METODE DEFORMASI KONSISTEN
|
|
|
- Surya Hermanto
- 8 tahun lalu
- Tontonan:
Transkripsi
1 TKS 4008 Analisis Struktur I TM. XI : METODE DEFORMASI KONSISTEN Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Metode Consistent Deformation adalah cara yang paling umum dipakai untuk menyelesaikan perhitungan suatu struktur statis tak tertentu (suatu struktur yang tidak dapat diselesaikan hanya dengan bantuan 3 persamaan keseimbangan, karena mempunyai jumlah bilangan yang tidak diketahui lebih besar dari 3 (unknown > 3). Dengan kata lain dibutuhkan tambahan persamaan untuk bisa menyelesaikannya. Tingkat atau derajat ketidaktentuan statis (DKS), akan menentukan jumlah persamaan tambahan yang dibutuhkan. Bilangan-bilangan yang tidak diketahui tersebut berupa gaya luar (reaksi). 1
2 Pendahuluan (lanjutan) Untuk mendapatkan persamaan tambahan tersebut struktur akan dibuat menjadi statis tertentu dengan menghilangkan gaya kelebihan yang ada (redundant), dan menghitung deformasi struktur statis tertentu tersebut akibat beban yang ada. Setelah itu struktur statis tertentu tersebut dibebani dengan gaya kelebihan yang dihilangkan tadi, dan juga dihitung deformasinya. Deformasi adalah defleksi atau rotasi dari suatu titik pada struktur. Pendahuluan (lanjutan) Deformasi yang dihitung disini disesuaikan dengan gaya kelebihan yang dihilangkan. Misal, jika gaya yang dihilangkan tersebut gaya horisontal, maka yang dihitung defleksi horisontal pada lokasi gaya yang dihilangkan tadi seharusnya bekerja. Jika gaya vertikal, yang dihitung defleksi vertikal, sedangkan jika yang dihilangkan tersebut berupa momen, maka yang dihitung adalah rotasi. 2
3 Pendahuluan (lanjutan) Setelah deformasi akibat beban yang ada dan gaya-gaya kelebihan yang dikerjakan sebagai beban telah dihitung, maka dengan melihat kondisi fisik dari struktur asli, disusun persamaan-persamaan tambahan yang diperlukan : Untuk perletakan rol, maka defleksi vertikal perletakan harus sama dengan nol ( V = 0). Untuk perletakan sendi, maka defleksi vertikal maupun horisontal sama dengan nol ( V = H = 0). Untuk perletakan jepit, defleksi vertikal, defleksi horisontal dan rotasi sama dengan nol ( V = H = = 0). Pendahuluan (lanjutan) Persamaan-persamaan tambahan ini disebut persamaan Consistent Deformation, karena deformasi yang ada harus konsisten (sesuai) dengan struktur aslinya. Setelah persamaan Consistent Deformation disusun, maka gaya-gaya kelebihan dapat dihitung, dan gaya yang lain dapat dihitung dengan persamaan keseimbangan, setelah gaya-gaya kelebihan tadi didapat. Inilah konsep dasar dari metode Consistent Deformation yang dipakai untuk menyelesaikan struktur statis tak tertentu. 3
4 Penyelesaian Untuk menyelesaikan perhitungan struktur statis tak tentu dengan metode Consistent Deformation urutan langkah-langkah yang harus dikerjakan adalah sebagai berikut : 1. Tentukan derajat ketidaktentuan statis (DKS) struktur. 2. Buat struktur menjadi statis tertentu dengan menghilangkan gaya kelebihan (redundant) yang ada. 3. Hitung deformasi struktur statis tertentu tersebut akibat beban yang ada. 4. Beban yang ada dihilangkan, gaya kelebihan dikerjakan sebagai beban, dan dihitung deformasinya (jika gaya kelebihan lebih dari satu, maka dikerjakan satu persatu secara bergantian). Penyelesaian (lanjutan) 5. Setelah deformasi akibat beban yang ada dan gaya-gaya kelebihan dari struktur statis tertentu tersebut dihitung dengan memperhatikan kondisi struktur aslinya, yaitu struktur statis tak tentu, dan disusun persamaan Consistent Deformation. 6. Dengan bantuan persamaan Consistent Deformation, gaya-gaya kelebihan dapat dihitung. Setelah gaya-gaya kelebihan didapat, gaya-gaya yang lain dapat dihitung dengan bantuan 3 persamaan keseimbangan yang ada. 4
