidang ilmu sosial seringkali menjumpai kesulitan untuk memperoleh data kontinu yang menyebar mengikuti distribusi normal. Data penelitian
statistika untuk penelitian
statistika untuk penelitian Kelompok Ilmiah Remaja (KIR) Delayota Experiment Team (D Expert) 2013 Freeaninationwallpaper.blogspot.com Apa itu Statistika? Statistika adalah ilmu yang mempelajari cara pengumpulan,
I. PENDAHULUAN II. TINJAUAN PUSTAKA. 1.1 Latar Belakang
I. PENDAHULUAN 1.1 Latar Belakang Statistik sangat sering ditemui dalam kehidupan sehari-hari, tidak hanya dalam dunia pendidikan dan ilmu pengetahuan. Statistik inferensia salah satunya, merupakan satu
BAB III METODE PENELITIAN. Penelitian ini dilaksanakan pada Kabupaten Tapanuli Selatan yang
BAB III METODE PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilaksanakan pada Kabupaten Tapanuli Selatan yang mempunyai jumlah peternak sapi IB dan non IB di tiga Kecamatan yaitu Kecamatan
UJI STATISTIK NON PARAMETRIK. Widha Kusumaningdyah, ST., MT
UJI STATISTIK NON PARAMETRIK Widha Kusumaningdyah, ST., MT SIGN TEST Sign Test Digunakan untuk menguji hipotesa tentang MEDIAN dan DISTRIBUSI KONTINYU. Pengamatan dilakukan pada median dari sebuah distribusi
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Penelitian Metode yang digunakan pada penelitian ini adalah metode eksperimen, yaitu prosedur untuk menyelidiki hubungan sebab akibat dengan menempatkan obyek secara
BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis
BI5106 ANALISIS BIOSTATISTIK Bab 5 Uji Hipotesis Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep uji hipotesis, kesalahan tipe 1 dan 2, uji hipotesis untuk mean (1 dan 2 sampel),
UJI ANOVA. Imam Gunawan DISTRIBUSI F
UJI ANOVA Imam Gunawan DISTRIBUSI F Ditribusi F memiliki ciri-ciri, yaitu: 1. Nilai F adalah nonnegatif.. Distribusi F merupakan distribusi kontinu. Nilainya mulai dari 0 dan tidak memiliki batas atas.
PENGUJIAN HIPOTESIS BEDA TIGA RATA-RATA ATAU LEBIH. Statistik Industri II Teknik Industri Universitas Brawijaya
PENGUJIAN HIPOTESIS BEDA TIGA RATA-RATA ATAU LEBIH Statistik Industri II Teknik Industri Universitas Brawijaya Pengujian Hipotesis 3 rata-rata atau lebih Dengan teknik ANOVA (Analisis Varians) Pengujian
BAB III METODE PENELITIAN. dengan tujuan dan kegunaan tertentu (Sugiyono, 2008:3). Dalam penelitian
BAB III METODE PENELITIAN 3.1 Metodologi Penelitian Metode penelitian diartikan sebagai cara ilmiah untuk mendapatkan data dengan tujuan dan kegunaan tertentu (Sugiyono, 2008:3). Dalam penelitian penulis
Chi Square Test. Edi Minaji Pribadi, SP., MSc. Pokok Bahasan: Oleh:
Pokok Bahasan: Chi Square Test Oleh: Edi Minaji Pribadi, SP., MSc. Start Home Contact Pokok Bahasan A. Pengertian Distribusi Chi Kuadrat B. Uji Kecocokan (Goodness o Fit Test) (Contingency Table Test)
BAB III METODE PENELITIAN
24 BAB III METODE PENELITIAN 3.1 Jenis Penelitian Jenis penelitian ini adalah penelitian komparatif. Penelitian komparatif adalah suatu penelitian yang bersifat membandingkan kinerja keuangan perusahaan
BAB 4 METODE PENELITIAN
31 BAB 4 METODE PENELITIAN 4.1 Desain Penelitian Penelitian ini merupakan penelitian analitik dengan menggunakan desain kohort retrospektif mengenai pengaruh PMT pada penderita TB paru terhadap konversi
BAB III ANALISIS FAKTOR. berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
BAB III ANALISIS FAKTOR 3.1 Definisi Analisis faktor Analisis faktor adalah suatu teknik analisis statistika multivariat yang berfungsi untuk mereduksi dimensi data dengan cara menyatakan variabel asal
