BAB IV EKSPEKTASI MATEMATIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB IV EKSPEKTASI MATEMATIK"

Transkripsi

1 BAB IV EKSPEKTASI MATEMATIK.1. Rata-rata variabel acak Bila dua koin dilemparkan sebanyak 16 kali dan X adalah jumlah depan (atas) yang muncul setiap kali pelemparan. Sehinga nilai X adalah 0,1, atau. Misalkan dari hasil percobaan menunjukkan bahwa tanpa depan, satu depan, dan duaduanya depan adalah masing-masing, 7 dan 5. Maka jumlah rata-rata depan yang muncul setiap satu lemparan dari koins tersebut adalah: ( 0)( ) + ( 1)( 7) + ( )( 5) 16 = 1.06 Perhitungan diatas dapat dinyatakan dalam bentuk sebagai berikut: 7 5 ( 0 ) + () 1 + ( ) = nilai /16, 7/16, dan 5/16 disebut sebagai raksi atau rekuensi relati, sehingga kita bisa menghitung nilai rata-rata dengan nilai tertentu yang terjadi dan nilai rekuensinya. Nilai rata-rata (mean), μ, atau nilai yang diperkirakan (epected), E(X) dari percobaan diatas dapat ditulis sebagai: μ = E X 7 5 ( ) = ( 0 ) + () 1 + ( ) = DEFINISI: Bila X adalah suatu variabel acak dengan distribusi probabilitas (), rata-rata atau nilai yang diperkirakan (mean or epected) dari X adalah: μ = E( ) = ( ) Bila X diskrit ( ) = ( )d μ = E Bila X menerus IV - 1

2 Contoh: sebuah kotak berisi 7 alat (komponen), alat kondisinya baik, rusak. Bila sampel diambil, berapa nilai perkirakan (epected) sampel yang diambil tersebut adalah baik. Solusi: Bila X menunjukkan alat yang baik dalam sampel. Distribusi probabilitas dari X adalah: 7 ( ) =, untuk = 0,1,, dari hasil perhitungan diperoleh (0) = 1/5, (1)=1/5, ()=18/5, dan ()=/5. Oleh karena itu: μ = E X ( ) = ( 0 ) + () 1 + ( ) + () = 1. 7 Contoh: Misalkan X adalah variabel acak yang menunjukkan umur (jam) dari suatu alat elektronik. Bila ungsi kepadatan probabilitasnya adalah: ( ) 0000,... > 100 = tentukan umur perkiraan alat elektronik tersebut. Solusi: 0000 μ = E 0000 ( ) = d = d = TEOREMA: Misalkan X adalah suatu variabel acak dengan distribusi probabilitas (), rata-rata atau nilai yang diperkirakan dari variabel acak g(x) adalah: ( X ) = E[ g( X )] g( ) ( ) μ g = Bila X diskrit IV -

3 g ( X ) = E[ g( X )] = g( ) ( )d μ Bila X menerus Contoh: Misalkan jumlah kendaraan X yang dicuci selama 1 jam (-5 sore) memiliki distribusi probabilitas sebagai berikut: P(X=) 1/1 1/1 ¼ ¼ 1/6 1/6 Bila g(x)=x -1 menunjukkan jumlah uang yang diperoleh dari hasil tsb (dolar). Tentukan perkiraan hasil yang diperoleh selama waktu tersebut. Solusi: E [ g( X )] = ( 1) ( ) = ( 7) + () 9 + ( 1) + ( 15) 6 ( 17) = 1.67$ Contoh: Bila X adalah variabel acak dengan ungsi kepadatan sebagai berikut: ( ),... 1 < < = Tentukan perkiraan nilai (rata-rata) dari g(x)= X+ μ g ( X ) E[ g( X + ) ] = = 1 ( + ) d = 8 DEFINISI: Misalkan X dan Y adalah variabel acak dengan distribusi probabilitas gabungan (,y). rata-rata atau nilai yang diperkirakan dari variabel acak g(x,y) adalah: ( X, Y ) = E[ g( X, Y )] = g(, y) ( y) μ Bila X dan Y diskrit g, y IV -

4 g ( X, Y ) = E[ g( X, Y )] = g(, y) (, y)ddy μ Bila X dan Y menerus Contoh: Tentukan Solusi: ( ) Y E untuk ungsi kepadatan: X ( 1+ y ),...0 < <,0 < y < 1 = E Y X = y ( 1+ y ) 5/ 8 ddy =. Varians dan Covarians Rata-rata atau nilai yang diperkirakan dari suatu vaiabel acak sangat penting untuk menggambarkan bagaimana pusat distribusi probabilitas. Namun hal itu tidak cukup karena suatu bentuk distribusi bisa jadi rata-ratanya sama tapi memiliki sebaran yang berbeda, karena itu diperlukan ukuran variabilitas dari suatu variabel acak. Hal ini dinyakan dengan varian, Var(X). DEFINISI: Misalkan X adalah variabel acak dengan distribusi probabilitas () dan rata-rata μ. Varians dari X adalah: Var Var ( X ) = = E ( X μ) [ ] = ( μ) ( ) σ Bila X diskrit ( X ) = = E ( X μ) [ ] = ( μ) ( )d σ Bila X menerus σ = Var X = Deviasi standar dari X adalah ( ) Soal: Misalkan variael acak X menunjukkan jumlah mobil yang digunakan untuk urusan kantor pada suatu waktu tertentu. Distribusi probabilitas untuk perusahaan σ IV -

