Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection
|
|
|
- Ida Glenna Hartono
- 9 tahun lalu
- Tontonan:
Transkripsi
1 ata Kuliah : Analisis Struktur Kode : TSP 0 SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 11
2 TIU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis tak tentu ahasiswa dapat menghitung gaya-gaya dalam pada struktur statis tak tentu TIK : ahasiswa dapat melakukan analisis struktur balok dengan metode Slope-Deflection Sub Pokok ahasan : Persamaan Slope-Deflection Analisis alok Dengan etode Slope-Deflection
3 Persamaan Slope-Deflection Perpindahan(displacement) merupakan variabel utama yang tak diketahui, disebut pula sebagai derajat kebebasan (degree of freedom) Jumlah Degree of Freedom yang dimiliki suatu struktur sering juga disebutkan sebagai derajat ketidaktentuan kinematik Perpindahan yang dimaksud selain lendutan dapat pula berupa sudut rotasi pada suatu titik Selanjutnya disusun pula persamaan kompatibilitas untuk mendapatkan perpindahan dari titik-titik kumpul, dan kemudian dapat digunakan untuk menghitung reaksi tumpuan Tiga metode analisis struktur berbasis displacement adalah : slopedeflection, distribusi momen dan metode matriks
4 Persamaan Slope-Deflection 1 DOF DOF 4 DOF
5 Persamaan Slope-Deflection erupakan sebuah persamaan yang menghubungkan antara sudut rotasi (slope) dan lendutan (deflection) dengan beban yang bekerja pada struktur Perhatikan balok A yang merupakan bagian dari struktur balok menerus dengan beban sembarang sebesar q. dan memiliki kekakuan seragam sebesar EI. Selanjutnya akan dicari hubungan antara momen ujung A dan A dengan sudut rotasi q A dan q serta lendutan D yang mengakibatkan penurunan pada tumpuan. Sesuai dengan perjanjian tanda yang dipakai, maka momen dan sudut rotasi bernilai positif apabila memiliki arah putar searah jarum jam. Sedangkan lendutan D dianggap bernilai positif apabila mengakibatkan balok berputar sebesar sudut y searah jarum jam.
6 Persamaan Slope-Deflection S A = 0 S = 0 (1) () EI EI A A EI EI A A A q
7 Persamaan Slope-Deflection S = 0 () D EI EI
8 Persamaan Slope-Deflection Dalam uraian sebelumnya telah diturunkan hubungan antara A dan A yang bekerja pada titik A dan dengan perpindahan yang diakibatkan olehnya, yaitu q A, q dan D. Pada kenyataannya perpindahan yang terjadi, baik berupa sudut rotasi maupun lendutan pada balok terjadi bukan disebabkan oleh momen pada titik tersebut, namun disebabkan oleh beban luar yang bekerja pada bentangan balok. Supaya beban luar tersebut dapat diakomodasi dalam persamaan slope deflection, maka beban luar tersebut harus ditransformasi menjadi momen ekuivalen yang bekerja pada titik ujung balok. Hal ini dapat dilakukan dengan mudah, yaitu dengan menemukan reaksi momen yang timbul pada kedua ujung balok yang dianggap memiliki tumpuan jepit.
