ANALISA STRUKTUR METODE MATRIKS (ASMM)

Ukuran: px
Mulai penontonan dengan halaman:

Download "ANALISA STRUKTUR METODE MATRIKS (ASMM)"

Transkripsi

1 ANAISA STRUKTUR METODE MATRIKS (ASMM) Endah Wahyuni, S.T., M.Sc., Ph.D Matrikulasi S Bidang Keahlian Struktur Jurusan Teknik Sipil

2 ANAISA STRUKTUR METODE MATRIKS Analisa Struktur Metode Matriks (ASMM) adalah suatu metode untuk menganalisa struktur dengan menggunakan bantuan matriks, yang terdiri dari : matriks kekakuan, matriks perpindahan, dan matriks gaya. Dengan menggunakan hubungan : { P } = [ K ] { U } dimana : { P } = matriks gaya [ K ] = matriks kekakuan { U } = matriks perpindahan Salah satu cara yang digunakan untuk menyelesaikan persamaan di atas, yaitu dengan menggunakan Metode Kekakuan.

3 Pada Metode Kekakuan, variable yang tidak diketahui besarnya adalah : perpindahan titik simpul struktur (rotasi dan defleksi) sudah tertentu/pasti. Jadi jumlah variable dalam metode kekakuan sama dengan derajat ketidaktentuan kinematis struktur. Metode Kekakuan dikembangkan dari persamaan kesetimbangan titik simpul yang ditulis dalam : Koefisien Kekakuan dan Perpindahan titik simpul yang tidak diketahui.

4 Types of Elements Spring elements Truss elements (plane & D) Beam elements (D &D) Plane Frame Grid elements Plane Stress Plane Strain Axisymmetric elements Plate Shell

5 Degrees of Freedom (DOF) Derajat kebebasan yang dimiliki oleh suatu struktur. Tiap jenis elemen akan mempunyai jumlah dan jenis kebebasan tertentu. Hitung derajat kebebasan element dari jenis element yang disebutkan sebelumnya

6 Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U = P K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4

7 P = K. U + K. U + K. U + K 4. U 4 Kesetimbangan gaya di arah U P = K. U + K. U + K. U + K4. U4 Kesetimbangan gaya di arah U P = K. U + K. U + K. U + K4. U4 Kesetimbangan gaya di arah U P4 = K4. U + K4. U + K4. U + K44. U4 Kesetimbangan gaya di arah U4

8 Jika U = dan U = U = U4 =, maka : P = K ; P = K ; P = K ; P4 = K4 ihat Gambar (a) Jika U = dan U = U = U4 =, maka : P = K ; P = K ; P = K ; P4 = K4 ihat Gambar (b) Jika U = dan U = U = U4 =, maka : P = K ; P = K ; P = K ; P4 = K4 ihat Gambar (c) Jika U4 = dan U = U = U4 =, maka : P = K4 ; P = K4 ; P = K4 ; P4 = K44 ihat Gambar (d)

9 U = P = K P = K P = K P4 = K4 U = P = K P = K P = K P4 = K4 U = P = K P = K P = K P4 = K4 U = P = K P = K P = K P4 = K4

10 Matrix kekakuan: K K K K 4 K = K K K K 4 K K K K 4 K 4 K 4 K 4 K 44 EI EI K = EI EI EI Matriks Kekakuan EI Gambar (a) (b) (c) (d)

11 Jika pada batang bekerja gaya aksial : U,P U,P, EA K = EA K = EA U = K = EA Matriks kekakuan elemen dengan melibatkan gaya aksial : K = EA U = U, P U, P U, P U 4, P 4 K = 6 x 6 EA EI EI EA EI EA EA EI EI EI

12 Contoh Sebuah balok statis tak tentu seperti pada gambar q, EI, EI Menentukan keaktifan ujungujung elemen Menentukan matriks tujuan DOF : rotasi Matriks kekakuan struktur [ Ks ] x Membuat matrik kekakuan elemen : [ Ks ] = [ K ] + [ K ]

13 Membuat matrik kekakuan elemen : Elemen EI EI K = EI EI EI EI Matriks Tujuan { T } = { } T [ K ] = x

14 Elemen K = EI EI EI EI EI EI Matriks Tujuan { T } = { } T [ K ] = x EI EI

15 Matriks Kekakuan Global Struktur [ Ks ] = [ K ] + [ K ] [ Ks ] x = + EI EI = 8 EI EI EI Untuk mendapatkan deformasi ujungujung aktif struktur, maka digunakan hubungan : { Ps } = [ Ks ] { Us } { Us } = [ Ks ] { Ps } dimana : Us = deformasi ujungujung aktif Ks = kekakuan struktur Ps = gayagaya pada ujung aktif elemen akibat beban luar (aksi)

16 Untuk contoh di atas, maka : q q q Ps = q q Menghitung invers matrik kekakuan global [ Ks ] [ Ks ] = 8 EI EI EI [ Ks ] = EI 4 8 = 8 EI 4 8 Jadi : { Us } = [ Ks ] { Ps } Us = 8 EI 4 8 q q

17 Us = 8 EI 6 q q q q Us = q EI q EI Rotasi di joint Rotasi di joint Deformasi untuk masingmasing elemen U U Elemen : U = U = 4 U q 68 EI U U Elemen : U = U = 4 U q 68 EI 5 q 68 EI

18 Reaksi akibat beban luar : q P R = q P R = q q q q q q q

19 Gaya akhir elemen : Elemen : { P } = [ K ] + { P R } EI EI EI P = EI EI + EI q 68 EI 6 q 56 q 56 P = 6 = q 56 4 q 56 q 8 q 8 q 8 q 8

20 Elemen : { P } = [ K ] + { P R } EI EI EI P = EI EI + EI 5 q 68 EI 68 q EI q q q q q 56 4 q 56 P = = 4 q 56 6 q 8 q 8 q 8

21 Free Body Diagram : q 8 q 8 q 8 q 8 q 8 q 6 8 q 8 q Menggambar gayagaya dalam : Bidang D : 6 8 q 8 q + 8 q 8 q Bidang M : q q 8

22 Elemen Portal D Sebuah portal statis tak tentu seperti pada gambar B P C B C EI EI DOF = A A / / Matriks kekakuan struktur [ Ks ] x [ Ks ] = [ K ] + [ K ]

23 Elemen EI K = EI x Matriks Tujuan { T } = { } T [ K ] = x Elemen EI K = EI x Matriks Tujuan { T } = { } T [ K ] = x EI EI

24 Matriks Kekakuan Global Struktur [ Ks ] = [ K ] + [ K ] [ Ks ] x = + EI EI = 8 EI EI EI Untuk mendapatkan deformasi ujungujung aktif struktur, maka digunakan hubungan : { Ps } = [ Ks ] { Us } { Us } = [ Ks ] { Ps } dimana : Us = deformasi ujungujung aktif Ks = kekakuan struktur Ps = gayagaya pada ujung aktif elemen akibat beban luar (aksi)