5 A adalah: 1 () Sedangkan pada perusahaan B adalah: 0 1 () Tunjukkan bahwa variansi distribusi probabilitas perusaan B lebih besar dari A TEOREMA: Varians dari suatu variabel acak X adalah ( ) σ = E X μ Soal:Permintaan pekanan sebuah perusahaan minuman, dalam ribuan liter, adalah variabel acak X dengan dengan kepadatan probaibilitas sbb: ( ) ( ) < < = tentukan rata-rata dan varians dari X. TEOREMA: Misalkan X adalah variabel acak dengan distribusi probabilitas (). Varians dari variabel acak g(x) adalah: {[ g X μ ] } = [ g( ) μ g( X )] ( ) σ g = E Bila X diskrit g ( X ) ( ) g( X ) ( X ) ( ) g( X ) {[ g X μ ] } = [ g( ) μ g( X )] ( )d σ = E Bila X menerus Contoh: Hitung varians dari g(x)=x +, X adalah variabel acak dengan distribusi probabilitas sbb: Solusi: 0 1 () ¼ 1/8 ½ 1/8 IV - 5

6 + = 6 = 0 Rata-rata: μ X = E( X + ) = ( + ) ( ) Varians: σ E + = E {[( + ) μ ] } = E [( + ) 6] ( 1 + 9) = ( 1 + 9) ( ) = = 0 + { } = E{ [ + 6] } = DEFINISI: Misalkan X dan Y adalah variabel acak dengan distribusi probabilitas gabungan (,y). Covarians dari X dan Y adalah [( X μ X )( Y μy )] = ( μ X )( y Y ) ( y) σ XY = E μ, Bila X dan Y diskrit y [( X μ X )( Y μy )] = ( μ X )( y Y ) ( y)ddy σ XY = E μ, menerus. Bila X dan Y Covarians merupakan suatu ukuran siat hubungan antara variabel. Bila nilai X tinggi, nilai Y juga tinggi serta bila nilai X - μ, Y - μ y juga tinggi; maka hasil kali (X - μ )(Y - μ y ) positi. Namun bila hasil kali negati, nilai nilai X tinggi nilai Y kecil. Nilai Covarians dapat juga dihitung dengan rumus berikut. TEOREMA: Covarians dari dua variabel acak X dan Y dengan rata-rata μ X dan μ Y σ = E XY μ adalah: XY ( ) X Y Tentukan covarians dari X dan Y Solusi: Pertama hitung ungsi kepadatan marjinal. IV - 6 μ Contoh: Fraksi X dari pelari laki-laki dan raksi Y dari pelari wanita yang bersaing pada pertandingan maraton dinyatakan dengan ungsi kepadatana gabungan berikut: (, y) 8y...0 1,0 y =

7 g ( ) = y( 1 y ) ( y) =...0 y 1 h Hitung rata-rata: 1 1 μ = E( X ) = d = / 5; μ = E( Y ) = y ( 1 y ) E 1 1 ( XY ) = 8 y ddy = 0 y 0 / 9 y dy = 8 /15; 0 Maka: σ E( XY ) XY = μμ y = = 5 DEFINISI: Misalkan X dan Y adalah variabel acak dengan Covarians σ XY dan deviasi standar σ X dan σ Y. Koeisien korelasi X dan Y adalah σ XY ρ XY = σ σ X Y Koeesien korelasi memiliki nilai 1 ρ 1, mendekati 1 menunjukkan korelasi yang kuat antara X dan Y. y. Rata-rata dan Varians dari kombinasi linier variabel acak TEOREMA: bila a dan b adalah konstan, maka: ( ax + b) = ae( X ) b E + TEOREMA: Nilai yang diperkirakan (epected value) dari suatu penjumlahan atau pengurangan dua atau lebih ungsi dari suatu variabel acak X adalah jumlah atau pengurangan nilai yang diperkirakan dari ungsi tersebut. [ g( X ) ± h( X )] = E[ g( X )] E[ h( X )] E ± IV - 7

8 TEOREMA: Nilai yang diperkirakan (epected value) dari suatu penjumlahan atau pengurangan dua atau lebih ungsi dari suatu variabel acak X dan Y adalah jumlah atau pengurangan nilai yang diperkirakan dari ungsi tersebut. [ g( X, Y ) ± h( X, Y )] = E[ g( X, Y )] ± E[ h( X Y )] E, TEOREMA: Misalkan X dan Y adalah dua variabel acak bebas, maka ( XY ) E( X ) E( Y ) E = TEOREMA: bila a dan b adalah konstan, maka: σ ax + b = a σ ax = a σ TEOREMA: bila X dan Y adalah variabel acak dengan distribusi probabilitas gabungan (,y), maka: ax + by X Y σ = a σ + b σ + abσ XY IV - 8