9 Persamaan Slope-Deflection Reaksi momen tersebut selanjutnya diistilahkan dengan sebutan Fixed- End oment (FE) Sesuai dengan perjanjian tanda, maka nilai FE pada ujung A adalah negatif (berlawanan dengan jarum jam), dan nilai FE pada ujung adalah positif (searah jarum jam)
10 Persamaan Slope-Deflection a home base to excellence
11 Persamaan Slope-Deflection a home base to excellence
12 Persamaan Slope-Deflection Selanjutnya persamaan-persamaan 1, dan dapat dijumlahkan beserta beban luar yang bekerja, dan dapat dituliskan menjadi : Atau secara umum bentuk persamaan slope-deflection adalah : (4) A A A A A A I E I E FE FE D D q q q q F Ek ) (FE q q
13 Persamaan Slope-Deflection Dengan : E,k q, q F y (FE) adalah momen internal pada ujung dekat adalah modulus elastisitas dan kekakuan balok k = I/ adalah sudut rotasi pada ujung dekat dan ujung jauh, memiliki satuan radian dan bernilai positif apabila memiliki arah sesuai putaran jarum jam adalah rotasi balok akibat adanya penurunan pada tumpuan, y = D/, besaran ini memiliki satuan radian dan bernilai positif apabila searah jarum jam adalah Fixed End oment pada ujung dekat, bernilai positif apabila memiliki arah sesuai putaran jarum jam
14 Persamaan Slope-Deflection Persamaan 4 berlaku apabila ujung-ujung balok terjepit, apabila salah satu ujungnya sendi, maka persamaan slope-deflection menjadi : q Ek (FE) (5)
15 Analisis alok Dengan etode Slope-Deflection Example 11.1 Gambarkan diagram gaya lintang dan momen lentur untuk balok pada Gambar, asumsikan EI konstan FE FE A A C C E w 0 dari persamaan slope - deflection I I E 8 w 0 q 6(6) 0 q I E (0) q (0) 8 F 6(6) 0 7,k m 10,8k m q 0 (0) 0 q y (FE) 0 EI EI q 4
16 Analisis alok Dengan etode Slope-Deflection Example 11.1 C C I E q 6 I E 6 0 (0) EI 7, q EI 7, (0) q (0) 10,8 q 10, 8 Dengan meninjau keseimbangan titik diperoleh : S = 0 A + C = 0 Akhirnya didapatkan q = 6,17/EI Substitusikan q ke persamaan-persamaan sebelumnya dan diperoleh : A = 1,54 km A =,09 km C =,09 km C = 1,86 km
17 Analisis alok Dengan etode Slope-Deflection Example 11.1 Free body diagram : A y = - (1,54/8) - (,09/8) = - 0,579 k () y = (1,54/8) + (,09/8) = 0,579 k () yr = (,09/6) - (1,86/6) + (0,5*6*6*/6) = 4,7 k () C y = -(,09/6) + (1,86/6) + (0.5*6*6*4/6) = 1,6 k ()
18 Analisis alok Dengan etode Slope-Deflection Example 11.1 Diagram Gaya Geser dan omen entur :
19 Analisis alok Dengan etode Slope-Deflection Example 11. Gambarkan diagram gaya lintang dan momen lentur untuk balok pada Gambar, asumsikan EI konstan FE FE FE dari persamaan slope - deflection A A A A C E w 1 w 1 P 16 I I E (0) q 6 I E 6 q 40(6) 1 40(6) 1 q 10k m (60)() 16 10k m y (FE),5k m (0) 10 0,EIq 10 q 0 (0) 10 0,667EIq 10 F Untuk balok AC gunakan persamaan slope - deflection C E I I E q y (FE) q 0,5 1,5 EIq, 5
20 Analisis alok Dengan etode Slope-Deflection Example 11. Dari keseimbangan gaya titik : S = 0 A + C = 0 Dan nilai q = 144/EI. Substitusikan q ke persamaan-persamaan sebelumnya guna mendapatkan : A = 15 km A = 90 km C = 90 km
21 Analisis alok Dengan etode Slope-Deflection Example 11. Tentukan momen di A dan pada balok, apabila tumpuan mengalami penurunan sebesar 80 mm. E = 00 GPa, I = 5(10) 6 mm 4 y k A A A A y I A 0,08m 4 5(10) 6 ( q ( q mm 0,0rad 4 / m / m (10 4m (0) q (0,0) )1, q 0 (0,0) )1,5 )m / mm 1,5(10) Dari kesetimbangan titik : S = 0 A 8000(m) = 0 q = 0,054 rad m 0 0
22 Analisis alok Dengan etode Slope-Deflection Example 11.4 Tentukan momen internal pada tumpuan balok apabila titik C mengalami penurunan sebesar 0 mm. E = 00 GPa, I = 600(10) 6 mm 4 y k k k FE FE C A C CD A A w 1 w 1 0,0 0,005rad , ,5 0(7,) 1 0(7,) ,(10 100(10 86,4k m 6 6 1,(10 86,4k m y CD )m 6 0,0 0,00667rad 4,5 )m )m
