Sistem PERSAMAAN dan PERTIDAKSAMAAN linier
|
|
|
- Ida Indradjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Materi W4c Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 C. Penerapan Persamaan Linier
2 C. Penerapan Sistem Persamaan Linier Banyak permasalahan dalam kehidupan sehari-hari yang dapat diselesaikan secara matematis melalui sistem persamaan linier Langkah-langkah penyelesaian : (1) Menetapkan objek-objek yang akan dijadikan variabel (2) Mencari hubungan antar variabel dalam bentuk sistem persamaan linier (3) Menentukan penyelesaian sistem persamaan linier
3 Nomor W4901 Dua buah bilangan mempunyai jumlah 45 dan selisihnya 5, maka hasil kali kedua bilangan tersebut adalah A. 240 B. 320 C. 360 D. 480 E. 500
4 Nomor W4602 Jika pembilang suatu pecahan ditambah 1 dan penyebutnya dikurangi 3 akan diperoleh hasil bagi sama dengan 1/2, Jika pembilangnya tidak ditambah maupun dikurangi, tetapi penyebutnya ditambah 1 akan diperoleh hasil sama dengan 1/5. Pecahan itu adalah A. 3/8 B. 2/9 C. 2/5 D. 1/2 E. 2/3
5 Nomor W5803 Amir berbelanja ke toko buku, ia membeli 4 buah buku tulis dan 1 buah pensil. Untuk itu Amir harus membayar Rp ,- Di toko buku yang sama Budi membeli 5 buah buku tulis dan 3 buah pensil. Jumlah uang yang harus dibayar oleh Budi sebesar Rp Harga untuk sebuah buku tulis dan sebuah pensil adalah A. Rp B. Rp. 900 C. Rp.800 D. Rp. 750 E. Rp. 600
6 Nomor W7804 Dalam sebuah gedung pertunjukan terdapat 400 orang penonton. Harga tiap lembar karcis untuk kelas II adalah Rp. 5000,- dan untuk kelas I Rp ,- Hasil penjualan karcis sebesar Rp Banyaknya penonton yang membeli karcis kelas I adalah A. 150 orang B. 180 orang C. 220 orang D. 240 orang E. 250 orang
7 Nomor W4805 Lima tahun yang lalu umur Ali sama dengan tiga kali umur Wati. Lima tahun kemudian umur Ali menjadi dua kali umur Wati. Umur Wati sekarang adalah A. 12 tahun B. 13 tahun C. 14 tahun D. 15 tahun E. 16 tahun
8 Nomor W1406 Enam tahun yang lalu jumlah umur ayah dan ibu sama dengan 54 tahun. Sekarang umur ayah adalah enam per lima dari umur ibu. Umur ayah lima tahun yang akan datang adalah A. 45 tahun B. 43 tahun C. 41 tahun D. 38 tahun E. 35 tahun
9 Soal Latihan W3c Penerapan Sistem Persamaan Linier
10 Soal 01W351 Jumlah dua bilangan asli sama dengan 35. Sedangkan selisihnya adalah 13. Maka hasil kali kedua bilangan itu adalah A. 254 B. 322 C. 264 D. 312 E. 512
11 Soal 02W493 Suatu persegi panjang diketahui kelilingnya 30 cm. Jika panjangnya 3 cm lebih dari lebarnya, maka luas persegi panjang itu adalah A. 221 cm 2 B. 124 cm 2 C. 108 cm 2 D. 82 cm 2 E. 54 cm 2
12 Soal 03W598 Dua tahun yang lalu umur ayah 6 kali umur Budi. Sedangkan 18 tahun kemudian umur ayah menjadi 2 kali umur Budi. Jumlah umur mereka sekarang adalah A. 51 B. 48 C. 46 D. 42 E. 39
13 Soal 04W236 Diketahui f(x) = px + q. Jika nilai f(2) = 8 dan f( 2) = 12, maka fungsi f(x) =. A. 5x + 2 B. 5x 2 C. 2x 5 D. 2x + 5 E. 2x 3
14 Soal 05W451 Didalam gedung bioskop terdapat 200 orang penonton. Harga tiap lembar karcis Rp dan Rp Sedangkan hasil penjualan karcis seluruhnya Rp Berapakah banyaknya penonton yang membeli karcis dengan harga Rp ? A. 60 orang B. 80 orang C. 90 orang D. 110 orang E. 120 orang