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Variansi dan Kovariansi. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Variansi dan Kovariansi Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Variansi Kita sudah memahami bahwa nilai harapan peubah acak X seringkali

Lebih terperinci

Statistika Variansi dan Kovariansi. Adam Hendra Brata

Statistika Variansi dan Kovariansi. Adam Hendra Brata Statistika dan Adam Hendra Brata Kita sudah memahami bahwa nilai harapan peubah acak X seringkali disebut rataan (mean) dan dilambangkan dengan μ. Tetapi, rataan tidak memberikan gambaran dispersi atau

Lebih terperinci

Bab 2 DISTRIBUSI PELUANG

Bab 2 DISTRIBUSI PELUANG Bab 2 DISTRIBUSI PELUANG PENDAHULUAN Setiap peristiwa akan mempunyai peluangnya masingmasing, dan peluang terjadinya peristiwa itu akan mempunyai penyebaran yang mengikuti suatu pola tertentu yang di sebut

Lebih terperinci

DISTRIBUSI PROBABILITAS

DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS DISTRIBUSI PROBABILITAS Peluang terjadinya nilai variabel random X yang meliputi semua nilai ditentukan melalui distribusi peluang. Distribusi peluang suatu variabel random X adalah

Lebih terperinci

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Harapan Matematik. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Harapan Matematik Bahan Kuliah II09 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Definisi Harapan Matematik Satu konsep yang penting di dalam teori peluang

Lebih terperinci

HARAPAN MATEMATIK. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

HARAPAN MATEMATIK. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 HARAPAN MATEMATIK Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 Pendahuluan Rata-rata perubah acak X atau rata-rata distribusi peluang X ditulis x atau. Dalam statistik rata-rata ini disebut harapan matematik

Lebih terperinci

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia

Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia Achmad Samsudin, M.Pd. Jurdik Fisika FPMIPA Universitas Pendidikan Indonesia VARIABEL ACAK VARIABEL ACAK : suatu fungsi yang nilainya berupa bilangan nyata yang ditentukan oleh setiap unsur dalam ruang

Lebih terperinci

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP

THEORY. By: Hanung N. Prasetyo PEUBAH ACAK TELKOM POLYTECHNIC/HANUNGNP THEORY By: Hanung N. Prasetyo PEUBAH ACAK Variabel acak adalah suatu variabel yang nilainya bisa berapa saja Variabel acak merupakan deskripsi numerik dari outcome beberapa percobaan / eksperimen VARIABEL

Lebih terperinci

Harapan Matematik (Teori Ekspektasi)

Harapan Matematik (Teori Ekspektasi) (Teori Ekspektasi) PROBABILITAS DAN STATISTIKA Semester Genap 2014/2015 LUTFI FANANI [email protected] Sifat Definisi Harapan matematik atau nilai ekspektasi adalah satu konsep yang penting di dalam

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

STATISTIK PERTEMUAN VI

STATISTIK PERTEMUAN VI STATISTIK PERTEMUAN VI 1. TEORI PENDUKUNG 1.1 Pendahuluan 1. Variabel acak 1.3 Distribusi variabel acak diskrit 1.4 Distribusi variabel acak kontinu 1.5 Distribusi multivariat 1.1 Pendahuluan Definisi

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 5. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Rataan peubah acak. HARAPAN MATEMATIK Misalkan dua mata uang setangkup dilantun, peubah acak X menyatakan banyaknya

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Probabilitas Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya tidak pasti (uncertain

Lebih terperinci

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X

Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=x) disebut distribusi probabilitas X Kumpulan pasangan nilai-nilai dari variabel acak X dengan probabilitas nilai-nilai variabel random X, yaitu P(X=) disebut distribusi probabilitas X (distribusi X) Diskrit Seragam Binomial Hipergeometrik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Teori Probabilitas (Peluang) Probabilitas adalah suatu nilai untuk mengukur tingkat kemungkinan terjadinya suatu peristiwa (event) akan terjadi di masa mendatang yang hasilnya

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Bab 1: a FMIPA Universitas Islam Indonesia Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik dari sampel Akan dibahas konsep statistik dan distribusi sampling Parameter Misalkan

Lebih terperinci

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu

Pertemuan ke Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Pertemuan ke 5 4.1 Nilai Harapan (Mean atau Rata rata) dan Varians Distribusi Kontinu Fungsi Probabilitas dengan variabel kontinu terdiri dari : 1. Distribusi Normal 2. Distribusi T 3. Distribusi Chi Kuadrat

Lebih terperinci

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS

oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS Dasar Statistik untuk Pemodelan dan Simulasi oleh: Tri Budi Santoso Signal Processing Group Electronic Engineering Polytechnic Institute of Surabaya-ITS . Probabilitas Probabilitas=Peluang, bisa diartikan