23 Analisis alok Dengan etode Slope-Deflection Example 11.4 entang A: A [ ][8,10 6 ][(0) q (0)] 86,4.,q 86,4 A [ ][8,10 6 ][q 0 (0)] 86, ,7q 86,4 entang C: C [ ][ ][q q C (0,005)] q q C 600 C [ ][ ][q C q (0,005)] q C q 600 entang CD : CD [ ][1,10 6 ][q C 0 ( 0,00667)] ,7q C 1066,7 DC [ ][1,10 6 ][0 q C ( 0,00667)] 0 5.,q C 1066,7 S S C 0 0 A C C CD 0 0 q = 0,00444 rad q C = -0,0045 rad
24 TUGAS : Kerjakan soal dari textbook ab XI omor 11.1 s/d 11.1
Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection
ata Kuliah : Analisis Struktur Kode : V - 9 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 1, 1 Kemampuan Akhir ang Diharapkan ahasiswa dapat melakukan analisis
Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen
ata Kuliah : Analisis Struktur Kode : CIV - 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan etode Distribusi omen Pertemuan 14, 15 Kemampuan Akhir yang Diharapkan ahasiswa dapat melakukan analisis
Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection
ata Kuliah : Analisis Struktur Kode : TSP SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan - TU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis tak
Analisis Struktur Statis Tak Tentu dengan Force Method
Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak
Analisis Struktur Statis Tak Tentu dengan Force Method
Mata Kuliah : Analisis Struktur Kode : CIV 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan 9, 10, 11 Kemampuan Akhir yang Diharapkan Mahasiswa dapat melakukan analisis struktur
Metode Defleksi Kemiringan (The Slope Deflection Method)
etode Defleksi Kemiringan (The Slope Deflection ethod) etode defleksi kemiringan dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak-tentu tentu. Semua sambungan dianggap kaku,
BAB II METODE KEKAKUAN
BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui
Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen
TKS 4008 Analisis Struktur I TM. XXII : METODE CROSS Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Outline Metode Distribusi Momen Momen Primer (M ij ) Faktor
Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen
Mata uliah : Analisis Struktur ode : TSP 0 SS : 3 SS Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen Pertemuan - 13 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis
Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)
ahan jar nalisa Struktur II ulyati, ST., T Pertemuan VI,VII III. etode Defleksi Kemiringan (The Slope Deflection ethod) III.1 Uraian Umum etode Defleksi Kemiringan etode defleksi kemiringan (the slope
METODE SLOPE DEFLECTION
TKS 4008 Analisis Struktur I TM. XVIII : METODE SLOPE DEFLECTION Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada 2 metode sebelumnya, yaitu :
Persamaan Tiga Momen
Persamaan Tiga omen Persamaan tiga momen menyatakan hubungan antara momen lentur di tiga tumpuan yang berurutan pada suatu balok menerus yang memikul bebanbeban yang bekerja pada kedua bentangan yang bersebelahan,
Mekanika Rekayasa III
Mekanika Rekayasa III Metode Hardy Cross Pertama kali diperkenalkan oleh Hardy Cross (1993) dalam bukunya yang berjudul nalysis of Continuous Frames by Distributing Fixed End Moments. Sebagai penghargaan,
3- Deformasi Struktur
3- Deformasi Struktur Deformasi adalah salah satu kontrol kestabilan suatu elemen balok terhadap kekuatannya. iasanya deformasi dinyatakan sebagai perubahan bentuk elemen struktur dalam bentuk lengkungan
BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi
BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja
STRUKTUR STATIS TAK TENTU
. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Struktur statis tertentu : Suatu struktur yang mempunyai kondisi di mana jumlah reaksi perletakannya sama dengan jumlah syarat kesetimbangan statika.