25 Untuk contoh di atas, maka : P 8 P P 8 Ps = 8 8 P P Menghitung invers matrik kekakuan global [ Ks ] [ Ks ] = 8 EI EI EI [ Ks ] = EI 4 8 = 8 EI 4 8

26 Jadi : { Us } = [ Ks ] { Ps } Deformasi untuk masingmasing elemen Us = 8 EI P P U Elemen : U = = U P EI Us = 8 EI 6 q q q q U Elemen : U = = U 5 P EI P EI Us = 5 P EI P EI Rotasi di joint B Rotasi di joint C

27 Reaksi akibat beban luar : P 8 P 8 P P R = P R = 8 8 P P Gaya akhir elemen : Elemen : { P } = [ K ] + { P R } Elemen : { P } = [ K ] + { P R } EI P = + EI P EI EI P EI P = + EI 5 P EI 8 8 P P P = P P Hasil perhitungan hanya momen saja 6 q 56 P = = q 8 Hasil perhitungan hanya momen saja

28 Free Body Diagram : 6 56 P 7 8 P P P P P Dihitung lagi P 8 P 9 56 P 56 P 9 56 P Dihitung lagi Bidang D : 7 P 8 + P P 8 Bidang M : 7 8 P 6 56 P 56 + P Bidang N : 9 P 56 9 P P 7 P 8

29 Transformasi Sumbu U, P u, p u, p u, p U, P U, P θ u u u = Koordinat okal dan Global C S S C U U U C = cos θ S = sin θ

30 Atau dapat ditulis : Dimana : u = λ U λ = C S S C C = cos θ S = sin θ Untuk transformasi sumbu sebuah titik dengan 6 dof dapat ditulis : u u u u 4 u 5 u 6 = λ λ U U U U 4 U 5 U 6 [ u ] = [ R ] [ U ] R = matriks rotasi

31 Transformasi sumbu juga berlaku untuk gaya : p = λ P P = λ p λ = λ T P = λ T p P P P P 4 P 5 P 6 = λ Τ λ Τ p p p p 4 p 5 p 6 [ P ] = [ R ] T [ p ] R = matriks rotasi p = k u ; u = R U P = R T p P = K U = R T k u K = R T k R = R T k R U K

32 Matriks kekakuan elemen untuk 6 dof : EA EA k = 6 x 6 EI EI EA EI EA EI EI EI k = α β β β β Dimana : α = EI β = A I [ K ] = [ R ] T [ k ] [ R ]

33 K = C S S C C S S C α β β β β 6 6 C S S C C S S C g g g 4 g g g 4 g g 5 g g g 5 K = g 6 g 4 g 5 g 7 g g g 4 g g 5 g 6 Dimana : g = α ( β C + S ) g 5 = α 6 C g = α C S ( β ) g 6 = α 4 g = α ( β S + C ) g 7 = α g 4 = α 6 S

34 Sebuah portal seperti gambar, dengan menggunakan transformasi sumbu hitunglah gayagaya dalam yang bekerja E =. ksi A = 5 in I = 5 in 4 = ft = ft q =,68 k/ft = ft M = 4 kft = 68 kin Sumbu Global Sumbu okal DOF [ Ks ] x DOF [ k ] x

35 Matriks transformasi batang : Batang : θ = 7 o cos 7 o = sin 7 o = θ = 7 o x λ = C S S C = x Batang : θ = o cos o = sin o = θ = o x x λ = C S S C =

36 C S S C R = = C S S C C S S C R = = C S S C

37 Matriks kekakuan system struktur Elemen : EI..5 α = = =,87 (. ) β = A I 5.(.) = =.44 5 C = ; S = { T } = { } T g g g 4 g g g 4 K = g g 5 g g g 5 g 6 g 4 g 5 g 7 g g g 4 g g 5 K = g g 4 g 4 g 6 g 4 g 6 g = α ( β C + S ) =,87 [ + () ] =,44 g 4 = α 6 S =, () = 66,4 g 6 = α 4 =, = 5. Sehingga :,44 66,4 K = 66,4 5.

38 Elemen : EI..5 α = = =,87 (. ) β = A I C = ; S = 5. (.) = =.44 5 g = α ( β C + S ) =,87 [ () ] =.5,8 g 4 = α 6 S =, () = g 6 = α 4 =, = 5. g 7 = α =,87.. = 5.56 Sehingga : { T } = { } T K =.5, g g g 4 g g g g g 5 g g g 5.6,4 66,4 K = g 4 g 6 g 4 g 5 g 7 K S = 66, g g g g g 5 g 4 g 7 g 6 K = g g 4 g 4 g 4 g 6 g 7 g 4 g 7 g 6

39 Matriks beban : 8,4 8,4 q =,4 k/in 68 kin 68 kin 68 kin P S = 68 { Ps } = [ Ks ] { Us } { Us } = [ Ks ] { Ps }.6,4 66,4 U S = 66, U S =,95,9,96 Defleksi horizontal di Rotasi di Rotasi di

40 Displasement masingmasing batang (koordinat lokal) u u u u = = u 4,95 = u 5,95 u 6,9,9 u,95,95 u u u = = u 4,9 =,9 u 5 u 6,96,96

41 Gaya akhir batang : Elemen : Elemen : { P } = [ k ] { u } + { },9 k 47,5 kin P = =,9 k,959 kft { P } = [ k ] { u } + { F aksi },9 k 7,8 k 95,84 kin P = =,9 k,9 k 7,8 k 7,99 kft,9 k,9 k,9 k 9 k 9 k 95,6 kin 7,968 kft 68 kin 4 kft

42 Free body diagram :,9,9 k, ,968 kft,9 k,9 k 7,99 kft q =,68 k/ft 4 kft,9 k,9 7,8 +,959 7,8 k 9 k +,9, ,99 4

43 KONSTRUKSI RANGKA BATANG Pada Konstruksi Rangka Batang (KRB), perhitungan matriks kekakuan elemen [ K ] berdasarkan kasus rangka batang Dimensi. Gaya yang bekerja hanya tarik dan tekan aksial saja, sedang gaya momen dan lintang tidak terjadi. Perhatikan gambar dengan elemen struktur batang dengan luas A dan Modulus Elastisitas E konstan. Perhitungan kekakuan elemen hanya mengandung elemen A, E dan empat titik koordinat, yaitu : xi, xj, yi, dan yj.