Lebih terperinci

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI STATISTIKA Muhamad Nursalman Pendilkom/Ilkom UPI 1 Daftar Isi Bab 1 Peluang Bab Peubah Acak Bab 3 Distribusi Peluang Diskret Bab 4 Distribusi Peluang Kontinu Bab 5 Fungsi Peubah Acak Bab 6 Teori Penaksiran

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi Orang Biologi Tidak Anti Statistika Silabus Silabus dan Tujuan Konsep peubah acak, fungsi peluang (probability density function), fungsi distribusi

Lebih terperinci

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya Dosen: Aniq A Rohmawati, M.Si TELKOM UNIVERSITY JALAN TELEKOMUNIKASI 1, BANDUNG, INDONESIA Ruang Sampel dan Kejadian PEUBAH ACAK (P.A) Fungsi yang memetakan

Lebih terperinci

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2

Nilai harapan suatu variabel acak x ditulis E (x) didefinisikan E (x) = Σ x. f (x) Var (x) = σ x 2 = E [ x E (x) ] 2 = E (x 2 ) { E (x) } 2 Pertemuan ke- 4 BAB III POPULASI, SAMPEL & DISTRIBUSI TEORITIS VARIABEL DISKRIT DAN FUNGSI PROBABILITAS 3.1 Variabel Random atau Variabel Acak Variabel yang nilainya merupakan suatu bilangan yang ditentukan

Lebih terperinci

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar 1 EKSPEKTASI (HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 0 September 01 Utriweni Mukhaiyar Ekspektasi Suatu Peubah Acak Misalkan X peubah acak Ekspektasi dari X EX [ ] xp( X x), jika X peubah acak

Lebih terperinci

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab Peubah Acak. Konsep Dasar Peubah Acak Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh peubah acak: Jika X adalah peubah acak banyaknya sisi muka yang muncul pada

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang

DISTRIBUSI BINOM. Ciri-ciri: 1.Eksperimen terdiri dari n percobaan yang dapat diulang DISTRIBUSI PELUANG Distribusi Peluang utk Variabel acak Diskret Distribusi Binom Distribusi Multinom Distribusi Hipergeometrik Distribusi Poison Distribusi Peluang utk Variabel acak Kontinu Distribusi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.1 Peubah Acak dan Distribusinya.1.1 Peubah Acak Definisi.1: Peubah acak adalah suatu fungsi yang menghubungkan sebuah bilangan real dengan setiap unsur di dalam ruang contoh, (Walpole

Lebih terperinci

Peubah Acak (Lanjutan)

Peubah Acak (Lanjutan) Learning Outcomes 13 April 2014 Learning Outcomes Learning Outcome Outline Mahasiswa dapat mengerti dan menentukan peubah acak diskret Mahasiswa dapat memahami dan menghitung nilai harapan Mahasiswa dapat

Lebih terperinci

Ekspektasi Satu Peubah Acak Diskrit

Ekspektasi Satu Peubah Acak Diskrit Chandra Novtiar 085794801125 [email protected] PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ;

Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Responsi SOAL 1: Misalkan peluang seorang calon mahasiswa IT Telkom memilih prodi TI adalah sebesar 0.6. Berapa peluang bahwa ; Orang keenam yang mendaftar seleksi adalah orang keempat yang memilih TI

Lebih terperinci

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALAM STATISTIKA HARGA HARAPAN Definisi Misalkan X variabel random. Bila X variabel random kontinu dengan f.k.p. f (x) dan maka harga harapan X adalah

Lebih terperinci

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah

Variabel Random dan Nilai Harapan. Oleh Azimmatul Ihwah Variabel Random dan Nilai Harapan Oleh Azimmatul Ihwah Outcomes dari suatu eksperimen dapat dinyatakan dengan angka untuk mempermudah. Suatu variabel yang mengasosiakan outcomes dari suatu eksperimen dengan

Lebih terperinci

BAB III VARIABEL ACAK DAN DISTRIBUSI PROBABILITAS

BAB III VARIABEL ACAK DAN DISTRIBUSI PROBABILITAS BAB III VARIABEL ACAK DAN DISTRIBUSI ROBABILITAS.. Konsep variabel acak (random variable) Sebuah variabel y adalah variabel acak jika nilai-nilai yang dimiliki oleh y adalah suatu kemungkinan atau peristiwa

Lebih terperinci

Fungsi Peluang Gabungan

Fungsi Peluang Gabungan Fungsi Peluang Gabungan MA3181 Teori Peluang 15 September 2014 Utriweni Mukhaiyar Ilustrasi Suatu perusahaan properti memiliki banyak gedung/bangunan yang ingin diasuransikan dengan kategori-kategori yang

Lebih terperinci

Pengujian Hipotesis. Oleh : Dewi Rachmatin

Pengujian Hipotesis. Oleh : Dewi Rachmatin Pengujian Hipotesis Oleh : Dewi Rachmatin Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Akan digunakan istilah diterima atau ditolak pada bagian ini Penolakan