15 Soal 06W397 Keliling sebuah persegi panjang adalah 70 cm. Jika panjangnya dibuat menjadi dua kali semula dan lebarnya dibuat menjadi 1/3 kali lebar semula, maka keliling persegi panjang itu menjadi 90 cm. Lebar persegi panjang semula adalah cm A. 28 B. 24 C. 20 D. 18 E. 15
16 Soal 07W531 Umur Teguh 6 tahun lebih muda dari umur Adi. Jika umur Teguh dikali 4 kemudian dibagi 3, maka hasilnya menjadi satu tahun lebih tua dari umur Adi. Umur Teguh sekarang adalah A. 18 tahun B. 21 tahun C. 24 tahun D. 25 tahun E. 27 tahun
17 Soal 08W459 Perbandingan dua buah bilangan adalah 3 : 4. Jika tiga kali bilangan pertama ditambah 4 kali bilangan kedua sama dengan 100 maka selisih kedua bilangan itu adalah A. 1 B. 3 C. 4 D. 6 E. 8
18 Soal 09W394 Dua bilangan mempunya perbandingan 3 : 5 dan selisihnya 6. Jumlah kedua bilangan itu adalah A. 15 B. 16 C. 18 D. 21 E. 24
19 Soal 10W253 Sepuluh tahun yang lalu umur Ali dua kali umur Badu. Sedangkan lima tahun yang akan datang umur Ali menjadi 1,5 kali umur Badu. Jumlah umur mereka sekarang adalah A. 55 tahun B. 60 tahun C. 65 tahun D. 70 tahun E. 75 tahun
20 Soal 11W375 Misalkan astronot pertama yang mendarat di planet mars menemukan beberapa bilangan yang ditulis sebagai berikut : = 18 = 11 maka angka 10 akan ditulis seperti A. B. C. D. E.
21 Soal 12W577 Terdapat 41 ekor kambing dan ayam dalam sebuah kebun. Jika jumlah kaki binatang tersebut 100 maka banyaknya ayam dalam kebun tersebut adalah A. 9 ekor B. 12 ekor C. 24 ekor D. 32 ekor E. 38 ekor
22 Soal 13W136 Harga 5 buah rambutan dan 3 buah jeruk adalah Rp , sedangkan harga 4 buah rambutan dan 6 buah jeruk Rp Maka harga dua rambutan ditambah dua jeruk adalah A. Rp. 600 B. Rp. 800 C. Rp D. Rp E. Rp
23 Soal 14W391 Empat tahun yang lalu umur Adi dua kali umur Badu. Jika sekarang perbandingan umur mereka 3 : 2 maka 6 tahun lagi jumlah umur mereka adalah A. 36 tahun B. 32 tahun C. 30 tahun D. 24 tahun E. 18 tahun
24 Soal 15W515 Diketahui suatu lingkaran dengan persamaan x 2 + y 2 + Ax + By + C = 0 melalui titik-titik A(4, 2), B(2, 4) dan C(2, 0). Persamaan lingkaran tersebut adalah A. x 2 + y 2 4x 4y 4 = 0 B. x 2 + y 2 + 4x + 4y + 4 = 0 C. x 2 + y 2 4x 4y + 4 = 0 D. x 2 + y 2 2x 2y 2 = 0 E. x 2 + y 2 2x 2y + 4 = 0
25 Soal 16W431 Suatu parabola y = ax 2 + bx + c melalui titik (2, 4), (1, 2) dan (3, 8). Persamaan parabola tersebut adalah A. y = x 2 + x 1 B. y = x 2 x + 2 C. y = x 2 + 2x 1 D. y = x 2 2x + 1 E. y = x 2 + 3x 2
26 Soal 17W599 Sebuah bilangan terdiri atas dua digit. Nilai bilangan itu sama dengan tiga kali jumlah kedua digit itu ditambah 10. Digit kedua dikurang digit pertama sama dengan 5. Bilangan tersebut adalah A. 45 B. 46 C. 47 D. 48 E. 49
27 Soal 18W537 Seorang ibu mempunyai dua anak kembar. Jumlah umur ibu bersama kedua anaknya adalah 54 tahun. Sedangkan jumlah umur ibu dengan seorang anak kembarnya adalah 42 tahun, maka umur ibu sekarang adalah A. 28 tahun B. 30 tahun C. 32 tahun D. 36 tahun E. 38 tahun
28 Soal 19W417 Seorang pedagang mencampurkan tiga jenis kopi yaitu A, B, dan C. Jika ia mencampurkan 3 kg kopi jenis A dan 5 kg kopi jenis B maka harga kopi campurannya Rp per kg. Jika ia dicampur 2 kg kopi jenis A dan 3 kg kopi jenis C maka harga kopi campurannya juga Rp per kg. Jika dicampur 1 kg kopi jenis A, 2 kg kopi jenis B dan 1 kg kopi jenis C harga campurannya menjadi Rp 900. Maka harga 1 kg dari masing-masing kopi tersebut yang paling murah adalah A. Rp. 100 B. Rp. 200 C. Rp. 300 D. Rp. 400 E. Rp. 500