5 Penyelesaian (lanjutan) Catatan : Deformasi yang dihitung, disesuaikan dengan gaya kelebihan (redundant) yang dihilangkan. Gaya vertikal defleksi vertikal ( V ) Gaya horisontal defleksi horisontal ( H ) Momen rotasi ( ) Contoh 1 Balok diatas 2 tumpuan jepit dan rol (Cara I) R = 4 > 3 (kelebihan 1 R), struktur statis tak tentu tingkat 1 (satu) R BV : sebagai gaya kelebihan B : menjadi bebas BV : defleksi yang dihitung Akibat beban yang ada, dihitung defleksi vertikal di B ( BV ). Akibat gaya kelebihan (R BV ) sebagai beban dihitung defleksi vertikal di B ( BV R BV ). 5
6 Contoh 1 (lanjutan) Balok diatas 2 tumpuan jepit dan rol (Cara I) Struktur aslinya B adalah rol, sebelumnya defleksi di B sama dengan nol, persamaan Consistent Deformation : Δ B = 0 Δ BV + δ BV R BV = 0 Dari persamaan yang disusun, R BV dapat dihitung. Setelah R BV didapatkan, gaya-gaya yang lain dapat dihitung dengan menggunakan persamaan keseimbangan. Contoh 2 (lanjutan) Balok diatas 2 tumpuan jepit dan rol (Cara II) R = 4 > 3 (kelebihan 1 R), struktur statis tak tentu tingkat 1 (satu) R AM : sebagai gaya kelebihan A : menjadi sendi A : rotasi yang dihitung Akibat beban yang ada, dihitung rotasi di A ( AM ). Akibat gaya kelebihan (R AM ) sebagai beban dihitung rotasi di A ( AM R AM ). 6
7 Contoh 2 (lanjutan) Balok diatas 2 tumpuan jepit dan rol (Cara II) Struktur aslinya A adalah jepit, sebelumnya rotasi di A sama dengan nol, persamaan Consistent Deformation : θ A = 0 θ AM + φ AM R AM = 0 Dari persamaan yang disusun, R AM dapat dihitung. Setelah R AM didapatkan, gaya-gaya yang lain dapat dihitung dengan menggunakan persamaan keseimbangan. Catatan : dari kedua cara (contoh 1 dan 2), akan didapatkan hasil yang sama. Contoh 3 Balok diatas 2 tumpuan jepit dan rol dengan sokongan R = 4 > 3 (kelebihan 1 R), struktur statis tak tentu tingkat 1 (satu) V B : sebagai gaya kelebihan B : menjadi bebas BV : defleksi yang dihitung Akibat beban yang ada : V A = 1(8) + 1 = 9 t ( ) M A = ½ (1)82 + 1(8) = 40 tm ( ) 7
8 Contoh 3 (lanjutan) Akibat beban yang ada : Persamaan momen (M x ) : C B : 0 x 1 2 M x1 = 1 2 x 1 2 x 1 = 1 2 x 1 2 x 1 B A : 0 x 2 6 M x2 = 1 2 x x = 1 2 x x Contoh 3 (lanjutan) Akibat beban unit 1 t ( ) di B : VA = 1t ( ) MA = -1 G 6 = - 6 tm Persamaan momen (m x ) : C B : 0 x 1 2 m x1 = 0 B A : 0 x 2 6 m x2 = x 2 8
9 Contoh 3 (lanjutan) Lendutan akibat beban yang ada : S 0 EI 2 = 1 2 x 1 2 x 1 (0) 0 EI Δ BV = M xm x dx = + 1 EI x x 2 +4 ( x 2 ) 0 EI dx 1 1 x x x 2 0 = EI ( ) Lendutan akibat beban unit 1 t ( ) di B S δ BV = m x 2 0 dx EI 6 = x EI = + 1 EI dx 2 1 x = + 72 ( ) EI dx 2 Contoh 3 (lanjutan) Struktur asli B adalah rol BV = 0 Persamaan Consistent Deformation : Δ BV + δ BV V B = V EI EI B = 0 V B = 6,25 t ( ) Persamaan Keseimbangan : ΣV = 0 V A + V B 8 1 = 0 V A + 6,25 = 9 V A = 2, 75 t ( ) ΣM A = 0 M A + V B = 0 M A + 37,5 = 40 M A = 2, 5 tm ( ) ΣH = 0 H A = 0 9
10 Contoh 3 (lanjutan) Terima kasih atas Perhatiannya! 10
Definisi Balok Statis Tak Tentu
Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan hanya dengan menggunakan persamaan statika. Dalam
DEFLEKSI PADA STRUKTUR RANGKA BATANG
TKS 4008 Analisis Struktur I TM. VI : DEFLEKSI PADA STRUKTUR RANGKA BATANG Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Defleksi pada struktur
METODE SLOPE DEFLECTION
TKS 4008 Analisis Struktur I TM. XVIII : METODE SLOPE DEFLECTION Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada 2 metode sebelumnya, yaitu :
Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu
Pertemuan XIII VIII. Balok Elastis Statis Tak Tentu.1 Definisi Balok Statis Tak Tentu Balok dengan banyaknya reaksi melebihi banyaknya persamaan kesetimbangan, sehingga reaksi pada balok tidak dapat ditentukan
ANALISA STATIS TERTENTU WINDA TRI WAHYUNINGTYAS
ANALISA STATIS TERTENTU WINDA TRI WAHYUNINGTYAS PENDAHULUAN Beban Didalam suatu struktur pasti ada beban, beban yang bisa bergerak umumnya disebut beban hidup misal : manusia, kendaraan, dan lain sebagainya.
Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu
Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,
TM. V : Metode RITTER. TKS 4008 Analisis Struktur I
TKS 4008 Analisis Struktur I TM. V : METODE RITTER vs CULLMAN Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Metode RITTER Metode keseimbangan potongan (Ritter)
Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen
TKS 4008 Analisis Struktur I TM. XXII : METODE CROSS Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Outline Metode Distribusi Momen Momen Primer (M ij ) Faktor
Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss
Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka
METODE CLAPEYRON. Pustaka: SOEMADIONO. Mekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UGM.
ETODE CAPEYRON Pustaka: SOEADIONO. ekanika Teknik: Konstruksi Statis Tak Tentu. Jilid 1. UG. Pemakaian Dalil 3 omen Clapeyron A α a α b B Jika suatu batang datar sendi-rol diberi muatan/beban di atasnya,
5- Persamaan Tiga Momen
5 Persamaan Tiga Momen Pada metoda onsistent eformation yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu.
STRUKTUR STATIS TERTENTU PORTAL DAN PELENGKUNG
STRUKTUR STATIS TERTENTU PORTAL DAN PELENGKUNG Fakultas Teknik, Universitas Gadjah Mada Program S1 08-1 1. Portal Sederhana: Tumpuan : roll atau jepit Elemen2 : batang-batang horisontal, vertikal, miring
BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL
2011 BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL BOEDI WIBOWO KATA PENGANTAR Dengan mengucap syukur kepada Allah SWT, karena dengan rachmat NYA kami bisa menyelesaikan BAHAN AJAR MEKANIKA REKAYASA
STRUKTUR STATIS TAK TENTU
. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Struktur statis tertentu : Suatu struktur yang mempunyai kondisi di mana jumlah reaksi perletakannya sama dengan jumlah syarat kesetimbangan statika.
MODUL 2 : ARTI KONSTRUKSI STATIS TERTENTU DAN CARA PENYELESAIANNYA 2.1. JUDUL : KONSTRUKSI STATIS TERTENTU
MODUL II (MEKNIK TEKNIK) -1- MODUL 2 : RTI KONSTRUKSI STTIS TERTENTU DN CR ENYELESINNY 2.1. JUDUL : KONSTRUKSI STTIS TERTENTU Tujuan embelajaran Umum Setelah membaca bagian ini mahasiswa akan mengerti
TM. IV : STRUKTUR RANGKA BATANG
TKS 4008 Analisis Struktur I TM. IV : STRUKTUR RANGKA BATANG Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Rangka batang adalah suatu struktur rangka
STRUKTUR STATIS TERTENTU
MEKNIK STRUKTUR I STRUKTUR STTIS TERTENTU Soelarso.ST.,M.Eng JURUSN TEKNIK SIPIL FKULTS TEKNIK UNIVERSITS SULTN GENG TIRTYS PENDHULUN Struktur Statis Tertentu Suatu struktur disebut sebagai struktur statis
BAB I SLOPE DEFLECTION
Ver 3.1, thn 007 Buku Ajar KTS-35 Analisis Struktur II BAB I SLOPE DEFLECTION 1.1. Derajat Ketidaktentuan Statis dan Derajat Ketidaktentuan Kinematis Derajat ketidaktentuan statis adalah banyaknya kelebihan
STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD
Modul ke: 02 Fakultas FTPD Program Studi Teknik Sipil STATIKA I Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT Reaksi Perletakan Struktur Statis
MEKANIKA REKAYASA III
MEKANIKA REKAYASA III Dosen : Vera A. Noorhidana, S.T., M.T. Pengenalan analisa struktur statis tak tertentu. Metode Clapeyron Metode Cross Metode Slope Deflection Rangka Batang statis tak tertentu PENGENALAN
MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU
MOU 3 1 MOU 3 : METO PERSMN TIG MOMEN 3.1. Judul :METO PERSMN TIG MOMEN UNTUK MENYEESIKN STRUKTUR STTIS TIK TERTENTU Tujuan Pembelajaran Umum Setelah membaca bagian ini mahasiswa akan memahami bagaimanakah
DRAFT ANALISIS STRUKTUR Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar
2. Metode Integrasi Ganda (Double Integration) Suatu struktur balok sedehana yang mengalami lentur seperti pada Gambar 2.1, dengan y adalah defleksi pada jarak yang ditinjau x, adalah sudut kelengkungan
BUKU AJAR ANALISA STRUKTUR II DISUSUN OLEH : I PUTU LAINTARAWAN, ST, MT. I NYOMAN SUTA WIDNYANA, ST, MT. I WAYAN ARTANA, ST.MT
UKU JR NIS STRUKTUR II DISUSUN OEH : I PUTU INTRWN, ST, MT. I NYOMN SUT WIDNYN, ST, MT. I WYN RTN, ST.MT PROGRM STUDI TEKNIK SIPI FKUTS TEKNIK UNIVERSITS HINDU INDONESI KT PENGNTR Puji syukur penulis kami
DEFORMASI BALOK SEDERHANA
TKS 4008 Analisis Struktur I TM. IX : DEFORMASI BALOK SEDERHANA Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada prinsipnya tegangan pada balok
Metode Distribusi Momen
etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof. Hardy Cross etode distribusi momen dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis taktentu.
Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan
Penerapan metode defleksi kemiringan pada kerangka kaku statis tak-tentu Tanpa Goyangan Hampir semua kerangka kaku yang secara actual dibangun di dalam praktek k bersifat statis ti tak tentu. t Tidak seperti
Pertemuan IX,X,XI V. Metode Defleksi Kemiringan (The Slope Deflection Method) Lanjutan
ahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan IX,X,XI V. etode Defleksi Kemiringan (The Slope Deflection ethod) Lanjutan V.1 Penerapan etode Defleksi Kemiringan Pada Kerangka Kaku Statis Tak Tentu
Sebuah benda tegar dikatakan dalam keseimbangan jika gaya gaya yang bereaksi pada benda tersebut membentuk gaya / sistem gaya ekvivalen dengan nol.
Suatu partikel dalam keadaan keseimbangan jika resultan semua gaya yang bekerja pada partikel tersebut nol. Jika pada suatu partikel diberi 2 gaya yang sama besar, mempunyai garis gaya yang sama dan arah
Analisis Struktur Statis Tak Tentu dengan Force Method
Mata Kuliah : Analisis Struktur Kode : CIV 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan 9, 10, 11 Kemampuan Akhir yang Diharapkan Mahasiswa dapat melakukan analisis struktur
Balok Statis Tak Tentu
BETON PRATEGANG TKS - 4023 Session 9: Balok Statis Tak Tentu Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Advantages Kekontinuan pada konstruksi beton prategang
Mekanika Rekayasa III
Mekanika Rekayasa III Metode Hardy Cross Pertama kali diperkenalkan oleh Hardy Cross (1993) dalam bukunya yang berjudul nalysis of Continuous Frames by Distributing Fixed End Moments. Sebagai penghargaan,
METODA CONSISTENT DEFORMATION
Modul ke: 01 Analisa Struktur I METODA CONSISTENT Fakultas FTPD Acep Hidayat,ST,MT Program Studi Teknik Sipil Struktur Statis Tidak Tertentu Analisis Struktur Analisis struktur adalah proses untuk menentukan
BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi
BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja
Konsep Desain dengan Teori Elastis
BETON PRATEGANG TKS - 4023 Sesi 3: Konsep Desain dengan Teori Elastis Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Konsep Desain Konsep dasar dari kopel penahan
Silabus (MEKANIKA REKAYASA III)
Pengesahan Nama Dokumen : SILABUS No. Dokumen : Fakultas Teknik Program Studi Teknik SLB 10.3.2. No Diajukan Oleh ISO 91:28/IWA 2 1dari 6 Mengetahui Norma Puspita, ST. MT. Dosen Pengampu Diperiksa Oleh
Analisis Struktur Statis Tak Tentu dengan Force Method
Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak
Persamaan Tiga Momen
Persamaan Tiga omen Persamaan tiga momen menyatakan hubungan antara momen lentur di tiga tumpuan yang berurutan pada suatu balok menerus yang memikul bebanbeban yang bekerja pada kedua bentangan yang bersebelahan,
Jenis Jenis Beban. Bahan Ajar Mekanika Bahan Mulyati, MT
Jenis Jenis Beban Apabila suatu beban bekerja pada area yang sangat kecil, maka beban tersebut dapat diidealisasikan sebagai beban terpusat, yang merupakan gaya tunggal. Beban ini dinyatakan dengan intensitasnya
Pertemuan V,VI III. Gaya Geser dan Momen Lentur
Pertemuan V,VI III. Gaya Geser dan omen entur 3.1 Tipe Pembebanan dan Reaksi Beban biasanya dikenakan pada balok dalam bentuk gaya. Apabila suatu beban bekerja pada area yang sangat kecil atau terkonsentrasi
BAB II METODE KEKAKUAN
BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui
PORTAL DAN PELENGKUNG TIGA SENDI
MEKANIKA STRUKTUR I PORTAL DAN PELENGKUNG TIGA SENDI Soelarso.ST.,M.Eng JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA 1. Portal Sederhana BERBAGAI BENTUK PORTAL (FRAME) DAN PELENGKUNG
Pertemuan XII,XIII,XIV,XV VI. Metode Distribusi Momen (Cross) VI.1 Uraian Umum Metode Distribusi Momen
Bahan Ajar Analisa Struktur II ulyati, ST., T Pertemuan XII,XIII,XIV,XV VI. etode Distribusi omen (Cross) VI.1 Uraian Umum etode Distribusi omen etode distribusi momen pada mulanya dikemukakan oleh Prof.
Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)
ahan jar nalisa Struktur II ulyati, ST., T Pertemuan VI,VII III. etode Defleksi Kemiringan (The Slope Deflection ethod) III.1 Uraian Umum etode Defleksi Kemiringan etode defleksi kemiringan (the slope
ANALISA PORTAL GABLE MENGGUNAKAN METODE CONSISTENT DEFORMATION, SLOPE DEFLECTION DAN MOMENT DISTRIBUTION
Jurnal ipil tatik Vol.1 No.2, Januari 213 (9-94) ANALIA PORTAL GABLE MENGGUNAKAN METODE CONITENT DEFORMATION, LOPE DEFLECTION DAN MOMENT DITRIBUTION Chandra Hansun Tanudjaja,.E. Wallah, R.. Windah, W.
ANSTRUK STATIS TAK TENTU (TKS 1315)
ANSTRUK STATIS TAK TENTU (TKS 1315) JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS JEMBER GATI ANNISA HAYU, ST, MT, MSc. Gati Annisa Hayu, ST, MT, MSc. WINDA TRI WAHYUNINGTYAS, ST, MT, MSc MODUL 4 DEFORMASI
BAB II PELENGKUNG TIGA SENDI
BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya
BAB I PENDAHULUAN. 1.1 Analisis Struktur. 1.2 Derajat Ketidaktentuan Statis (Degree of Statically Indeterminancy)
BAB I PENDAHULUAN 1.1 Analisis Struktur Analisis struktur adalah proses untuk menentukan respon suatu struktur akibat pembebanan agar memenuhi persyaratan keamanan (safety), biaya (economy), dan terkadang
Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection
ata Kuliah : Analisis Struktur Kode : TSP 0 SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 11 TIU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis
sendi Gambar 5.1. Gambar konstruksi jembatan dalam Mekanika Teknik
da beberapa macam sistem struktur, mulai dari yang sederhana sampai dengan yang kompleks; sistim yang paling sederhana tersebut disebut dengan konstruksi statis tertentu. Contoh : contoh struktur sederhana
KEANDALAN STRUKTUR BALOK SEDERHANA DENGAN SIMULASI MONTE CARLO
KEANDALAN STRUKTUR BALOK SEDERHANA DENGAN SIMULASI MONTE CARLO Stevan Setiawan NRP : 0421026 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA BANDUNG
Bab 6 Defleksi Elastik Balok
Bab 6 Defleksi Elastik Balok 6.1. Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat diteritukan dan sifat penampang dan beban-beban luar. Untuk mendapatkan sifat-sifat penampang
ANALISA STRUKTUR METODE MATRIKS (ASMM)
ANAISA STRUKTUR METODE MATRIKS (ASMM) Endah Wahyuni, S.T., M.Sc., Ph.D Matrikulasi S Bidang Keahlian Struktur Jurusan Teknik Sipil ANAISA STRUKTUR METODE MATRIKS Analisa Struktur Metode Matriks (ASMM)
TUGAS MAHASISWA TENTANG
TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik
KATA PENGANTAR. karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen
KATA PENGANTAR Puji syukur penulis ucapkan kepada pujaan alam Allah SWT atas rahmat, dan karunia-nya kepada saya sebagai penulis, sehingga tersusunya makalah momen distribusi portal 3 lantai Makalah ini
I. DEFORMASI TITIK SIMPUL DARI STRUKTUR RANGKA BATANG
Materi Mekanika Rekayasa 4 Statika : 1. Deformasi pada Konstruksi Rangka atang : - Cara nalitis : metoda unit load - Cara Grafis : - metoda welliot - metoda welliot mohr 2. Deformasi pada Konstrusi alok
GARIS PENGARUH PADA STRUKTUR RANGKA BATANG
TKS 4008 Analisis Struktur I TM. VII : GARIS PENGARUH PADA STRUKTUR RANGKA BATANG Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Beban-beban yang
LENDUTAN (Deflection)
ENDUTAN (Deflection). Pendahuluan Dalam perancangan atau analisis balok, tegangan yang terjadi dapat ditentukan dari sifat penampang dan beban-beban luar. Pada prinsipnya tegangan pada balok akibat beban
3- Deformasi Struktur
3- Deformasi Struktur Deformasi adalah salah satu kontrol kestabilan suatu elemen balok terhadap kekuatannya. iasanya deformasi dinyatakan sebagai perubahan bentuk elemen struktur dalam bentuk lengkungan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA.. Sambungan Sambungan-sambungan pada konstruksi baja hampir tidak mungkin dihindari akibat terbatasnya panjang dan bentuk dari propil propil baja yang diproduksi. Sambungan bisa