Lebih terperinci

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean MA38 Teori Peluang - Khreshna Syuhada Bab 7 Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean Ilustrasi 7. Seorang peserta kuis diberi dua buah pertanyaan (P-, P-2), yang harus dijawab dengan

Lebih terperinci

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean

Pertemuan 8 & 9. Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Pertemuan 8 & 9 Distribusi Probab Multivariat Distr Multivar untuk Kombinasi Linier Uji Hipotesis Kesamaan Mean Distribusi Normal Multivariat Ingat V.R.Univariat Variabel random univariat X berdistribusi

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK

BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang 3. HARAPAN MATEMATIK Pertemuan 6. BAHAN AJAR STATISTIKA DASAR Matematika STKIP Tuanku Tambusai Bangkinang. Variansi dan kovariansi. HARAPAN MATEMATIK Keragaman suatu peubah acak X diperoleh dengan mengambil g(x) = (X µ). Rataan

Lebih terperinci

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT

BAB IV. DISTRIBUSI PROBABILITAS DISKRIT BAB IV. DISTRIBUSI PROBABILITAS DISKRIT A. Variabel random diskrit. Variabel random diskrit X adalah : Cara memberi nilai angka pada setiap elemen ruang sampel X(a) : Ukuran karakteristik tertentu dari

Lebih terperinci

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik

DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2. Distribusi Hipergeometrik DISTRIBUSI PROBABILITAS DISKRIT TEORITIS 2 TI2131 TEORI PROBABILITAS MINGGU KE-10 Distribusi Hipergeometrik Eksperimen hipergeometrik memiliki karakteristik sebagai berikut: 1. sebuah sampel random berukuran

Lebih terperinci

2. Peubah Acak (Random Variable)

2. Peubah Acak (Random Variable) . Peubah Acak (Random Variable) EL00-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Isi 0. Review dari EL009 KonsepPeubahAcak Sebaran Peluang Diskrit Sebaran Peluang Kontinyu Sebaran Empiris Sebaran

Lebih terperinci

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono

6. Teori Estimasi. EL2002-Probabilitas dan Statistik. Dosen: Andriyan B. Suksmono 6. Teori Estimasi EL2002-Probabilitas dan Statistik Dosen: Andriyan B. Suksmono Pendahuluan Inferensi statistik adalah metoda untuk menarik inferensi atau membuat generalisasi dari suatu populasi. Ada

Lebih terperinci

Pengantar Statistika Matematika II

Pengantar Statistika Matematika II Pengantar a Matematika II Atina Ahdika, S.Si., M.Si. Prodi a FMIPA Universitas Islam Indonesia March 20, 2017 atinaahdika.com t F Parameter adalah karakteristik dari populasi (misal θ) adalah karakteristik

Lebih terperinci

Penentuan Momen ke-5 dari Distribusi Gamma

Penentuan Momen ke-5 dari Distribusi Gamma Jurnal Penelitian Sains Volume 6 Nomor (A) April 0 Penentuan Momen ke-5 dari Distribusi Gamma Robinson Sitepu, Putra B.J. Bangun, dan Heriyanto Jurusan Matematika Fakultas MIPA Universitas Sriwijaya, Indonesia

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan teori statistika telah mempengaruhi hampir semua aspek kehidupan. Hal ini disebabkan statistika merupakan salah satu disiplin ilmu yang berperan

Lebih terperinci

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B)

Contoh: Aturan Penjumlahan. Independen. P(A dan B) = P(A) x P(B) Aturan Penjumlahan Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(A atau B)= P(A)+P(B) Not Mutually Exclusive: Kemungkinan terjadi peristiwa A dan B: P(Aatau B): P(A)+P(B) P(A dan B) Contoh:

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Ruang Sampel dan Kejadian Percobaan adalah kegiatan

Lebih terperinci

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal

DISTRIBUSI TEORITIS. Variabel Acak Distribusi Teoritis Binomial Normal DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Distribusi Probabilitas : Gamma & Eksponensial

Distribusi Probabilitas : Gamma & Eksponensial Distribusi Probabilitas : Gamma & Eksponensial 11 Debrina Puspita Andriani E-mail : [email protected] / [email protected] 2 Outline Distribusi Gamma Distribusi Eksponensial 3 Distribusi Gamma Tidak selamanya

Lebih terperinci

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean

MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean MA5283 STATISTIKA Bab 3 Inferensi Untuk Mean Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Peubah acak kontinu, distribusi dan Tabel normal, penaksiran titik dan selang, uji hipotesis untuk

Lebih terperinci

STATISTIKA UNIPA SURABAYA

STATISTIKA UNIPA SURABAYA MATEMATIKA STATISTIKA (MATHEMATICAL STATISTICS) GANGGA ANURAGA Materi : Distribusi variabel random Teori Himpunan Fungsi Himpunan Fungsi Himpunan Peluang Variabel Random Fungsi Kepadatan Peluang Fungsi