LAMPIRAN I PERHITUNGAN KAPASITAS GESER DAN LENTUR BALOK BAJA
APIRAN I PERHITUNGAN KAPASITAS GESER DAN ENTUR AOK AJA.1.1 Desain alok Jenis balok yang akan ditinjau dalam kasus ini adalah balok induk dengan profil IWF 4..8.13 mm, dan balok anak dengan profil IWF yang
BAB I SLOPE DEFLECTION
Ver 3.1, thn 007 Buku Ajar KTS-35 Analisis Struktur II BAB I SLOPE DEFLECTION 1.1. Derajat Ketidaktentuan Statis dan Derajat Ketidaktentuan Kinematis Derajat ketidaktentuan statis adalah banyaknya kelebihan
Metode Distribusi Momen
etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof. Hardy Cross etode distribusi momen dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis taktentu.
Pertemuan III,IV,V II. Metode Persamaan Tiga Momen
Pertemuan III,IV,V II. etode Persamaan Tiga omen II. Uraian Umum etode Persamaan Tiga omen Analisa balok menerus, pendekatan yang lebih mudah adalah dengan menggunakan momen-momen lentur statis yang tak
KATA PENGANTAR. karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen
KATA PENGANTAR Puji syukur penulis ucapkan kepada pujaan alam Allah SWT atas rahmat, dan karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen distribusi portal 3 lantai Makalah ini
Pertemuan XII,XIII,XIV,XV VI. Metode Distribusi Momen (Cross) VI.1 Uraian Umum Metode Distribusi Momen
Bahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan XII,XIII,XIV,XV VI. etode Distribusi omen (Cross) VI.1 Uraian Umum etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof.
Metode Kekakuan Langsung (Direct Stiffness Method)
Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =
a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pondasi Pertemuan - 5
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Pondasi Pertemuan - 5 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain pondasi telapak
Struktur Rangka Batang Statis Tertentu
Mata Kuliah : Statika Kode : TSP 106 SKS : 3 SKS Struktur Rangka Batang Statis Tertentu Pertemuan 10, 11, 12 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tertentu Mahasiswa dapat
Garis Pengaruh Pada Balok
Mata Kuliah : Statika Kode : TSP 06 SKS : 3 SKS Garis Pengaruh Pada Balok Pertemuan 4 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tertentu Mahasiswa dapat menghitung gaya-gaya
ANALISIS STRUKTUR BALOK NON PRISMATIS MENGGUNAKAN METODE PERSAMAAN SLOPE DEFLECTION
ANALISIS STRUKTUR BALOK NON PRISMATIS MENGGUNAKAN METODE PERSAMAAN SLOPE DEFLECTION Agus Setiawan Civil Engineering Department, Faculty of Engineering, Binus University Jl. K.H. Syahdan No. 9, Palmerah,
ANALISA STRUKTUR METODE MATRIKS (ASMM)
ANAISA STRUKTUR METODE MATRIKS (ASMM) Endah Wahyuni, S.T., M.Sc., Ph.D Matrikulasi S Bidang Keahlian Struktur Jurusan Teknik Sipil ANAISA STRUKTUR METODE MATRIKS Analisa Struktur Metode Matriks (ASMM)
Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu
Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu.1 Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan
PERSAMAAN 3 MOMEN (CLAPEYRON)
Persamaan omen Hal dari pertemuan ke 6 PERSN OEN (LPEYRON) enganalisis Struktur Statis Tak Tentu dengan lapeyron selalu melibatkan momen pada tumpuan. erikut rumus yang diberikan: q h P h c L,, L,, α α
Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu
Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,
Pertemuan IX,X,XI V. Metode Defleksi Kemiringan (The Slope Deflection Method) Lanjutan
ahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan IX,X,XI V. etode Defleksi Kemiringan (The Slope Deflection ethod) Lanjutan V.1 Penerapan etode Defleksi Kemiringan Pada Kerangka Kaku Statis Tak Tentu