44 y,v c = cos β j i β j x,u cu i i u i q i p i β + dβ q j p j Elemen Rangka Batang, dengan sudut β pada bidang xy Elemen Rangka Batang setelah perpindahan titik u i >, titik lain tetap

45 Pertama, harus menghitung : = ( ) ( ) x x + C = cos β = S = sin β = j i y x j j y x y j y Perpendekan aksial cu i menghasilkan gaya tekan aksial F = AE cu i Dimana : x dan y merupakan komponen dari ; p i = p j = Fc q i = q j = Fs i i i Komponen ini menghasilkan kesetimbangan statis, sehingga diperoleh : C p i AE CS C u i = q i p j CS q j

46 Hasil yang sama juga akan diperoleh dengan cara memberikan perpindahan pada v i, u j, dan v j, dimana gaya bekerja sendirisendiri. Dan jika 4 dof dengan nilai tidak nol bekerja bersamasama, dan dengan superposisi masingmasing elemen matriks kekakuan, dapat dihitung sebagai berikut : C CS C CS K = AE CS S CS S C CS C CS CS S CS S

47 Hubungan matriks kekakuan dengan gaya dapat ditulis sebagai berikut : [ K ] { D } = { F } C CS C CS u i p i AE CS S CS S C CS C CS v i u j = q i p j CS S CS S v j q j Untuk kasus khusus :. Jika nilai β =, sebagai batang horizontal, matriks kekakuan elemen [ K ] 4 x 4 Hanya berisi 4 komponen yang tidak bernilai nol, yaitu : k = k = k = k = AE K = AE

48 . Jika nilai β = 9, sebagai batang vertikal, matriks kekakuan elemen [ K ] 4 x 4 Hanya berisi 4 komponen yang tidak bernilai nol, yaitu : k = k 44 = k 4 = k 4 = AE K = AE

49 Sebuah Konstruksi Rangka Batang dengan luas A dan Modulus Elastisitas E yang sama, seperti pada Gambar v 6 7 u Hitunglah matriks kekakuaan masingmasing elemen

50 Perumusan untuk mencari nilai matriks kekakuan elemen dengan sudut β : C CS C CS K = AE CS S CS S C CS C CS CS S CS S Batang, dan merupakan batang horizontal, sehingga β = o Maka : [ K ] = [ K ] = [ K ] K = AE

51 Batang 4 dan 6 merupakan batang diagonal dengan sudut β = 6 o Dimana : C = cos 6 o =,5 S = sin 6 o =,866 Maka : [ K 4 ] = [ K 6 ],5,4,5,4 K 4 = AE,4,75,4,75,5,4,5,4,4,75,4,75 Batang 5 dan 7 merupakan batang diagonal dengan sudut β = o Dimana : C = cos o =,5 S = sin o =,866 Maka : [ K 5 ] = [ K 7 ],5,4,5,4 K 5 = AE,4,75,4,75,5,4,5,4,4,75,4,75

Metode Kekakuan Langsung (Direct Stiffness Method)

Metode Kekakuan Langsung (Direct Stiffness Method) Metode Kekakuan angsung (Direct Stiffness Method) matriks kekakuan U, P U, P { P } = [ K ] { U } U, P U 4, P 4 gaya perpindahan P K K K K 4 U P K K K K 4 U P = K K K K 4 U P 4 K 4 K 4 K 4 K 44 U 4 P =

Lebih terperinci

TRANSFORMASI SUMBU KOORDINAT

TRANSFORMASI SUMBU KOORDINAT TRANSFORMASI SUMBU KOORDINAT Tujuan Pembelajaran Umum Mahasiswa mampu menyelesaikan analisa struktur dengan cara Analisa Struktur Metode Matriks (ASMM) 3.5 Pendahuluan Transformasi Sumbu Koordinat Tujuan

Lebih terperinci

ANALISIS STRUKTUR METODE MATRIX. Pertemuan ke-3 SISTEM RANGKA BATANG (PLANE TRUSS)

ANALISIS STRUKTUR METODE MATRIX. Pertemuan ke-3 SISTEM RANGKA BATANG (PLANE TRUSS) ANALISIS STRUKTUR METODE MATRIX Pertemuan ke-3 SISTEM RANGKA BATANG (PLANE TRUSS) Sistem koordinat global lokal elemen lokal global Struktur merupakan gabungan dari banyak elemen yang bekerja sebagai satu

Lebih terperinci

2.1. Metode Matrix BAB 2 KONSEP DASAR METODE MATRIX KEKAKUAN Seperti telah diketahui, analisis struktur mencakup penentuan tanggap (respons) sistem struktur terhadap gaya maupun pengaruh luar yang bekerja

Lebih terperinci

BAB II METODE KEKAKUAN

BAB II METODE KEKAKUAN BAB II METODE KEKAKUAN.. Pendahuluan Dalam pertemuan ini anda akan mempelajari pengertian metode kekakuan, rumus umum dan derajat ketidak tentuan kinematis atau Degree Of Freedom (DOF). Dengan mengetahui

Lebih terperinci

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu

Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu Pertemuan I,II I. Struktur Statis Tertentu dan Struktur Statis Tak Tentu I.1 Golongan Struktur Sebagian besar struktur dapat dimasukkan ke dalam salah satu dari tiga golongan berikut: balok, kerangka kaku,

Lebih terperinci

METODE SLOPE DEFLECTION

METODE SLOPE DEFLECTION TKS 4008 Analisis Struktur I TM. XVIII : METODE SLOPE DEFLECTION Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada 2 metode sebelumnya, yaitu :

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) Penyajian Materi Kode MK/ sks : 010-052214 / 2 sks Pertemuan ke : 1 (100 menit) B. Tujuan Instruksional Khusus () : 1. Mahasiswa mampu menggunakan matriks sebagai alat bantu untuk perhitungan statika struktur.

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : CIV 09 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan 9, 10, 11 Kemampuan Akhir yang Diharapkan Mahasiswa dapat melakukan analisis struktur

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection ata Kuliah : Analisis Struktur Kode : TSP 0 SKS : SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 11 TIU : ahasiswa dapat menghitung reaksi perletakan pada struktur statis

Lebih terperinci

MEKANIKA REKAYASA III

MEKANIKA REKAYASA III MEKANIKA REKAYASA III Dosen : Vera A. Noorhidana, S.T., M.T. Pengenalan analisa struktur statis tak tertentu. Metode Clapeyron Metode Cross Metode Slope Deflection Rangka Batang statis tak tertentu PENGENALAN

Lebih terperinci

Dosen Pembimbing: 1. Tavio, ST, MS, Ph.D 2. Bambang Piscesa, ST, MT

Dosen Pembimbing: 1. Tavio, ST, MS, Ph.D 2. Bambang Piscesa, ST, MT PENGEMBANGAN PERANGKAT UNAK MENGGUNAKAN METODE EEMEN HINGGA UNTUK PERANCANGAN TORSI DAN GESER TERKOMBINASI PADA BAOK BETON BERTUANG Oleh: DIAR FAJAR GOSANA 317 1 17 Dosen Pembimbing: 1. Tavio, ST, MS,

Lebih terperinci

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss

Golongan struktur Balok ( beam Kerangka kaku ( rigid frame Rangka batang ( truss Golongan struktur 1. Balok (beam) adalah suatu batang struktur yang hanya menerima beban tegak saja, dapat dianalisa secara lengkap apabila diagram gaya geser dan diagram momennya telah diperoleh. 2. Kerangka