Lebih terperinci

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM

DISTRIBUTIONS OF RANDOM VARIABLE DISTRIBUSI VARIABEL RANDOM 1.11 Chebyshev s Inequality DISTRIBUTIONS OF RANDOM VARIABLE (Ketaksamaan Chebyshev) A. Pendahuluan DISTRIBUSI VARIABEL RANDOM Konsep atau rumus yang berhubungan dengan Ketaksamaan Chebyshev Ekspektasi

Lebih terperinci

Statistika (MMS-1403)

Statistika (MMS-1403) Statistika (MMS-1403) Dr. Danardono, MPH [email protected] Program Studi Statistika Jurusan Matematika FMIPA UGM MMS-1403 p.1/93 Distribusi Sampling Statistik Populasi: himpunan keseluruhan obyek yang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 1: Dasar-Dasar Probabilitas Statistika FMIPA Universitas Islam Indonesia 2015 Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Contoh: pelemparan sebuah dadu. Ruang

Lebih terperinci

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia

Mata Kuliah Pemodelan & Simulasi. Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Mata Kuliah Pemodelan & Simulasi Riani Lubis Program Studi Teknik Informatika Universitas Komputer Indonesia Pokok Bahasan Variabel Acak Pola Distribusi Masukan Pendugaan Pola Distribusi Uji Distribusi

Lebih terperinci

Statistika Farmasi

Statistika Farmasi Bab 3: Distribusi Data Statistika FMIPA Universitas Islam Indonesia Distribusi Data Teori dalam statistika berkaitan dengan peluang Konsep dasar peluang tersebut berkaitan dengan peluang distribusi, yaitu

Lebih terperinci

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA Insure and Invest! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang AK5161 MatKeu

Lebih terperinci

BAB 2 MOMEN DAN ENTROPI

BAB 2 MOMEN DAN ENTROPI BAB MOMEN DAN ENTROPI. Satu Peubah Acak (Univariat) Misalkan diketahui suatu peubah acak X. Didefinisikan ekspektasi dari peubah acak X adalah sebagai berikut E [ X ] - P X =, X diskrit = f d, X kontinu

Lebih terperinci

STATISTICS WEEK 7. By: Hanung N. Prasetyo POLTECH TELKOM/HANUNG NP

STATISTICS WEEK 7. By: Hanung N. Prasetyo POLTECH TELKOM/HANUNG NP STATISTICS WEEK 7 By: Hanung N. Prasetyo Ada macam, sampel probabilitas dan non probabilitas. Sampel probabilitas ada empat teknik yang semuanya dapat dilakukan dengan pengembalian atau tanpa pengembalian,

Lebih terperinci

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS

DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS DISTRIBUSI TEORITIS Variabel Acak Distribusi Teoritis Binomial Normal 1 Variabel acak adalah sebuah besaran yang merupakan hasil dari percobaan acak yang secara untung-untungan, dapat

Lebih terperinci

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26

Haryoso Wicaksono, S.Si., M.M., M.Kom. 26 Distribusi probabilita kontinu, yaitu apabila random variabel yang digunakan kontinu. Probabilita dihitung untuk nilai dalam suatu interval tertentu. Probabilita di suatu titik = 0. Probabilita untuk random

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Ekspektasi Satu Peubah Acak Kontinu

Ekspektasi Satu Peubah Acak Kontinu Chandra Novtiar 0857948015 [email protected] PROGRAM STUDI PENDIDIKAN MATEMATIKA SEKOLAH TINGGI KEGURUAN DAN ILMU PENDIDIKAN (STKIP) SILIWANGI BANDUNG Garis Besar Pembahasan Sub Pokok Pembahasan

Lebih terperinci

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah

Distribusi Diskrit dan Kontinu yang Penting. Oleh Azimmatul Ihwah Distribusi Diskrit dan Kontinu yang Penting Oleh Azimmatul Ihwah Distribusi Diskrit Fungsi probabilitas dari variabel random diskrit dapat dinyatakan dalam formula matematik tertentu yang dinamakan fungsi

Lebih terperinci

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015

Distribusi Sampling. Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Distribusi Sampling Ayundyah K., M.Si. PROGRAM STUDI STATISTIKA UNIVERSITAS ISLAM INDONESIA 2015 Populasi dan Sampel Unit adalah entitas (wujud) tunggal, biasanya orang atau suatu obyek, yang diinginkan

Lebih terperinci

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak

HANDOUT PERKULIAHAN. Pertemuan Ke : 3 : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak HANDOUT PERKULIAHAN Pertemuan Ke : 3 Pokok Bahasan : Distribusi Satu Peubah Acak dan Ekspektasi Satu Peubah Acak URAIAN POKOK PERKULIAHAN A. Peubah Acak Definisi 1 : Peubah Acak Misalkan E adalah suatu