ANALISIS DAKTILITAS BALOK BETON BERTULANG
ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA
STATIKA. Dan lain-lain. Ilmu pengetahuan terapan yang berhubungan dengan GAYA dan GERAK
3 sks Ilmu pengetahuan terapan yang berhubungan dengan GAYA dan GERAK Statika Ilmu Mekanika berhubungan dengan gaya-gaya yang bekerja pada benda. STATIKA DINAMIKA STRUKTUR Kekuatan Bahan Dan lain-lain
Metode Grafis. Metode CREMONA. TKS 4008 Analisis Struktur I
TKS 4008 Analisis Struktur I Metode Grafis Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Metode CREMONA Metode Cremona pada dasarnya sama dengan metode keseimbangan
Metode Defleksi Kemiringan (The Slope Deflection Method)
etode Defleksi Kemiringan (The Slope Deflection ethod) etode defleksi kemiringan dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak-tentu tentu. Semua sambungan dianggap kaku,
ANALISIS METODE ELEMEN HINGGA DAN EKSPERIMENTAL PERHITUNGAN KURVA BEBAN-LENDUTAN BALOK BAJA ABSTRAK
ANALISIS METODE ELEMEN HINGGA DAN EKSPERIMENTAL PERHITUNGAN KURVA BEBAN-LENDUTAN BALOK BAJA Engelbertha Noviani Bria Seran NRP: 0321011 Pembimbing: Yosafat Aji Pranata, ST., MT. ABSTRAK Salah satu bagian
Silabus. Pengesahan Nama Dokumen : SILABUS (MEKANIKA REKAYASA I) No. Dokumen : Fakultas Teknik Program Studi Teknik Sipil SLB
Pengesahan Nama Dokumen : SILABUS No. Dokumen : Fakultas Teknik Program Studi Teknik SLB 10.3.2. No Diajukan Oleh ISO 91:28/IWA 2 1dari 6 Mengetahui Norma Puspita, ST. MT. Dosen Pengampu Diperiksa Oleh
MAKALAH PRESENTASI DEFORMASI LENTUR BALOK. Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT
MAKALAH PRESENTASI DEFORMASI LENTUR BALOK Untuk Memenuhi Tugas Matakuliah Mekanika Bahan Yang Dibina Oleh Bapak Tri Kuncoro ST.MT Oleh : M. Rifqi Abdillah (150560609) PROGRAM STUDI SI TEKNIK SIPIL JURUSAN
PRINSIP DASAR MEKANIKA STRUKTUR
PRINSIP DASAR MEKANIKA STRUKTUR Oleh : Prof. Ir. Sofia W. Alisjahbana, M.Sc., Ph.D. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak
BAB II METODE DISTRIBUSI MOMEN
II MTO ISTRIUSI MOMN.1 Pendahuluan Metode distribusi momen diperkenalkan pertama kali oleh Prof. Hardy ross pada yahun 1930-an yang mana merupakan sumbangan penting yang pernah diberikan dalam analisis
Analisis Struktur II
nalisis Struktur II Dr.Eng. chfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya onsep nalisis Struktur equilibrium contitutive law compatibility Lentur Geser ksial Torsi Gaya
KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA
1 KONSTRUKSI BALOK DENGAN BEBAN TERPUSAT DAN MERATA A. Tujuan Instruksional Setelah selesai mengikuti kegiatan belajar ini diharapkan peserta kuliah STATIKA I dapat : 1. Menghitung reaksi, gaya melintang,
MEKANIKA TEKNIK I BALOK GERBER. Ir. H. Armeyn, MT
MEKNIK TEKNIK I LOK GERER Ir. H. rmeyn, MT FKULT TEKNIK IPIL & PERENNN INTITUT TEKNOLOGI PNG JURUN TEKNIK IPIL FKULT TEKNIK INTITUT TEKNOLOGI PNG PENHULUN Kita tinjau Konstruksi di bawah ini, Konstruksi
ANALISIS PENENTUAN TEGANGAN REGANGAN LENTUR BALOK BAJA AKIBAT BEBAN TERPUSAT DENGAN METODE ELEMEN HINGGA
ANALISIS PENENTUAN TEGANGAN REGANGAN LENTUR BALOK BAJA AKIBAT BEBAN TERPUSAT DENGAN METODE ELEMEN HINGGA AFRIYANTO NRP : 0221040 Pembimbing : Yosafat Aji Pranata, ST., MT. FAKULTAS TEKNIK JURUSAN TEKNIK
MODUL PERKULIAHAN. Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana
MODUL PERKULIAHAN Gaya Dalam Struktur Statis Tertentu Pada Portal Sederhana Abstract Fakultas Fakultas Teknik Perencanaan dan Desain Program Studi Teknik Sipil Tatap Muka Kode MK Disusun Oleh 08 Kompetensi
Besarnya defleksi ditunjukan oleh pergeseran jarak y. Besarnya defleksi y pada setiap nilai x sepanjang balok disebut persamaan kurva defleksi balok
Hasil dan Pembahasan A. Defleksi pada Balok Metode Integrasi Ganda 1. Defleksi Balok Sumbu sebuah balok akan berdefleksi (atau melentur) dari kedudukannya semula apabila berada di bawah pengaruh gaya terpakai.