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Dasar Dasar Teori 2.1.1. Hubungan tegangan dan regangan Hubungan teganan dan regangan pertama kali dikemukakan oleh Robert Hooke pada tahun 1678. Dalam hokum hooke dijelaskan

Lebih terperinci

KOMPUTERISASI ANALISIS STRUKTUR RANGKA 3D DENGAN METODE KEKAKUAN LANGSUNG ALGORITMA HOLZER. Yohanes I P NRP :

KOMPUTERISASI ANALISIS STRUKTUR RANGKA 3D DENGAN METODE KEKAKUAN LANGSUNG ALGORITMA HOLZER. Yohanes I P NRP : KOMPUTERISASI ANALISIS STRUKTUR RANGKA 3D DENGAN METODE KEKAKUAN LANGSUNG ALGORITMA HOLZER Yohanes I P NRP 0021006 Pembimbing Ir. Daud R. Wiyono, M.sc. Pembimbing Pendamping Anang Kristianto, ST., MT.

Lebih terperinci

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi

BAB I PENDAHULUAN. tersebut. Modifikasi itu dapat dilakukan dengan mengubah suatu profil baja standard menjadi BAB I PENDAHULUAN I.1. Umum Struktur suatu portal baja dengan bentang yang besar sangatlah tidak ekonomis bila menggunakan profil baja standard. Untuk itu diperlukannya suatu modifikasi pada profil baja

Lebih terperinci

STRUKTUR STATIS TAK TENTU

STRUKTUR STATIS TAK TENTU . Struktur Statis Tertentu dan Struktur Statis Tak Tentu Struktur statis tertentu : Suatu struktur yang mempunyai kondisi di mana jumlah reaksi perletakannya sama dengan jumlah syarat kesetimbangan statika.

Lebih terperinci

BAB I SLOPE DEFLECTION

BAB I SLOPE DEFLECTION Ver 3.1, thn 007 Buku Ajar KTS-35 Analisis Struktur II BAB I SLOPE DEFLECTION 1.1. Derajat Ketidaktentuan Statis dan Derajat Ketidaktentuan Kinematis Derajat ketidaktentuan statis adalah banyaknya kelebihan

Lebih terperinci

PROGRAM ANALISIS GRID PELAT LANTAI MENGGUNAKAN ELEMEN HINGGA DENGAN MATLAB VERSUS SAP2000

PROGRAM ANALISIS GRID PELAT LANTAI MENGGUNAKAN ELEMEN HINGGA DENGAN MATLAB VERSUS SAP2000 PROGRAM ANALISIS GRID PELAT LANTAI MENGGUNAKAN ELEMEN HINGGA DENGAN MATLAB VERSUS SAP2000 Diajukan untuk melengkapi tugas-tugas dan melengkapi syarat untuk menempuh Ujian Sarjana Teknik Sipil (Studi Literatur)

Lebih terperinci

5- Persamaan Tiga Momen

5- Persamaan Tiga Momen 5 Persamaan Tiga Momen Pada metoda onsistent eformation yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu.

Lebih terperinci

PENGEMBANGAN WEBSITE UNTUK PEMBELAJARAN ANALISIS STRUKTUR RANGKA DENGAN METODE KEKAKUAN LANGSUNG

PENGEMBANGAN WEBSITE UNTUK PEMBELAJARAN ANALISIS STRUKTUR RANGKA DENGAN METODE KEKAKUAN LANGSUNG PENGEMBANGAN WEBSITE UNTUK PEMBELAJARAN ANALISIS STRUKTUR RANGKA DENGAN METODE KEKAKUAN LANGSUNG Stefani Virgin 1, Ferdiana Soekresno 2, Wong Foek Tjong 3, dan Liliana 4 ABSTRAK : Seiring dengan perkembangan

Lebih terperinci

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil

BAB II METODE ELEMEN HINGGA PADA STRUKTUR. 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil BAB II METODE ELEMEN HINGGA PADA STRUKTUR 2.1 Jenis - Jenis Struktur pada Bangunan Teknik Sipil Struktur 1D (satu dimensi) adalah suatu idealisasi dari bentuk struktur yang sebenarnya dimana struktur dianggap

Lebih terperinci

DEFORMASI BALOK SEDERHANA

DEFORMASI BALOK SEDERHANA TKS 4008 Analisis Struktur I TM. IX : DEFORMASI BALOK SEDERHANA Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Pada prinsipnya tegangan pada balok

Lebih terperinci

Struktur Rangka Batang Statis Tertentu

Struktur Rangka Batang Statis Tertentu Mata Kuliah : Statika Kode : TSP 106 SKS : 3 SKS Struktur Rangka Batang Statis Tertentu Pertemuan 10, 11, 12 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tertentu Mahasiswa dapat

Lebih terperinci

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur

BAB I PENDAHULUAN. analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur BAB I PENDAHUUAN 1.1. atar Belakang Masalah Dalam perencanaan struktur dapat dilakukan dengan dua cara yaitu analisa elastis dan plastis. Pada analisa elastis, diasumsikan bahwa ketika struktur dibebani

Lebih terperinci

Struktur Statis Tertentu : Rangka Batang

Struktur Statis Tertentu : Rangka Batang Mata Kuliah : Statika & Mekanika Bahan Kode : CIV 102 SKS : 4 SKS Struktur Statis Tertentu : Rangka Batang Pertemuan 9 Kemampuan akhir yang diharapkan Mahasiswa dapat melakukan analisis reaksi perletakan

Lebih terperinci

BAB I STRUKTUR STATIS TAK TENTU

BAB I STRUKTUR STATIS TAK TENTU I STRUKTUR STTIS TK TENTU. Kesetimbangan Statis (Static Equilibrium) Salah satu tujuan dari analisis struktur adalah mengetahui berbagai macam reaksi yang timbul pada tumpuan dan berbagai gaya dalam (internal

Lebih terperinci

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH Disusun sebagai salah satu syarat untuk lulus kuliah MS 4011 Metode Elemen Hingga Oleh Wisnu Ikbar Wiranto 13111074 Ridho

Lebih terperinci

III. METODE KEKAKUAN

III. METODE KEKAKUAN III. METODE KEKAKUAN 3.1. Introduksi Metode kekakuan ialah suatu cara untuk analisa struktur, dimana dalam proses perumusan dari analisa nya, diambil lendutan diambil lendutan dititik-titik diskrit sebagai

Lebih terperinci

STIFFNESS AND FLEXIBILITY ANALISA STRUKTUR DENGAN METODE MATRIKS

STIFFNESS AND FLEXIBILITY ANALISA STRUKTUR DENGAN METODE MATRIKS STIFFNESS AND FEXIBIITY ANAISA STRUKTUR DENGAN METODE MATRIKS STIFFNESS AND FEXIBIITY ANAISA STRUKTUR DENGAN METODE MATRIKS PRINSIP KEKAKUAN & FEKSIBIITAS KEKAKUAN atau STIFFNESS adalah aksi yang diperlukan