Lebih terperinci

PEUBAH ACAK DAN SEBARANNYA

PEUBAH ACAK DAN SEBARANNYA LOGO STATISTIKA MATEMATIKA I PEUBAH ACAK DAN SEBARANNYA Hazmira Yozza Izzati Rami HG Jurusan Matematika FMIPA Universitas Andalas Percobaan : Pelemparan dua mata uang AA AG GA GG S X Definisi 2.1. Peubah

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

BAB IV DISPERSI DATA

BAB IV DISPERSI DATA BAB IV DIPERI DATA Dispersi adalah ukuran penyebaran suatu kelompok data terhadap pusat data. Ukuran dispersi yang sering digunakan dalam penelitian ialah jangkauan (range), simpangan rata-rata (mean deviation),

Lebih terperinci

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya

Hipotesis. Penerimaan hipotesis menunjukkan bahwa tidak cukup petunjuk untuk mempercayai sebaliknya Hipotesis Suatu anggapan yang mungkin benar atau tidak mengenai suatu populasi atau lebih Digunakan istilah diterima atau ditolak untuk suatu hipotesis Penolakan suatu hipotesis berarti menyimpulkan bahwa

Lebih terperinci

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA CNH4S3 Analisis Time Series Dosen: Aniq A Rohmawati, M.Si [Jadwal]: [Materi Analsis Time Series] Kuliah Pemodelan dan Simulasi berisi tentang dasar pemodelan time series seperti kestasioneran, identifikasi

Lebih terperinci

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1

Peubah Acak. 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Peubah Acak 14-Sep-07 TPADF (Kelas Ganjil/ Rahmat) Lecture 2 page 1 Definisi Peubah Acak Peubah acak adalah peubah yang mengkarakterisasikan setiap elemen dalam ruang sampel dengan suatu bilangan real.

Lebih terperinci

Var X y x E X y. g x y dx. dan varians bersyarat dari Y diberikan X = x dirumuskan sebagai berikut: Var Y x y E Y x. h y x dy

Var X y x E X y. g x y dx. dan varians bersyarat dari Y diberikan X = x dirumuskan sebagai berikut: Var Y x y E Y x. h y x dy 0 VARIANS BERSYARAT Penenuan varians bersara dari sebuah peubah acak diberikan peubah acak lainna, baik diskri maupun koninu dijelaskan dalam Definisi 7.. Definisi 7.: VARIANS BERSYARAT UMUM Jika X dan

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB

Distribusi Peluang Kontinu. Bahan Kuliah II2092 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB Distribusi Peluang Kontinu Bahan Kuliah II9 Probabilitas dan Statistik Oleh: Rinaldi Munir Sekolah Teknik Elektro dan Informatika ITB 1 Fungsi Padat Peluang Untuk peubah acak kontinu, fungsi peluangnya

Lebih terperinci

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015

PENS. Probability and Random Process. Topik 4. Variabel Acak dan Distribusi Probabilitas. Prima Kristalina April 2015 Program Pasca Sarjana Terapan Politeknik Elektronika Negeri Surabaya Probability and Random Process Topik 4. Variabel Acak dan Distribusi Probabilitas Prima Kristalina April 2015 1 Outline 1. Definisi

Lebih terperinci

PEUBAH ACAK DAN DISTRIBUSINYA

PEUBAH ACAK DAN DISTRIBUSINYA 4/6/009 Pemetaan (Fungsi) PEUBAH ACAK DAN DISTRIBUSINYA Suatu pemetaan / fungsi Kategori fungsi:. Fungsi titik A B MA 08 Statistika Dasar Dosen : Udjianna S. Pasaribu Utriweni Mukhaiyar Senin, 6 Februari

Lebih terperinci

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252.

Contoh Solusi PR 2 Statistika & Probabilitas. 1. Semesta dari kejadian adalah: pemilihan 5 soal dari 10 soal. Jumlah kemungkinannya ( 10 = 252. Contoh Solusi PR Statistika & Probabilitas Semesta dari kejadian adalah: pemilihan soal dari soal Jumlah kemungkinannya ( ) = (a) Kemungkinannya dapat dihitung dengan memilih soal tes dari soal yang anak

Lebih terperinci

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling

STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling STATISTIKA EKONOMI I Chapter 4 Distribusi Probabilitas Normal dan Binomial Chapter 5 Teori Sampling Rengganis Banitya Rachmat [email protected] 4. Distribusi Probabilitas Normal dan Binomial

Lebih terperinci

DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016

DISTRIBUSI PROBABILITAS KONTINYU. Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PROBABILITAS KONTINYU Nur Hayati, S.ST, MT Yogyakarta, Maret 2016 DISTRIBUSI PELUANG KONTINYU Berbeda dengan variabel random diskrit, sebuah variabel random kontinyu adalah variabel yang dapat

Lebih terperinci

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD)

Minggu 3 Peluang Bersyarat (Teorema Bayes) Minggu 4 Peubah Acak, Fungsi Peluang, Fungsi Distribusi. Minggu 6 Distribusi Peubah Acak Diskrit (PAD) MUGE Statistika Dosen: Aniq A Rohmawati, M.Si [Kelas Statistika] CS-8-0 [Jadwal] Rabu 1.0-14.0 R.KU.05.14; Jumat 16.0-18.0 R.KU.05.15 [Materi Statistika] Minggu 1 Statistika deskriptif Minggu Tipe kejadian

Lebih terperinci

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu

BAB II TINJAUAN TEORITIS. Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu BAB II TINJAUAN TEORITIS 2.1 Pendahulauan Menurut Darnius, O (2006, Hal : 53) simulasi dapat diartikan sebagai suatu rekayasa suatu model logika ilmiah untuk melihat kebenaran/kenyataan model tersebut.