Ayundyah Kesumawati. April 20, 2015
Pengujian Kesumawati Nol dan Prodi Statistika FMIPA-UII April 20, 2015 Pengujian Statistik : pernyataan atau dugaan mengenai satu atau lebih populasi Pengujian hipotesis berhubungan dengan penerimaan atau
Pengujian Hipotesis. 1. Pendahuluan. Topik Bahasan:
Topik Bahasan: Pengujian Hipotesis. Pendahuluan Hipotesis pernyataan yang merupakan pendugaan berkaitan dengan nilai suatu parameter populasi (satu atau lebih populasi) Kebenaran suatu hipotesis diuji
Pendugaan Parameter. Ayundyah Kesumawati. April 13, Prodi Statistika FMIPA-UII. Ayundyah (UII) Pendugaan Parameter April 13, / 30
Pendugaan Parameter Ayundyah Kesumawati Prodi Statistika FMIPA-UII April 13, 2015 Ayundyah (UII) Pendugaan Parameter April 13, 2015 1 / 30 Pendugaan 1 Proses yang menggunakan sampel statistik untuk menduga
BAB III METODE PENELITIAN
33 BAB III METODE PENELITIAN 3.1 Jenis dan Sumber Data Penelitian ini dilakukan berdasarkan data series bulan yang dipublikasikan oleh Bank Indonesia (BI) dan Badan Pusat Statistik (BPS), diantaranya adalah
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Penelitian Jenis penelitian ini adalah penelitian lapangan (field research ), maksudnya adalah penelitian yang langsung dilakukan di medan terjadinya gejala-gejala. 1
Uji Hipotesa Dua Sampel (Lanjutan)
Uji Hipotesa Dua Sampel (Lanjutan) Tjipto Juwono, Ph.D. May 3, 2016 TJ (SU) Uji Hipotesa Dua Sampel (Lanjutan) May 2016 1 / 26 σ tidak diketahui, saling beda, sampel kecil Standard Deviasi Tidak Diketahui,
Analisis Varian. Statistika Ekonomi. Ir Tito Adi Dewanto
Analisis Varian Statistika Ekonomi Ir Tito Adi Dewanto 1 Uji Anova Anova : menguji rata-rata satu kelompok / lebih melalui satu variabel dependen / lebih berbeda secara signifikan atau tidak. ONE WAY ANOVA
PENGUJIAN HIPOTESIS 2
PENGUJIAN HIPOTESIS. Menguji Kesamaan Dua Rata-rata a. Uji Dua Pihak Misalkan ada dua populasi berdistribusi normal dengan masing-masing rata-rata dan simpangan baku secara berturut-turut μ dan μ dan σ
BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan
BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel atau
STATISTIK PERTEMUAN VII
STATISTIK PERTEMUAN VII Distribusi Sampling Distribusi Sampling merupakan distribusi teoritis (distribusi kemungkinan) dari semua hasil sampel yang mungkin, dengan ukuran sampel yang tetap N, pada statistik
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel
BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Penelitian Penelitian ini mengunakan metode penelitian eksperimen (experimental research). Metode penelitian eksperimen adalah penelitian yang dilakukan dengan mengadakan
BAB 2 TINJAUAN TEORITIS. Tes Statistik Non Parametrik adalah test yang modelnya tidak menetapkan syaratsyaratnya
BAB 2 TINJAUAN TEORITIS 21 Statistik Non Parametrik Tes Statistik Non Parametrik adalah test yang modelnya tidak menetapkan syaratsyaratnya mengenai parameter-parameter populasi yang merupakan induk sampel
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1
PENDUGAAN PARAMETER STATISTIK INDUSTRI 1 Agustina Eunike, ST., MT., MBA Mengetahui populasi dan membuat pernyataan peluang mengenai elemen yang diambil dari populasi tersebut Tidak mengetahui distribusi
Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA.
Dr. I Gusti Bagus Rai Utama, SE., M.MA., MA. Hipotesis statistik Sebuah pernyataan tentang parameter yang menjelaskan sebuah populasi (bukan sampel). Statistik Angka yang dihitung dari sekumpulan sampel.