Lebih terperinci

BAB III. Ditinjau dari 'hmur teori, konstruksi dan pemakaiannya balok grid sudah

BAB III. Ditinjau dari 'hmur teori, konstruksi dan pemakaiannya balok grid sudah BAB STRUKUR BALOK GRD 3.1 Umum Ditinjau dari 'hmur teori, konstruksi dan pemakaiannya balok grid sudah banyak digunakan pada gedung-gedung di ndonesia. Jadi struktur dengan menggunakan balok grid ini bukanlah

Lebih terperinci

METODE DEFORMASI KONSISTEN

METODE DEFORMASI KONSISTEN TKS 4008 Analisis Struktur I TM. XI : METODE DEFORMASI KONSISTEN Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Pendahuluan Metode Consistent Deformation adalah

Lebih terperinci

RELEVANSI METODE RITTER DAN METODE ELEMEN HINGGA DENGAN PROGRAM MATLAB PADA RANGKA BATANG

RELEVANSI METODE RITTER DAN METODE ELEMEN HINGGA DENGAN PROGRAM MATLAB PADA RANGKA BATANG RELEVANSI METODE RITTER DAN METODE ELEMEN HINGGA DENGAN PROGRAM MATLAB PADA RANGKA BATANG TUGAS AKHIR Diajukan untuk melengkapi syarat penyelesaian pendidikan sarjana teknik sipil Oleh: DAVID PARULIAN

Lebih terperinci

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal BAB I PENDAHULUAN 1.1 Umum Ilmu pengetahuan yang berkembang pesat dan pembangunan sarana prasarana fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal tersebut menjadi mungkin

Lebih terperinci

METODA CONSISTENT DEFORMATION

METODA CONSISTENT DEFORMATION Modul ke: 01 Analisa Struktur I METODA CONSISTENT Fakultas FTPD Acep Hidayat,ST,MT Program Studi Teknik Sipil Struktur Statis Tidak Tertentu Analisis Struktur Analisis struktur adalah proses untuk menentukan

Lebih terperinci

ANALISA STRUKTUR PORTAL RUANG TIGA LANTAI DENGAN METODE KEKAKUAN DIBANDINGKAN DENGAN PROGRAM ANSYS HERY SANUKRI MUNTE

ANALISA STRUKTUR PORTAL RUANG TIGA LANTAI DENGAN METODE KEKAKUAN DIBANDINGKAN DENGAN PROGRAM ANSYS HERY SANUKRI MUNTE ANALISA STRUKTUR PORTAL RUANG TIGA LANTAI DENGAN METODE KEKAKUAN DIBANDINGKAN DENGAN PROGRAM ANSYS TUGAS AKHIR HERY SANUKRI MUNTE 06 0404 008 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK

Lebih terperinci

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk

Lebih terperinci

Pertemuan I, II I. Gaya dan Konstruksi

Pertemuan I, II I. Gaya dan Konstruksi Pertemuan I, II I. Gaya dan Konstruksi I.1 Pendahuluan Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik,

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Force Method

Analisis Struktur Statis Tak Tentu dengan Force Method Mata Kuliah : Analisis Struktur Kode : TSP 202 SKS : 3 SKS Analisis Struktur Statis Tak Tentu dengan Force Method Pertemuan - 7 TIU : Mahasiswa dapat menghitung reaksi perletakan pada struktur statis tak

Lebih terperinci

Analisis Struktur II

Analisis Struktur II nalisis Struktur II Dr.Eng. chfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya onsep nalisis Struktur equilibrium contitutive law compatibility Lentur Geser ksial Torsi Gaya

Lebih terperinci

Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method)

Pertemuan VI,VII III. Metode Defleksi Kemiringan (The Slope Deflection Method) ahan jar nalisa Struktur II ulyati, ST., T Pertemuan VI,VII III. etode Defleksi Kemiringan (The Slope Deflection ethod) III.1 Uraian Umum etode Defleksi Kemiringan etode defleksi kemiringan (the slope

Lebih terperinci

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN

PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan PENDAHULUAN PENGARUH DAN FUNGSI BATANG NOL TERHADAP DEFLEKSI TITIK BUHUL STRUKTUR RANGKA Iwan-Indra Gunawan INTISARI Konstruksi rangka batang adalah konstruksi yang hanya menerima gaya tekan dan gaya tarik. Bentuk

Lebih terperinci

BAB II METODE DISTRIBUSI MOMEN

BAB II METODE DISTRIBUSI MOMEN II MTO ISTRIUSI MOMN.1 Pendahuluan Metode distribusi momen diperkenalkan pertama kali oleh Prof. Hardy ross pada yahun 1930-an yang mana merupakan sumbangan penting yang pernah diberikan dalam analisis

Lebih terperinci

APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE

APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA II.1. Konsep Elemen Hingga BAB II TINJAUAN PUSTAKA Struktur dalam istilah teknik sipil adalah rangkaian elemen-elemen yang sejenis maupun yang tidak sejenis. Elemen adalah susunan materi yang mempunyai

Lebih terperinci

PRINSIP DASAR MEKANIKA STRUKTUR

PRINSIP DASAR MEKANIKA STRUKTUR PRINSIP DASAR MEKANIKA STRUKTUR Oleh : Prof. Ir. Sofia W. Alisjahbana, M.Sc., Ph.D. Edisi Pertama Cetakan Pertama, 2013 Hak Cipta 2013 pada penulis, Hak Cipta dilindungi undang-undang. Dilarang memperbanyak

Lebih terperinci

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2] BAB II TEORI DASAR 2.1. Metode Elemen Hingga Analisa kekuatan sebuah struktur telah menjadi bagian penting dalam alur kerja pengembangan desain dan produk. Pada awalnya analisa kekuatan dilakukan dengan

Lebih terperinci

3- Deformasi Struktur

3- Deformasi Struktur 3- Deformasi Struktur Deformasi adalah salah satu kontrol kestabilan suatu elemen balok terhadap kekuatannya. iasanya deformasi dinyatakan sebagai perubahan bentuk elemen struktur dalam bentuk lengkungan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Analisis Struktur. 1.2 Derajat Ketidaktentuan Statis (Degree of Statically Indeterminancy)

BAB I PENDAHULUAN. 1.1 Analisis Struktur. 1.2 Derajat Ketidaktentuan Statis (Degree of Statically Indeterminancy) BAB I PENDAHULUAN 1.1 Analisis Struktur Analisis struktur adalah proses untuk menentukan respon suatu struktur akibat pembebanan agar memenuhi persyaratan keamanan (safety), biaya (economy), dan terkadang