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah : Statistika Matematika Pertemuan Ke : 5 Pokok Bahasan : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua

Lebih terperinci

Metode Statistika (STK 211) Pertemuan ke-5

Metode Statistika (STK 211) Pertemuan ke-5 Metode Statistika (STK 211) Pertemuan ke-5 [email protected] Memahami definisi dan aplikasi peubah acak (peubah acak sebagai fungsi, peubah acak diskrit dan kontinu) Memahami sebaran peubah acak

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Dalam teori probabilitas dan statistika, distribusi Binomial adalah distribusi probabilitas diskrit jumlah keberhasilan dalam n percobaan ya/tidak(berhasil/gagal)

Lebih terperinci

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30

DISTRIBUSI TEORITIS. P(M) = p = probabilitas untuk mendapat bola merah (sukses) 30 DISTRIBUSI TEORITIS Distribusi teoritis merupakan alat bagi kita untuk menentukan apa yang dapat kita harapkan, apabila asumsi-asumsi yang kita buat benar. Distribusi teoritis memungkinkan para pembuat

Lebih terperinci

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω

28/09/2012 SAMPLE SPACE, SAMPLE POINTS, EVENTS. ω Ω SAMPLE SPACE, SAMPLE POINTS, EVENTS Sample space,ω, Ω adalah sekumpulan semua sample points,ω, ω yang mungkin; dimana ω Ω Contoh 1. Melemparkan satu buah koin:ω={gambar,angka} Contoh 2. Menggelindingkan

Lebih terperinci

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Lebih terperinci

Distribusi Probabilitas Diskrit. Dadan Dasari

Distribusi Probabilitas Diskrit. Dadan Dasari Distribusi Probabilitas Diskrit Dadan Dasari Daftar Isi DIstribusi Uniform Distribusi Binomial DIstribusi Multinomial Distribusi Hipergeometrik Distribusi Poisson Distribusi Probabilitas Uniform Diskrit

Lebih terperinci

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen.

Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan hasil dari eksperimen. Peluang Peluang dan Kejadian Peluang Bersyarat Peubah Acak dan Nilai Harapan Kovarian dan Korelasi 1.1 PELUANG DAN KEJADIAN Misalkan terdapat eksperimen. S disebut ruang sampel, adalah himpunan semua kemungkinan

Lebih terperinci

BAB II DISTRIBUSI PROBABILITAS

BAB II DISTRIBUSI PROBABILITAS BAB II DISTRIBUSI PROBABILITAS.1. VARIABEL RANDOM Definisi 1: Variabel random adalah suatu fungsi yang memetakan ruang sampel (S) ke himpunan bilangan Real (R), dan ditulis X : S R Contoh (Variabel random)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

Lab. Statistik - Kasus 1. Lab. Statistik Kasus 2. Lab. Statistik Kasus 3

Lab. Statistik - Kasus 1. Lab. Statistik Kasus 2. Lab. Statistik Kasus 3 Haryoso Wicaksono, halaman 1 dari 5 halaman Lab. Statistik - Kasus 1 1. Jelaskan istilah-istilah statistik berikut : a. sampel e. responden b. populasi f. data kuantitatif c. statistik sampel g. data kualitatif

Lebih terperinci

PEMODELAN KUALITAS PROSES

PEMODELAN KUALITAS PROSES TOPIK 6 PEMODELAN KUALITAS PROSES LD/SEM II-03/04 1 1. KERANGKA DASAR Sampling Penerimaan Proses Produksi Pengendalian Proses MATERIAL PRODUK PRODUK BAIK SUPPLIER Manufacturing Manufacturing KONSUMEN PRODUK

Lebih terperinci

FUNGSI PELUANG GABUNGAN M A P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R

FUNGSI PELUANG GABUNGAN M A P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R FUNGSI PELUANG GABUNGAN M A 4 0 8 5 P E N G A N T A R S T A T I S T I K A 14 F E B R U A R I 2013 U T R I W E N I M U K H A I Y A R ILUSTRASI Suatu perusahaan properti memiliki banyak gedung/bangunan yang

Lebih terperinci

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

Peubah Acak. Bab 4. Definisi 4.1 Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Bab 4 Peubah Acak Definisi 4. Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R Contoh 4. Jika Y adalah peubah acak banyaknya sisi muka yang muncul pada pelemparan tiga sisi

Lebih terperinci