5- Persamaan Tiga Momen
5 Persamaan Tiga Momen Pada metoda onsistent eformation yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu.
BAB II DASAR TEORI. 2.1 Pengertian rangka
BAB II DASAR TEORI 2.1 Pengertian rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka
Definisi Balok Statis Tak Tentu
Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan hanya dengan menggunakan persamaan statika. Dalam
MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU
MOU 3 1 MOU 3 : METO PERSMN TIG MOMEN 3.1. Judul :METO PERSMN TIG MOMEN UNTUK MENYEESIKN STRUKTUR STTIS TIK TERTENTU Tujuan Pembelajaran Umum Setelah membaca bagian ini mahasiswa akan memahami bagaimanakah
MEKANIKA REKAYASA III
MEKANIKA REKAYASA III Dosen : Vera A. Noorhidana, S.T., M.T. Pengenalan analisa struktur statis tak tertentu. Metode Clapeyron Metode Cross Metode Slope Deflection Rangka Batang statis tak tertentu PENGENALAN
MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT
MAKALAH PRESENTASI DEFORMASI LENTUR BALOK Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT Oleh : M. Rifqi Abdillah (150560609) PROGRAM STUDI SI TEKNIK SIPIL JURUSAN
BAB I STRUKTUR STATIS TAK TENTU
I STRUKTUR STTIS TK TENTU. Kesetimbangan Statis (Static Equilibrium) Salah satu tujuan dari analisis struktur adalah mengetahui berbagai macam reaksi yang timbul pada tumpuan dan berbagai gaya dalam (internal
Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss
Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka
Deformasi Elastis Rangka Batang
Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Deformasi Elastis Rangka Batang Pertemuan - 6 TIU : Mahasiswa dapat menghitung perpindahan/deformasi struktur TIK : Mahasiswa dapat menerapkan
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Torsi. Pertemuan - 7
Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Torsi Pertemuan - 7 TIU : Mahasiswa dapat menghitung besar tegangan dan regangan yang terjadi pada suatu penampang TIK : Mahasiswa dapat menghitung
Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan
Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan Hampir semua kerangka kaku yang secara actual dibangun di dalam praktek k bersifat statis ti tak tentu. t Tidak seperti
PENGGUNAAN METODE SLOPE DEFLECTION PADA STRUKTUR STATIS TAK TENTU DENGAN KEKAKUAN YANG TIDAK MERATA DALAM SATU BALOK.
PENGGUNN ETOE SLOPE... (JEY WIJY, KK) PENGGUNN ETOE SLOPE EFLETION P STRUKTUR STTIS TK TENTU ENGN KEKKUN YNG TIK ERT L STU LOK. Jemy Wijaya dan Fanywati Itang Jurusan Teknik Sipil Fakultas Teknik Universitas
BAB II METODE DISTRIBUSI MOMEN
II MTO ISTRIUSI MOMN.1 Pendahuluan Metode distribusi momen diperkenalkan pertama kali oleh Prof. Hardy ross pada yahun 1930-an yang mana merupakan sumbangan penting yang pernah diberikan dalam analisis
a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 3
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Pelat Pertemuan - 3 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain sistem pelat
MODUL PERKULIAHAN. Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana
MODUL PERKULIAHAN Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana Abstract Fakultas Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Muka Kode MK Disusun Oleh 08 Kompetensi
TUGAS MAHASISWA TENTANG
TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik
KULIAH PERTEMUAN 9 Analisa struktur statis tak tentu dengan metode consistent deformations pada balok dan portal
KULIH PERTEUN 9 naisa struktur statis tak tentu dengan metode consistent deformations pada baok dan porta. Lembar Informasi 1. Kompetensi ahasiswa dapat menghitung reaksi peretakan dan menggambarkan bidang
APLIKASI SIMULASI MONTE CARLO PADA PERHITUNGAN MOMEN MAKSIMUM STRUKTUR PORTAL
APLIKASI SIMULASI MONTE CARLO PADA PERHITUNGAN MOMEN MAKSIMUM STRUKTUR PORTAL REZA ASRUL SOLEH 0321012 Pembimbing: Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITASKRISTEN MARANATHA
Desain Struktur Beton Bertulang Tahan Gempa
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan - 11 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK
Desain Struktur Beton Bertulang Tahan Gempa
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Desain Struktur Beton Bertulang Tahan Gempa Pertemuan - 12 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK
METODE DEFORMASI KONSISTEN
TKS 4008 Analisis Struktur I TM. XI : METODE DEFORMASI KONSISTEN Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Metode Consistent Deformation adalah
DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar
2. Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2.1, dengan y adalah defleksi pada jarak yang ditinjau x, adalah sudut kelengkungan
RENCANA PEMBELAJARAAN
RENN PEMEJRN Kode Mata Kuliah : RMK 114 Mata Kuliah : Mekanika Rekayasa IV Semester / SKS : IV / Kompetensi : Mampu Menganalisis Konstruksi Statis Tak Tentu Mata Kuliah Pendukung : Mekanika Rekayasa I,
Analisa struktur statis tak tentu dengan metode distribusi momen (Cross) pada balok A. Lembar Informasi
KULH PERTEUN 1 nalisa struktur statis tak tentu dengan metode distribusi momen (Cross) pada balok. Lembar nformasi 1. Kompetensi ahasiswa dapat menghitung momen ujung batang untuk balok statis taktentu
sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik
da beberapa macam sistem struktur, mulai dari yang sederhana sampai dengan yang kompleks; sistim yang paling sederhana tersebut disebut dengan konstruksi statis tertentu. Contoh : contoh struktur sederhana
PRINSIP DASAR MEKANIKA STRUKTUR
PRINSIP DASAR MEKANIKA STRUKTUR Oleh : Prof. Ir. Sofia W. Alisjahbana, M.Sc., Ph.D. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak
a home base to excellence Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 Pelat Pertemuan - 2
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Pelat Pertemuan - 2 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain sistem pelat
STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD
Modul ke: 02 Fakultas FTPD Program Studi Teknik Sipil STATIKA I Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT Reaksi Perletakan Struktur Statis
APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE
APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana
Tegangan Dalam Balok
Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : SKS Tegangan Dalam Balok Pertemuan 9, 0, TIU : Mahasiswa dapat menghitung tegangan yang timbul pada elemen balok akibat momen lentur, gaya normal, gaya
Bab 6 Defleksi Elastik Balok
Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang
Bab 10 BALOK ELASTIS STATIS TAK TENTU
ab 1 OK ESTIS STTIS TK TENTU Tinjauan Instruksional Khusus ahasiswa diharapkan mampu memahami dan melakukan analisis gaa-gaa pada sistem konstruksi balok elastis dimana jumlah reaksi-reaksi ang tidak diketahui
III. METODE KEKAKUAN
III. METODE KEKAKUAN 3.1. Introduksi Metode kekakuan ialah suatu cara untuk analisa struktur, dimana dalam proses perumusan dari analisa nya, diambil lendutan diambil lendutan dititik-titik diskrit sebagai
XI. BALOK ELASTIS STATIS TAK TENTU
XI. OK ESTIS STTIS TK TENTU.. alok Statis Tak Tentu Dalam semua persoalan statis tak tentu persamaan-persamaan keseimbangan statika masih tetap berlaku. ersamaan-persamaan ini adalah penting, tetapi tidak
METODE CLAPEYRON. Pustaka: SOEMADIONO. Mekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UGM.
ETODE CAPEYRON Pustaka: SOEADIONO. ekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UG. Pemakaian Dalil 3 omen Clapeyron A α a α b B Jika suatu batang datar sendi-rol diberi muatan/beban di atasnya,
Pertemuan V,VI III. Gaya Geser dan Momen Lentur
Pertemuan V,VI III. Gaya Geser dan omen entur 3.1 Tipe Pembebanan dan Reaksi Beban biasanya dikenakan pada balok dalam bentuk gaya. Apabila suatu beban bekerja pada area yang sangat kecil atau terkonsentrasi
ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH
ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH Disusun sebagai salah satu syarat untuk lulus kuliah MS 4011 Metode Elemen Hingga Oleh Wisnu Ikbar Wiranto 13111074 Ridho
BAB II DASAR TEORI. Gambar 2.1 Tumpuan Rol
BAB II DASAR TEORI 2.1 Pengertian Rangka Rangka adalah struktur datar yang terdiri dari sejumlah batang-batang yang disambung-sambung satu dengan yang lain pada ujungnya, sehingga membentuk suatu rangka
KEANDALAN STRUKTUR BALOK SEDERHANA DENGAN SIMULASI MONTE CARLO
KEANDALAN STRUKTUR BALOK SEDERHANA DENGAN SIMULASI MONTE CARLO Stevan Setiawan NRP : 0421026 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG
BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal
BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin
Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok
Hasil dan Pembahasan A. Defleksi pada Balok Metode Integrasi Ganda 1. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di bawah pengaruh gaya terpakai.