Lebih terperinci

Gambar 2.1 Rangka dengan Dinding Pengisi

Gambar 2.1 Rangka dengan Dinding Pengisi BAB II TINJAUAN PUSTAKA 2.1. Dinding Pengisi 2.1.1 Definisi Dinding pengisi yang umumnya difungsikan sebagai penyekat, dinding eksterior, dan dinding yang terdapat pada sekeliling tangga dan elevator secara

Lebih terperinci

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun oleh: SURYADI

Lebih terperinci

SATUAN ACARA PERKULIAHAN (SAP)

SATUAN ACARA PERKULIAHAN (SAP) SATUAN ACARA PERKULIAHAN (SAP) Mata Kuliah : Analisis Struktur Dengan Matriks Kode Mata Kuliah : MKK 1303 SKS : 3(3-0) Waktu Pertemuan : 150 Menit A. Tujuan Pembelajaran 1. Tujuan pembelajaran umum mata

Lebih terperinci

I.1 Latar Belakang I-1

I.1 Latar Belakang I-1 Bab I Pendahuluan I.1 Latar Belakang Berbagai jenis struktur, seperti terowongan, struktur atap stadion, struktur lepas pantai, maupun jembatan banyak dibentuk dengan menggunakan struktur shell silindris.

Lebih terperinci

TKS Analisis Struktur II. Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

TKS Analisis Struktur II. Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 413 nalisis Struktur II Dr. Z Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Konsep nalisis Struktur equilibrium contitutive law compatibility entur Geser ksial Torsi Gaya uar STRUKTUR

Lebih terperinci

BAB II STUDI PUSTAKA. bangunan runtuh akibat sebuah muatan, maka bangunan tersebut akan aman dibebani

BAB II STUDI PUSTAKA. bangunan runtuh akibat sebuah muatan, maka bangunan tersebut akan aman dibebani BAB II II.1 Umum STUDI PUSTAKA Sebuah anggapan mengenai keamanan sebuah bangunan adalah apabila bangunan runtuh akibat sebuah muatan, maka bangunan tersebut akan aman dibebani sampai muatan tertentu. Pemahaman

Lebih terperinci

ESTOMIHI SITOMPUL

ESTOMIHI SITOMPUL ANALISA STRUKTUR PADA PLANE FRAME DENGAN MENGGUNAKAN METODE CROSS DAN FINITE ELEMENT METHOD Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil

Lebih terperinci

Analisis Perhitungan Gaya Internal Rangka Ruang dengan Menggunakan Metode Elemen Hingga. Oktaviany Widyawaty 1) Hasti Riakara Husni 2) Suyadi 3)

Analisis Perhitungan Gaya Internal Rangka Ruang dengan Menggunakan Metode Elemen Hingga. Oktaviany Widyawaty 1) Hasti Riakara Husni 2) Suyadi 3) JRSDD, Edisi Maret 2016, Vol. 4, No. 1, Hal:51 58 (ISSN:2303-0011) Analisis Perhitungan Gaya Internal Rangka Ruang dengan Menggunakan Metode Elemen Hingga Oktaviany Widyawaty 1) Hasti Riakara Husni 2)

Lebih terperinci

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU

MODUL 3 : METODA PERSAMAAN TIGA MOMEN Judul :METODA PERSAMAAN TIGA MOMEN UNTUK MENYELESAIKAN STRUKTUR STATIS TIDAK TERTENTU MOU 3 1 MOU 3 : METO PERSMN TIG MOMEN 3.1. Judul :METO PERSMN TIG MOMEN UNTUK MENYEESIKN STRUKTUR STTIS TIK TERTENTU Tujuan Pembelajaran Umum Setelah membaca bagian ini mahasiswa akan memahami bagaimanakah

Lebih terperinci

BAB IV PERMODELAN STRUKTUR

BAB IV PERMODELAN STRUKTUR BAB IV PERMODELAN STRUKTUR IV.1 Deskripsi Model Struktur Kasus yang diangkat pada tugas akhir ini adalah mengenai retrofitting struktur bangunan beton bertulang dibawah pengaruh beban gempa kuat. Sebagaimana

Lebih terperinci

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen

Outline TM. XXII : METODE CROSS. TKS 4008 Analisis Struktur I 11/24/2014. Metode Distribusi Momen TKS 4008 Analisis Struktur I TM. XXII : METODE CROSS Dr.Eng. Achfas Zacoeb, ST., MT. Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Outline Metode Distribusi Momen Momen Primer (M ij ) Faktor

Lebih terperinci

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection

Analisis Struktur Statis Tak Tentu dengan Metode Slope-Deflection ata Kuliah : Analisis Struktur Kode : V - 9 SKS : 4 SKS Analisis Struktur Statis Tak Tentu dengan etode Slope-Deflection Pertemuan 1, 1 Kemampuan Akhir ang Diharapkan ahasiswa dapat melakukan analisis

Lebih terperinci

Pertemuan 13 ANALISIS P- DELTA

Pertemuan 13 ANALISIS P- DELTA Halaman 1 dari Pertemuan 13 Pertemuan 13 ANALISIS P- DELTA 13.1 Pengertian Efek P-Delta (P-Δ) P X B P Y 1 2x A H A = P x V A = P y (a) (b) Gambar 13.1 Model Struktur yang mengalami Efek P-Delta M A2 =

Lebih terperinci

ANALISIS STRUKTUR METODE MATRIKS. Achmad Basuki, ST., MT. 1

ANALISIS STRUKTUR METODE MATRIKS. Achmad Basuki, ST., MT. 1 ANAISIS STRUKTUR METODE MATRIKS Achmad Basuki, ST., MT. 1 Analisis Struktur Metode Matriks : Analisis mekanika struktur guna menghitung gaya dalam struktur (momen, geser, normal), perpidahan/deformasi,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Kerusakan Struktur Kerusakan struktur merupakan pengurangan kekuatan struktur dari kondisi mula-mula yang menyebabkan terjadinya tegangan yang tidak diinginkan, displacement,

Lebih terperinci

PENGARUH TEGANGAN TORSI TERHADAP PERENCANAAN TULANGAN MEMANJANG DAN TULANGAN GESER PADA BALOK GRID BETON BERTULANG TAMPANG PERSEGI

PENGARUH TEGANGAN TORSI TERHADAP PERENCANAAN TULANGAN MEMANJANG DAN TULANGAN GESER PADA BALOK GRID BETON BERTULANG TAMPANG PERSEGI PENGARUH TEGANGAN TORSI TERHADAP PERENCANAAN TUANGAN MEMANJANG DAN TUANGAN GESER PADA BAOK GRID BETON BERTUANG TAMPANG PERSEGI Randy dan Johannes Tarigan Departemen Teknik Sipil, Universitas Sumatera Utara,

Lebih terperinci

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur

BAB I PENDAHULUAN. balok, dan batang yang mengalami gabungan lenturan dan beban aksial; (b) struktur BAB I PENDAHULUAN I.1 Latar Belakang Masalah Struktur baja dapat dibagi atas tiga kategori umum: (a) struktur rangka (framed structure), yang elemennya bisa terdiri dari batang tarik dan tekan, kolom,