29
11/12/2015. SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1. C. Penerapan Sistem Persamaan Linier. Peta Konsep
Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir Materi C SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Tiga Sistem Pertidaksamaan linier Dua C. Penerapan
07/11/2009. By. M. Isral, S.Pd Page 1
SISTEM PERSAMAAN LINEAR DUA VARIABEL (SPL2V) Standar Kompetensi 2. Memahami sistem persamaan linear dua variabel dan menggunakannya dalam pemecahan masalah. Kompetensi Dasar 2.1 Menyelesaikan sistem persamaan
Sistem Persamaan linier
Sistem Persamaan linier 5.1 Sistem Persamaan Linier Dua Peubah (Variabel) Bentuk Umum: a 1 x + b 1 y = c 1 a 2 x + b 2 y = c 2 Dimana a 1, b 1, c 1, a 2, b 2, c 2 R. Himpunan pasangan berurutan (x, y)
NASKAH SOAL MATEMATIKA JMSO Tingkat SD/MI 2015
Pilihlah jawaban yang benar dari soal-soal berikut dengan cara menyilang abjad jawaban yang benar pada lembar jawaban kerja yang disediakan. 1. Hasil dari 5 + 6 8-3 adalah a. 50 b. 55 c. 80 d. 85 2. Berapa
SOAL UN DAN PENYELESAIANNYA 2008
1. Ingkaran dari pernyataan, "Beberapa bilangan prima adalah bilangan genap." adalah... Semua bilangan prima adalah bilangan genap Semua bilangan prima bukan bilangan genap Beberapa bilangan prima bukan
PERKALIAN BILANGAN ASLI DENGAN PECAHAN
Contoh. PERKALIAN BILANGAN ASLI DENGAN PECAHAN Bila masing-masing anak memerlukan pita. m atau 0 cm m anak anak anak anak m pita, maka anak memerlukan m m Dengan menggunakan konsep penjumlahan berulang
A. Persamaan Linier Dua
Apa yang akan Anda Pelajari? Mengenal PLDV dalam berbagai bentuk dan variabel Menentukan himpunan penyelesaian PLDV dan grafiknya Mengenal SPLDV dalam berbagai bentuk dan variabel Menentukan penyelesaian
Pecahan. 6Bab. Tujuan Pembelajaran
Pecahan 6Bab Tujuan Pembelajaran. Siswa dapat mengenal bentuk pecahan.. Siswa dapat menyebutkan dan menuliskan dan bentuk pecahan.. Siswa dapat mengurutkan pecahan.. Siswa dapat menyederhanakan pecahan..
Persiapan UN SMP Matematika
Persiapan UN SMP Matematika Sistem Persamaan Linear Dua Variabel - Latihan Soal Halaman 1 01. Himpunan penyelesaian dari sistem persamaan x + y = 3 dan 4x - 2y = 6 02. Himpunan penyelesaian dari sistem
PERSAMAAN KUADRAT. dengan = 4
PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat : ax 2 +bx+c=0, dengan a, b, c R. Contoh : persamaan 2x 2-3x-5=0 merupakan persamaan kuadrat dengan a=2,b=-3, dan c=5. Bilangan x 1 dikatakan akar persamaan
Sistem PERSAMAAN dan PERTIDAKSAMAAN linier
Materi W4a Sistem PERSAMAAN dan PERTIDAKSAMAAN linier Kelas X, Semester 1 A. Sistem Persamaan Linier dengan Dua Variabel www.yudarwi.com A. Sistem Persamaan Linier dengan dua Variabel Bentuk umum : ax
RinGkasan MaTeri. 1 balok ubin dinyatakan dalam persen (%) = 100% 1 1 balok ubin dibagi 4 menjadi 4 ubin kecil yang senilai dengan 4
RinGkasan MaTeri Persen adalah perseratus atau sebuah pecahan yang penyebutnya 00, misal Menyatakan dalam persen (%) 7 % = 7 00 balok ubin dinyatakan dalam persen (%) = 00% balok ubin dibagi 4 menjadi
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Ibu tidak memasak nasi, maka Ayah membeli nasi di warung dan makan di rumah () Ibu memasak nasi Kesimpulan yang sah adalah. a. Ayah tidak membeli nasi di warung atau