IV. DEFLEKSI BALOK ELASTIS: METODE INTEGRASI GANDA
IV. DEFEKSI BAOK EASTIS: ETODE INTEGRASI GANDA.. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di baah pengaruh gaya terpakai. Defleksi Balok
Prinsip Dasar Metode Energi
Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Prinsip Dasar Metode Energi Pertemuan - 1 TIU : Mahasiswa dapat menghitung perpindahan/deformasi struktur TIK : Mahasiswa dapat menjelaskan prinsip
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : MEKANIKA KEKUATAN MATERIAL KODE / SKS : IT042333 / 2 SKS Program Studi Teknik Mesin S1 Pertemuan 1 Tegangan Pokok Bahasan dan TIU Mahasiswa mengetahui jenisjenis
BAB 7 ANALISA GAYA DINAMIS
BAB 7 ANALISA GAYA DINAMIS Gaya dinamis adalah gaya yang disebabkan oleh percepatan. Pada suatu mekanisme yang bergerak, seperti yang ditunjukkan gambar 7.1 terjadi percepatan linier (A) dan percepatan
a home base to excellence Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 Balok Lentur Pertemuan - 6
Mata Kuliah : Perancangan Struktur Baja Kode : TSP 306 SKS : 3 SKS Balok Lentur Pertemuan - 6 TIU : Mahasiswa dapat merencanakan kekuatan elemen struktur baja beserta alat sambungnya TIK : Mahasiswa mampu
BAB II DASAR TEORI. 2.1 Prinsip Dasar Mesin Pencacah Rumput
BAB II DASAR TEORI 2.1 Prinsip Dasar Mesin Pencacah Rumput Mesin ini merupakan mesin serbaguna untuk perajang hijauan, khususnya digunakan untuk merajang rumput pakan ternak. Pencacahan ini dimaksudkan
LENDUTAN (Deflection)
ENDUTAN (Deflection). Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat ditentukan dari sifat penampang dan beban-beban luar. Pada prinsipnya tegangan pada balok akibat beban
Silabus (MEKANIKA REKAYASA III)
Pengesahan Nama Dokumen : SILABUS No. Dokumen : Fakultas Teknik Program Studi Teknik SLB 10.3.2. No Diajukan Oleh ISO 91:28/IWA 2 1dari 6 Mengetahui Norma Puspita, ST. MT. Dosen Pengampu Diperiksa Oleh
BAB IV DIAGRAM GAYA GESER (SHEAR FORCE DIAGRAM SFD) DAN DIAGRAM MOMEN LENTUR (BENDING MOMENT DIAGRAM BMD)
IV IGRM GY GESER (SHER FORE IGRM SF) N IGRM MOMEN LENTUR (ENING MOMENT IGRM M) alok adalah suatu bagian struktur yang dirancang untuk menumpu beban yang diterapkan pada beberapa titik di sepanjang struktur
I.1 Latar Belakang I-1
Bab I Pendahuluan I.1 Latar Belakang Berbagai jenis struktur, seperti terowongan, struktur atap stadion, struktur lepas pantai, maupun jembatan banyak dibentuk dengan menggunakan struktur shell silindris.