Lebih terperinci

II. METODE MATRIKS UNTUK ANALISA STRUKTUR

II. METODE MATRIKS UNTUK ANALISA STRUKTUR PENGERTIAN UMUM. II. METODE MATRIKS UNTUK ANALISA STRUKTUR Metode Matriks adalah suatu pemikiran baru pada analisa struktur, yang dikembangkan bersamaan dengan makin populernya penggunaan komputer otomatis

Lebih terperinci

STUDI PERBANDINGAN DISTRIBUSI GAYA GESER PADA STRUKTUR DINDING GESER AKIBAT GAYA GEMPA DENGAN BERBAGAI METODE ANALISIS ABSTRAK

STUDI PERBANDINGAN DISTRIBUSI GAYA GESER PADA STRUKTUR DINDING GESER AKIBAT GAYA GEMPA DENGAN BERBAGAI METODE ANALISIS ABSTRAK STUDI PERBANDINGAN DISTRIBUSI GAYA GESER PADA STRUKTUR DINDING GESER AKIBAT GAYA GEMPA DENGAN BERBAGAI METODE ANALISIS Franklin Kesatria Zai NIM: 15007133 (Fakultas Teknik Sipil dan Lingkungan, Program

Lebih terperinci

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam.

Gaya. Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Gaya Gaya adalah suatu sebab yang mengubah sesuatu benda dari keadaan diam menjadi bergerak atau dari keadaan bergerak menjadi diam. Dalam mekanika teknik, gaya dapat diartikan sebagai muatan yang bekerja

Lebih terperinci

ekfvalen. Tegangan/gaya dicari dari displacement. Displacement merupakan bilangan

ekfvalen. Tegangan/gaya dicari dari displacement. Displacement merupakan bilangan BAB III ANALISIS STRUKTUR DENGAN METODA MATRIKS 3.1. Analisis Struktur Metode yang digunakan dalam analisa struktur disini adalah metode matriks. Metode utama pada metode matriks adalah metode kekakuan

Lebih terperinci

Analisis Pertemuan Balok-Kolom Struktur Rangka Beton Bertulang Menggunakan Metode Strut And Tie. Nama: Budi Piyung Riyadi NRP :

Analisis Pertemuan Balok-Kolom Struktur Rangka Beton Bertulang Menggunakan Metode Strut And Tie. Nama: Budi Piyung Riyadi NRP : Analisis Pertemuan Balok-Kolom Struktur Rangka Beton Bertulang Menggunakan Metode Strut And Tie Nama: Budi Piyung Riyadi NRP : 0121104 Pembimbing : Winarni Hadipratomo, Ir. UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

Metode Defleksi Kemiringan (The Slope Deflection Method)

Metode Defleksi Kemiringan (The Slope Deflection Method) etode Defleksi Kemiringan (The Slope Deflection ethod) etode defleksi kemiringan dapat digunakan untuk menganalisa semua jenis balok dan kerangka kaku statis tak-tentu tentu. Semua sambungan dianggap kaku,

Lebih terperinci

BAB II PELENGKUNG TIGA SENDI

BAB II PELENGKUNG TIGA SENDI BAB II PELENGKUNG TIGA SENDI 2.1 UMUM Struktur balok yang ditumpu oleh dua tumpuan dapat menahan momen yang ditimbulkan oleh beban-beban yang bekerja pada struktur tersebut, ini berarti sebagian dari penempangnya

Lebih terperinci

Mekanika Rekayasa/Teknik I

Mekanika Rekayasa/Teknik I Mekanika Rekayasa/Teknik I Norma Puspita, ST. MT. Universitas Indo Global Mandiri Mekanika??? Mekanika adalah Ilmu yang mempelajari dan meramalkan kondisi benda diam atau bergerak akibat pengaruh gaya

Lebih terperinci

KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU DICKY ERISTA

KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU DICKY ERISTA KAJIAN EFEK PARAMETER BASE ISOLATOR TERHADAP RESPON BANGUNAN AKIBAT GAYA GEMPA DENGAN METODE ANALISIS RIWAYAT WAKTU TUGAS AKHIR DICKY ERISTA 06 0404 106 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS

Lebih terperinci

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto Getaran Mekanik Getaran Bebas Tak Teredam Muchammad Chusnan Aprianto Getaran Bebas Getaran bebas adalah gerak osilasi di sekitar titik kesetimbangan dimana gerak ini tidak dipengaruhi oleh gaya luar (gaya

Lebih terperinci

Rangka Batang (Truss Structures)

Rangka Batang (Truss Structures) Rangka Batang (Truss Structures) Jenis Truss Plane Truss ( 2D ) Space Truss ( 3D ) Definisi Truss Batang Atas Batang Diagonal Titik Buhul/ Joint Batang Bawah Batang Vertikal Truss : Susunan elemen linier

Lebih terperinci

GARIS GARIS BESAR PROGRAM PERKULIAHAN ( GBPP )

GARIS GARIS BESAR PROGRAM PERKULIAHAN ( GBPP ) GARIS GARIS BESAR PROGRAM PERKULIAHAN ( GBPP ) MATA KULIAH : MEKANIKA REKAYASA V KODE MATA KULIAH : TSI 452 BEBAN STUDI : 2 SKS SEMESTER : V (LIMA ) DESKRIPSI MATA KULIAH : Mata kuliah ini disampaikan

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID

KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID KONTRIBUSI BALOK ANAK TERHADAP KEKAKUAN STRUKTUR PADA BALOK DENGAN PEMODELAN GRID Tugas Akhir Diajukan untuk melengkapi tugas-tugas dan memenuhi Syarat untuk menempuh ujian sarjana Teknik Sipil Disusun

Lebih terperinci

TUGAS AKHIR ANALISIS PLASTIS PADA PORTAL DENGAN METODE ELEMEN HINGGA. Disusun oleh: FIRDHA AULIA ARIYANI AZHARI. Dosen Pembimbing:

TUGAS AKHIR ANALISIS PLASTIS PADA PORTAL DENGAN METODE ELEMEN HINGGA. Disusun oleh: FIRDHA AULIA ARIYANI AZHARI. Dosen Pembimbing: TUGAS AKHIR ANALISIS PLASTIS PADA PORTAL DENGAN METODE ELEMEN HINGGA Disusun oleh: FIRDHA AULIA ARIYANI AZHARI 09 0404 099 Dosen Pembimbing: Ir.BESMAN SURBAKTI, MT 19541012 198003 1 004 SUBJURUSAN STRUKTUR

Lebih terperinci

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15

Respect, Professionalism, & Entrepreneurship. Mata Kuliah : Mekanika Bahan Kode : TSP 205. Kolom. Pertemuan 14, 15 Mata Kuliah : Mekanika Bahan Kode : TS 05 SKS : 3 SKS Kolom ertemuan 14, 15 TIU : Mahasiswa dapat melakukan analisis suatu elemen kolom dengan berbagai kondisi tumpuan ujung TIK : memahami konsep tekuk