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Ayah tidak memarahi Badu, maka Badu bahagia dan tidak nakal () Jika Ayah tidak menyayangi Badu, maka Badu tidak bahagia atau nakal Kesimpulan yang sah adalah. a. Jika
NASKAH SOAL MATEMATIKA JMSO Tingkat SD/MI 2015
Pilihlah jawaban yang benar dari soal-soal berikut dengan cara menyilang abjad jawaban yang benar pada lembar jawaban kerja yang disediakan. 1. Hasil dari 1 + 3 +5 adalah a. 6 c. 9 d. 10 2. Tiga ratus
A. Sistem Persamaan Linier dengan dua Variabel
Jurnal Materi Umum Peta Konsep Peta Konsep Daftar Hadir MateriA SISTEM PERSAMAAN DAN PERTIDAKSAMAAN LINIER Kelas X, Semester 1 Sistem Persamaan Linier Dua Variabel Tiga Variabel Sistem Pertidaksamaan linier
SOLUSI OLIMPIADE MATEMATIKA TINGKAT PROPINSI JAWA BARAT TAHUN 2003
SOLUSI OLIMPIADE MATEMATIKA TINGKAT PROPINSI JAWA BARAT TAHUN 003. Jawaban: D Jumlah rusuk bangun itu = jumlah rusuk kubus + 6 rusuk = + 6 = 8 buah.. Jawaban: D A A B B B B A A Jadi, kemungkinan sumbu
2. Persamaan sebuah kurva ditentukan dengan rumus. . Jika kurva melalui titik ( ), ( ), ( ), persamaan kurva adalah.
KELOMPOK 1 1. Usia Pak Andy 28 tahun lebih tua dari usia Amira. Usia Bu Andy 6 tahun lebih muda dari usia Pak Andy. Jika jumlah usia Pak Andy, Bu Andy, dan Amira 119 tahun, jumlah usia Amira dan Bu Andy
8. Nilai x dari persamaan 2x = 1x 2 1 adalah Nilai x dari persamaan 4x ( x + 8 ) = 2(x 3 ) adalah
Contoh Soal Pertidaksamaan Linear Satu Variabel 1. Tentukan penyelesaian dari pertidaksamaaan 2x + 5 < 6 2. Tentukan penyelesaian dari pertidaksamaaan 5x 10 > 7 3. Tentukan penyelesaian dari pertidaksamaaan
1. Akar-akar persamaan kuadrat 5x 2 3x + 1 = 0 adalah
1. Akar-akar persamaan kuadrat 5x 3x + 1 0 adalah A. imajiner B. kompleks C. nyata, rasional dan sama D. nyata dan rasional E. nyata, rasional dan berlainan. NOTE : D > 0, memiliki akar-akar riil dan berbeda
B. Fungsi Sasaran dan Kendala dalam Program Linier
Peta Konsep Jurnal PetaKonsep Daftar Hadir MateriB SoalLatihan2 Materi Umum PROGRAM LINIER Kelas XI, Semester 3 B. Fungsi Sasaran dan Kendala dalam Program Linier Sistem Pertidaksamaan Linier Fungsi Sasaran
OLIMPIADE TINGKAT PROPINSI JAWA BARAT TAHUN 2003 MATA PELAJARAN MATEMATIKA
OLIMPIADE TINGKAT PROPINSI JAWA BARAT TAHUN 2003 MATA PELAJARAN MATEMATIKA PEMERINTAH PROPINSI JAWA BARAT DINAS PENDIDIKAN PROPINSI JAWA BARAT TAHUN 2003 0 Jejak Seribu Pena, Olimpiade Matematika SD Tingkat
Bab. Sistem Persamaan Linear Dua Variabel. Pengertian SPLDV Penyelesaian SPLDV Penerapan SPLDV
Bab Sumb er: Science Encylopedia, 1997 Sistem Persamaan Linear Dua Variabel Harga 3 buku tulis dan pensil adalah Rp13.00,00, sedangkan harga 5 buku tulis dan pensil adalah Rp15.000,00. Dapatkah kamu menghitung
SOAL-SOAL LATIHAN SISTEM PERSAMAAN (SPL) DAN SITEM PERTIDAKSAMAAN LINEAR (SPtL) UJIAN NASIONAL
SOAL-SOAL LATIHAN SISTEM PERSAMAAN (SPL) DAN SITEM PERTIDAKSAMAAN LINEAR (SPtL) UJIAN NASIONAL Peserta didik memiliki kemampuan memahami konsep pada topik sistem persamaan dan sistem pertidaksamaan linear.
II. Kerjakan soal-soal berikut ini!
Ulangan Harian I. Isilah titik-titik berikut ini dengan tepat!. x 0 60 : (-8) =.. FPB dari bilangan dan 7 adalah.. 70 7 x (-) + 8 : 8 =.. (00 +.00) : (-7) x 8 60 =.. KPK dari bilangan 8 dan adalah. 6.