IV. HASIL DAN PEMBAHASAN. Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu
IV. HASIL DAN PEMBAHASAN Pembahasan hasil penelitian ini secara umum dibagi menjadi lima bagian yaitu pengujian mekanik beton, pengujian benda uji balok beton bertulang, analisis hasil pengujian, perhitungan
Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15
Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk
Tugas Akhir. Pendidikan sarjana Teknik Sipil. Disusun oleh : DESER CHRISTIAN WIJAYA
KAJIAN PERBANDINGAN PERIODE GETAR ALAMI FUNDAMENTAL BANGUNAN MENGGUNAKAN PERSAMAAN EMPIRIS DAN METODE ANALITIS TERHADAP BERBAGAI VARIASI BANGUNAN JENIS RANGKA BETON PEMIKUL MOMEN Tugas Akhir Diajukan untuk
Menggambar Lendutan Portal Statis Tertentu
Menggambar Lendutan Portal Statis Tertentu (eformasi aksial diabaikan) Gambar 1. Portal Statis Tertentu Sebuah portal statis tertentu akan melendut dan bergoyang jika dibebani seperti terlihat pada Gambar
BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini
Konsep Keseimbangan & Pemodelan Struktur
Mata Kuliah : Statika Kode : TSP 106 SKS : 3 SKS Konsep Keseimbangan & Pemodelan Struktur Pertemuan 3 & 4 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tertentu TIK : Mahasiswa
Struktur Beton. Ir. H. Armeyn, MT. Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang
Penerbit Universiras SematangISBN. 979. 9156-22-X Judul Struktur Beton Struktur Beton Ir. H. Armeyn, MT Fakultas Teknik Sipil dan Perencanaan Jurusan Teknik Sipil dan Geodesi Institut Teknologi Padang
KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA
1 KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA A. Tujuan Instruksional Setelah selesai mengikuti kegiatan belajar ini diharapkan peserta kuliah STATIKA I dapat : 1. Menghitung reaksi, gaya melintang,
2.1. Metode Matrix BAB 2 KONSEP DASAR METODE MATRIX KEKAKUAN Seperti telah diketahui, analisis struktur mencakup penentuan tanggap (respons) sistem struktur terhadap gaya maupun pengaruh luar yang bekerja
Dinding Penahan Tanah
Mata Kuliah : Struktur Beton Lanjutan Kode : TSP 407 SKS : 3 SKS Dinding Penahan Tanah Pertemuan - 7 TIU : Mahasiswa dapat mendesain berbagai elemen struktur beton bertulang TIK : Mahasiswa dapat mendesain
Analisis Tegangan dan Regangan
a home base to ecellence Mata Kuliah : Mekanika Bahan Kode : TSP 05 SKS : 3 SKS Analisis Tegangan dan Regangan Pertemuan - 10 a home base to ecellence TIU : Mahasiswa dapat menganalisis tegangan normal
KOMPUTERISASI ANALISIS STRUKTUR RANGKA 3D DENGAN METODE KEKAKUAN LANGSUNG ALGORITMA HOLZER. Yohanes I P NRP :
KOMPUTERISASI ANALISIS STRUKTUR RANGKA 3D DENGAN METODE KEKAKUAN LANGSUNG ALGORITMA HOLZER Yohanes I P NRP 0021006 Pembimbing Ir. Daud R. Wiyono, M.sc. Pembimbing Pendamping Anang Kristianto, ST., MT.
BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL
2011 BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL BOEDI WIBOWO KATA PENGANTAR Dengan mengucap syukur kepada Allah SWT, karena dengan rachmat NYA kami bisa menyelesaikan BAHAN AJAR MEKANIKA REKAYASA
ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD
ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk
METODA CONSISTENT DEFORMATION
Modul ke: 01 Analisa Struktur I METODA CONSISTENT Fakultas FTPD Acep Hidayat,ST,MT Program Studi Teknik Sipil Struktur Statis Tidak Tertentu Analisis Struktur Analisis struktur adalah proses untuk menentukan
BAB I PENDAHULUAN. yang paling utama mendukung beban luar serta berat sendirinya oleh momen dan gaya
BAB I PENDAHUUAN I.1. ATAR BEAKANG Dua hal utama yang dialami oleh suatu balok adalah kondisi tekan dan tarik yang antara lain karena adanya pengaruh lentur ataupun gaya lateral.balok adalah anggota struktur
Struktur Statis Tertentu : Rangka Batang
Mata Kuliah : Statika & Mekanika Bahan Kode : CIV 102 SKS : 4 SKS Struktur Statis Tertentu : Rangka Batang Pertemuan 9 Kemampuan akhir yang diharapkan Mahasiswa dapat melakukan analisis reaksi perletakan