KULIAH PERTEMUAN 9 Analisa struktur statis tak tentu dengan metode consistent deformations pada balok dan portal
KULIH PERTEUN 9 naisa struktur statis tak tentu dengan metode consistent deformations pada baok dan porta. Lembar Informasi 1. Kompetensi ahasiswa dapat menghitung reaksi peretakan dan menggambarkan bidang
MODUL 5 STATIKA I MUATAN TIDAK LANGSUNG. Dosen Pengasuh : Ir. Thamrin Nasution
STATIKA I MODUL 5 MUATAN TIDAK LANGSUNG Dosen Pengasuh : Materi Pembelajaran : 1. Beban Tidak Langsung. 2. Sendi Gerber. 3. Contoh Soal No1., Muatan Terbagi Rata. 4. Contoh Soal No.2., Beban Terpusat.
KEANDALAN BALOK STATIS TERTENTU DENGAN ARTIFICIAL NEURAL NETWORKS
KEANDALAN BALOK STATIS TERTENTU DENGAN ARTIFICIAL NEURAL NETWORKS Martinus S.P. Abednego [1], Yosafat Aji Pranata [2] Jurusan Teknik Sipil, Universitas Kristen Maranatha Jln. Prof. drg. Suria Sumantri,
MEKANIKA REKAYASA. Bagian 1. Pendahuluan
MEKANIKA REKAYASA Bagian 1 Pendahuluan i ii Mekanika Rekayasa Bagian 1 PENGANTAR Puji syukur ke hadirat Allah swt. Tuhan pemilik alam semesta, dan tak lupa pula shalawat beriring salam kepada pelopor ilmu
Metode Kekakuan Langsung (Direct Stiffness Method)
Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =
DIAGRAM BAGAN ALIR PENELITIAN
LAMPIRAN 86 Lampiran 1 87 DIAGRAM BAGAN ALIR PENELITIAN Mulai Data Hasil Uji Eksperimental - Tegangan Geser di Titik E - Regangan Geser di Titik E - Lendutan Maksimum Perhitungan Analitis (Perhitungan
III. METODE KEKAKUAN
III. METODE KEKAKUAN 3.1. Introduksi Metode kekakuan ialah suatu cara untuk analisa struktur, dimana dalam proses perumusan dari analisa nya, diambil lendutan diambil lendutan dititik-titik diskrit sebagai
BAB III LANDASAN TEORI
BAB III LANDASAN TEORI 3.1. Kuat Tekan Beton Kekuatan tekan adalah kemampuan beton untuk menerima gaya tekan persatuan luas. Kuat tekan beton mengidentifikasikan mutu dari sebuah struktur. Semakin tinggi
2 Mekanika Rekayasa 1
BAB 1 PENDAHULUAN S ebuah konstruksi dibuat dengan ukuran-ukuran fisik tertentu haruslah mampu menahan gaya-gaya yang bekerja dan konstruksi tersebut harus kokoh sehingga tidak hancur dan rusak. Konstruksi
Kuliah kedua STATIKA. Ilmu Gaya : Pengenalan Ilmu Gaya Konsep dasar analisa gaya secara analitis dan grafis Kesimbangan Gaya Superposisi gaya
Kuliah kedua STATIKA Ilmu Gaya : Pengenalan Ilmu Gaya Konsep dasar analisa gaya secara analitis dan grafis Kesimbangan Gaya Superposisi gaya Pendahuluan Pada bagian kedua dari kuliah Statika akan diperkenalkan
MODUL 9. Sesi 1 STATIKA I PELENGKUNG TIGA SENDI. Dosen Pengasuh : Ir. Thamrin Nasution
STATIKA I MODU 9 Sesi 1 PEENGKUNG TIGA SENDI Dosen Pengasu : Materi Pembelajaran : 1. Konsep Dasar. 2. angka-langka Penyelesaian. 3. PORTA SIMETRIS. a. Memikul Muatan Terpusat Vertikal Tunggal b. Memikul
JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA
MEKANIKA STRUKTUR I PENDAHULUAN Soelarso.ST.,M.Eng JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SULTAN AGENG TIRTAYASA PENDAHULUAN Gaya serta sifatnya perlu difahami dalam ilmu Meknika Struktur/Analisa
I. PENDAHULUAN. Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan
I. PENDAHULUAN A. Latar Belakang Pekerjaan struktur seringkali ditekankan pada aspek estetika dan kenyamanan selain dari pada aspek keamanan. Untuk mempertahankan aspek tersebut maka perlu adanya solusi
Ditinjau sebuah batang AB yang berada bebas dalam bidang x-y:
OK SEDERHN (SIME EM) OK SEDERHN (SIME EM) Ditinjau sebuah batang yang berada bebas dalam bidang x-y: Translasi Jika pada batang tsb dikenakan gaya (beban), maka batang menjadi tidak stabil karena mengalami
P=Beban. Bila ujung-ujung balok tersebut tumpuan jepit maka lendutannya / 192 EI. P= Beban
BAB I Struktur Menerus : Balok A. engertian Balok merupakan struktur elemen yang dimana memiliki dimensi b dan h yang berbeda, dimensi b lebih kecil dari dimensi h. Bagian ini akan membahas mengenai balok
Menggambar Lendutan Portal Statis Tertentu
Menggambar Lendutan Portal Statis Tertentu (eformasi aksial diabaikan) Gambar 1. Portal Statis Tertentu Sebuah portal statis tertentu akan melendut dan bergoyang jika dibebani seperti terlihat pada Gambar
MODUL 1 STATIKA I PENGERTIAN DASAR STATIKA. Dosen Pengasuh : Ir. Thamrin Nasution
STATIKA I MODUL 1 PENGETIAN DASA STATIKA Dosen Pengasuh : Materi Pembelajaran : 1. Pengertian Dasar Statika. Gaya. Pembagian Gaya Menurut Macamnya. Gaya terpusat. Gaya terbagi rata. Gaya Momen, Torsi.
Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen
Mata uliah : Analisis Struktur ode : TSP 0 SS : 3 SS Analisis Struktur Statis Tak Tentu dengan Metode Distribusi Momen Pertemuan - 13 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis
BAB 2. TINJAUAN PUSTAKA
BAB 2. TINJAUAN PUSTAKA Teori garis leleh ini dikemukakan oleh A.Ingerslev (1921-1923) kemudian dikembangkan oleh K.W. Johansen (1940). Teori garis leleh ini popular dipakai di daerah asalnya yaitu daerah
Pertemuan III,IV,V II. Metode Persamaan Tiga Momen
Pertemuan III,IV,V II. etode Persamaan Tiga omen II. Uraian Umum etode Persamaan Tiga omen Analisa balok menerus, pendekatan yang lebih mudah adalah dengan menggunakan momen-momen lentur statis yang tak
Analisis Kehilangan Gaya Prategang
BETON PRATEGANG TKS - 4023 Sesi 2: Analisis Kehilangan Gaya Prategang Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Analisis kehilangan prategang
Studi Defleksi Balok Beton Bertulang Pada Sistem Rangka Dengan Bantuan Perangkat Lunak Berbasis Metode Elemen Hingga
Dosen Pembimbing : 1. Tavio, ST, MT, Ph.D 2. Ir. Iman Wimbadi, MS Oleh : Muhammad Fakhrul Razi 3106100053 Studi Defleksi Balok Beton Bertulang Pada Sistem Rangka Dengan Bantuan Perangkat Lunak Berbasis
BAB I PENDAHULUAN Umum. Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral
1 BAB I PENDAHULUAN 1. 1 Umum Pada dasarnya dalam suatu struktur, batang akan mengalami gaya lateral dan aksial. Suatu batang yang menerima gaya aksial desak dan lateral secara bersamaan disebut balok
KULIAH PERTEMUAN 1. Teori dasar dalam analisa struktur mengenai hukum Hooke, teorema Betti, dan hukum timbal balik Maxwel
KULIH PERTEMUN 1 Teori dasar dalam analisa struktur mengenai hukum Hooke, teorema etti, dan hukum timbal balik Maxwel. Lembar Informasi 1. Kompetensi : Setelah selesai mempelajari kuliah pertemuan ke-1
KONSTRUKSI BALOK DENGAN BEBAN TIDAK LANGSUNG DAN KOSTRUKSI BALOK YANG MIRING
KONSTRUKSI BALOK DENGAN BEBAN TIDAK LANGSUNG 1 I Lembar Informasi A. Tujuan Progam Setelah selesai mengikuti kegiatan belajar 3 diharapkan mahasiswa dapat : 1. Menghitung dan menggambar bidang D dan M
Analisa struktur statis tak tentu dengan metode distribusi momen (Cross) pada balok A. Lembar Informasi
KULH PERTEUN 1 nalisa struktur statis tak tentu dengan metode distribusi momen (Cross) pada balok. Lembar nformasi 1. Kompetensi ahasiswa dapat menghitung momen ujung batang untuk balok statis taktentu