Lebih terperinci

ANALISIS DAKTILITAS BALOK BETON BERTULANG

ANALISIS DAKTILITAS BALOK BETON BERTULANG ANALISIS DAKTILITAS BALOK BETON BERTULANG Bobly Sadrach NRP : 9621081 NIRM : 41077011960360 Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS KRISTEN MARANATHA

Lebih terperinci

Kuliah ke-2. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax:

Kuliah ke-2. UNIVERSITAS INDO GLOBAL MANDIRI FAKULTAS TEKNIK Jalan Sudirman No. 629 Palembang Telp: , Fax: Kuliah ke-2.. Regangan Normal Suatu batang akan mengalami perubahan panjang jika dibebani secara aksial, yaitu menjadi panjang jika mengalami tarik dan menjadi pendek jika mengalami tekan. Berdasarkan

Lebih terperinci

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS)

A. IDEALISASI STRUKTUR RANGKA ATAP (TRUSS) A. IDEALISASI STRUKTUR RAGKA ATAP (TRUSS) Perencanaan kuda kuda dalam bangunan sederhana dengan panjang bentang 0 m. jarak antara kuda kuda adalah 3 m dan m, jarak mendatar antara kedua gording adalah

Lebih terperinci

Pertemuan 8 KUBAH TRUSS BAJA

Pertemuan 8 KUBAH TRUSS BAJA Halaman 1 dari Pertemuan 8 Pertemuan 8 KUBAH TRUSS BAJA Gambar di bawah ini adalah DENAH ATAP dan TAMPAK TRUSS B yang simetri dari struktur atap konstruksi baja berbentuk kubah yang akan digunakan dalam

Lebih terperinci

Mekanika Bahan TEGANGAN DAN REGANGAN

Mekanika Bahan TEGANGAN DAN REGANGAN Mekanika Bahan TEGANGAN DAN REGANGAN Sifat mekanika bahan Hubungan antara respons atau deformasi bahan terhadap beban yang bekerja Berkaitan dengan kekuatan, kekerasan, keuletan dan kekakuan Tegangan Intensitas

Lebih terperinci

Mekanika Rekayasa III

Mekanika Rekayasa III Mekanika Rekayasa III Metode Hardy Cross Pertama kali diperkenalkan oleh Hardy Cross (1993) dalam bukunya yang berjudul nalysis of Continuous Frames by Distributing Fixed End Moments. Sebagai penghargaan,

Lebih terperinci

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD

STATIKA I. Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT. Modul ke: Fakultas FTPD Modul ke: 02 Fakultas FTPD Program Studi Teknik Sipil STATIKA I Reaksi Perletakan Struktur Statis Tertentu : Balok Sederhana dan Balok Majemuk/Gerbe ACEP HIDAYAT,ST,MT Reaksi Perletakan Struktur Statis

Lebih terperinci

ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL RIDWAN H PAKPAHAN

ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL RIDWAN H PAKPAHAN ANALISIS PERENCANAAN DINDING GESER DENGAN METODE STRUT AND TIE MODEL TUGAS AKHIR RIDWAN H PAKPAHAN 05 0404 130 BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU 2009 1 ANALISIS PERENCANAAN

Lebih terperinci

BAB I PENDAHULUAN. dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini

BAB I PENDAHULUAN. dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini BAB I PENDAHULUAN I. Umum Saat ini perkembangan ilmu pengetahuan sudah sangat pesat, begitu juga dengan ilmu rekayasa struktur dalam bidang teknik sipil. Perkembangan ini didukung oleh kemajuan teknologi

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Umum Balok tinggi adalah elemen struktur yang dibebani sama seperti balok biasa dimana besarnya beban yang signifikan dipikul pada sebuah tumpuan dengan gaya tekan yang menggabungkan

Lebih terperinci

STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER KOMARA SETIAWAN NRP. 0421042 Pembimbing : Anang Kristanto, ST., MT. FAKULTAS TEKNIK JURUSAN

Lebih terperinci

BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL

BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL 2011 BAHAN AJAR MEKANIKA REKAYASA 3 PROGRAM D3 TEKNIK SIPIL BOEDI WIBOWO KATA PENGANTAR Dengan mengucap syukur kepada Allah SWT, karena dengan rachmat NYA kami bisa menyelesaikan BAHAN AJAR MEKANIKA REKAYASA

Lebih terperinci

Semoga Tidak Mengantuk!!!

Semoga Tidak Mengantuk!!! Assalamu alaykum Wr. Wb. Selamat agi...!!! Nama saya: AHMAD TUSI Semoga Tidak Mengantuk!!! I KNOW WHAT YOU RE THINKING, GUYS!!! Who cares?!! Bahan untuk konstruksi bangunan ini kekuatannya berapa ya?!

Lebih terperinci

APLIKASI SIMULASI MONTE CARLO PADA PERHITUNGAN MOMEN MAKSIMUM STRUKTUR PORTAL

APLIKASI SIMULASI MONTE CARLO PADA PERHITUNGAN MOMEN MAKSIMUM STRUKTUR PORTAL APLIKASI SIMULASI MONTE CARLO PADA PERHITUNGAN MOMEN MAKSIMUM STRUKTUR PORTAL REZA ASRUL SOLEH 0321012 Pembimbing: Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITASKRISTEN MARANATHA

Lebih terperinci

TUGAS MAHASISWA TENTANG

TUGAS MAHASISWA TENTANG TUGAS MAHASISWA TENTANG o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK KANTILEVER. o DIAGRAM BIDANG MOMEN, LINTANG, DAN NORMAL PADA BALOK SEDERHANA. Disusun Oleh : Nur Wahidiah 5423164691 D3 Teknik

Lebih terperinci

BAB IV PEMODELAN STRUKTUR

BAB IV PEMODELAN STRUKTUR BAB IV PEMODELAN STRUKTUR Dalam tugas akhir ini akan dilakukan analisa statik non-linier bagi dua sistem struktur yang menggunakan sistem penahan gaya lateral yang berbeda, yaitu shearwall dan tube, dengan

Lebih terperinci

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Konstruksi Baja merupakan suatu alternatif yang menguntungkan dalam pembangunan gedung dan struktur yang lainnya baik dalam skala kecil maupun besar. Hal ini

Lebih terperinci

PEMILIHAN LOKASI JEMBATAN

PEMILIHAN LOKASI JEMBATAN PEMILIHAN LOKASI JEMBATAN 1. DIPILIH LINTASAN YANG SEMPIT DAN STABIL. ALIRAN AIR YANG LURUS 3. TEBING TEPIAN YANG CUKUP TINGGI DAN STABIL 4. KONDISI TANAH DASAR YANG BAIK 5. SUMBU SUNGAI DAN SUMBU JEMBATAN

Lebih terperinci