Metode Penelitian Kuantitatif Aswad Analisis Deskriptif
Analisis Deskriptif Tanpa mengurangi keterumuman, pembahasan analisis deskriptif kali ini difokuskan kepada pembahasan tentang Ukuran Pemusatan Data, dan Ukuran Penyebaran Data Terlebih dahulu penting
MK. Statistik sosial
MK. Statistik sosial Digunakan untuk membandingkan rata- rata LEBIH dari dua sampel variabel Independen (Contoh : rata- rata lama TV di tonton oleh anak- anak dari beberapa negara : Australia, Inggris,
Uji Hipotesis. Atina Ahdika, S.Si, M.Si. Universitas Islam Indonesia 2015
Uji Hipotesis Atina Ahdika, S.Si, M.Si Universitas Islam Indonesia 015 Definisi Hipotesis Suatu pernyataan tentang besarnya nilai parameter populasi yang akan diuji. Pernyataan tersebut masih lemah kebenarannya
Analisis Data kategorik tidak berpasangan skala pengukuran numerik
Analisis Data kategorik tidak berpasangan skala pengukuran numerik Uji t dengan 2 kelompok Uji t Tidak Berpasangan Uji t dikembangkan oleh William Sealy Gosset. Dalam artikel publikasinya, ia menggunakan
Ayundyah Kesumawati. May 31, 2015
Kesumawati Prodi Statistika FMIPA-UII May 31, 2015 Dalam praktek, pengujian hipotesis dapat mencakup lebih dari dua proporsi. Misalnya, persentase sejenis barang yang rusak 3 pabrik adalah sama (tidak
BAB 2 LANDASAN TEORI. pertama digunakan sebagai konsep statistik pada tahun 1877 oleh Sir Francis
10 BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Dalam ilmu statistika teknik yang umum digunakan untuk menganalisa hubungan antara dua variabel atau lebih variabel adalah analisa regresi linier. Regresi
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Metode Penelitian Metode penelitian yang digunakan pada penelitian ini yaitu Pre- Experimental Design. Desain ini belum merupakan desain sesungguhnya karena masih terdapat
BAB III METODOLOGI PENELITIAN
BAB III METODOLOGI PENELITIAN A. Obyek Penelitian Obyek penelitian yang diteliti adalah perusahaan manufaktur yang terdaftar di Bursa Efek Indonesia Periode 2011-2015. B. Jenis Data Jenis data pada penelitian
MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 )
MODUL UJI NON PARAMETRIK (CHI-SQUARE/X 2 ) Tujuan Praktikum: Membantu mahasiswa memahami materi Distribusi Chi Square Pengambilan keputusan dari suatu kasus dengan menggunakan kaidah dan syarat Distribusi
III. METODOLOGI PENELITIAN. Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 8 Bandar
36 III. METODOLOGI PENELITIAN A. Populasi dan Sampel Populasi dalam penelitian ini adalah siswa kelas VII SMP Negeri 8 Bandar Lampung semester genap tahun pelajaran 2009/2010 yang berjumlah 209 siswa yang
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Statistik merupakan salah satu cabang ilmu pengetahuan yang paling banyak mendapatkan perhatian dan dipelajari oleh ilmuan dari hampir semua ilmu bidang pengetahuan,
PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)
ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 697-704 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL
BAB IV DESKRIPSI DAN ANALISIS DATA
BAB IV DESKRIPSI DAN ANALISIS DATA A. Deskripsi Data Hasil Penelitian Penelitian ini merupakan penelitian eksperimen dengan desain posttest only control design, yaitu menempatkan subyek penelitian ke dalam
Distribusi Probabilitas Kontinyu Teoritis
Distribusi Probabilitas Kontinyu Teoritis Suprayogi Dist. Prob. Teoritis Kontinyu () Distribusi seragam kontinyu (continuous uniform distribution) Distribusi segitiga (triangular distribution) Distribusi
SESI 13 STATISTIK BISNIS
Modul ke: SESI 13 STATISTIK BISNIS Sesi 13 ini bertujuan agar Mahasiswa dapat mengetahui teori Analisis Regresi dan Korelasi Linier yang berguna sebagai alat analisis data Ekonomi dan Bisnis. Fakultas
I. PENDAHULUAN II. TINJAUAN PUSTAKA
I. PENDAHULUAN 1.1 Latar Belakang Statistika sangat bermanfaat dalam kehidupan manusia, tidak hanya di bidang ilmu pengetahuan tapi penerapannya juga sangat aplikatif di dunia sehari-hari. Salah satunya
PENDAHULUAN. Latar belakang
Latar belakang PENDAHULUAN Indonesia merupakan negara megabiodiversity yang memiliki kekayaan tumbuhan obat. Indonesia memiliki lebih dari 38.000 spesies tanaman (Bappenas 2003). Sampai tahun 2001 Laboratorium
BAB III METODE PENELITIAN
BAB III METODE PENELITIAN A. Jenis Penelitian Jenis penelitian ini adalah penelitian eksperimen, yaitu penelitian yang didalamnya melibatkan manipulasi terhadap kondisi subjek yang diteliti, disertai dengan
BAB III METODOLOGI PENELITIAN. 2013/2014 pada tanggal 20 September 2013 sampai dengan 11 Oktober 2013
38 BAB III METODOLOGI PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada semester ganjil tahun ajaran 2013/2014 pada tanggal 20 September 2013 sampai dengan 11 Oktober 2013 di SMP
BAB IV ANALISIS DATA DAN PEMBAHASAN. A. Gambaran Umum Struktur Modal Perusahan Properti
BAB IV ANALISIS DATA DAN PEMBAHASAN A. Gambaran Umum Struktur Modal Perusahan Properti Dalam bab ini akan disajikan hasil dari analisis data berdasarkan pengamatan sejumlah variabel yang dipakai dalam
DISTRIBUSI SAMPLING besar
DISTRIBUSI SAMPLING besar Distribusi Sampling Sampling = pendataan sebagian anggota populasi = penarikan contoh / pengambilan sampel Sampel yang baik Sampel yang representatif, yaitu diperoleh dengan memperhatikan