PERSAMAAN DAN FUNGSI KUADRAT
Materi W2a PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 A. Menyelesaikan Persamaan Kuadrat www.yudarwi.com A. Menyelesaikan Persamaan Kuadrat Diketahui suatu persamaan kuadrat : ax 2 + bx + c = 0,
PREDIKSI UN 2012 MATEMATIKA SMP
Dibuat untuk persiapan menghadapi UN 2012 PREDIKSI UN 2012 MATEMATIKA SMP Lengkap dengan kisi-kisi dan pembahasan Mungkin (tidak) JITU 12 1. Menghitung hasil operasi tambah, kurang, kali dan bagi pada
BAB IV HASIL PENELITIAN DAN PEMBAHASAN
BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Subjek Penelitian Penelitian ini dilaksanakan di SMP Kristen 02 Salatiga pada semester 1 Tahun Ajaran 2011/2012. SMP Kristen 02 terletak di Jalan Jenderal Sudirman
Latihan Semester 2. Urutan pecahan tersebut mulai dari yang terkecil adalah...
Latihan Semester 2 Kerjakanlah di buku latihanmu. A. Ayo, isilah titik-titik berikut.. Bentuk sederhana dari pecahan 2 adalah... 6 Diketahui pecahan 2, 2 5, 7, 0. Urutan pecahan tersebut mulai dari yang
Sistem Persamaan Linear Dua Variabel
Bab Sistem Persamaan Linear Dua Variabel Tujuan Pembelajaran Setelah mempelajari bab ini siswa diharapkan mampu: Menyebutkan perbedaan persamaan linear dua variabel dan sistem persamaan linear dua variabel;
Soal UTS IPA Kelas V Semester 2 Tahun Ajaran 2017/2018
Soal UTS IPA Kelas V Semester 2 Tahun Ajaran 2017/2018 I. Berilah tanda silang (X) pada huruf a, b, c atau d di depan jawaban yang paling benar! 1. Bentuk persen dari 5/20 adalah... a. 5% b. 15% c. 20%
1. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -15 B. -6 C. 0 D Hasil dari 2 : 75% + 8,75 1 =... A. 14 B. 15 C. 16 D Uang Irna sama dengan 2
. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -5 B. -6. 0 D. 6 2. Hasil dari 2 : 75% + 8,75 =... A. 4 B. 5. 6 D. 7 3. Uang Irna sama dengan 2 3 uang Tuti. Jika jumlah uang mereka Rp35.000, maka uang Irna adalah.
=... a b c d
1. 13.825 2.671 + 3.156 =... a. 14.310 b. 14.297 c. 14.287 d. 13.297 2. Ibu Ani membagikan uang sebesar Rp. 750.000,00 kepada lima anaknya. Setiap anak mendapatkan uang sama banyak. Kemudian masing-masing
asimtot.wordpress.com Page 1
. Diketahui premis premis : () Jika Budi rajin menabung atau tidak mencuri, maka Ibu membelikan komputer () Ibu tidak membelikan komputer Kesimpulan yang sah adalah. a. Budi rajin menabung dan Budi mencuri
SILABUS PEMBELAJARAN. Sekolah :... : VII (Tujuh) Mata Pelajaran : Matematika
SILABUS PEMBELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan
M. PRAHASTOMI M. S. SISTEM PERSAMAAN LINEAR. A. a = 2 dan b = 4 B. a = 2 dan b = 4 C. a = 2 dan b = 4 D. E. a = 2
SISTEM PERSAMAAN LINEAR M. PRAHASTOMI M. S. 0. MD-8-8 B C G E F A D H 6 7 8 6 Jika gradien garis AB = m, gradien garis CD = m, gradien garis EF = m dan gradien garis GH = m, maka... () m = () m = 0 ()
β α α β SOAL MATEMATIKA UNTUK SMA istiyanto.com Mari Berbagi Ilmu Dengan Yang Lain A. Persamaan Kuadrat dan Fungsi Kuadrat
A. Persamaan Kuadrat dan Fungsi Kuadrat 1. Salah satu akar persamaan kuadrat ( a 1) x + (3a 1) x 3a = 0 adalah 1, maka akar lainnya adalah.... Nilai m yang memenuhi agar persamaan kuadrat ( m + 1) x +
1, x E R} d. { x/x , x E R} 1, x E R} 1, x E R} e. { x/x Nilai dari 2 log 16 3 log log 1 adalah. a. -1 d. 2 b. 0 e. 3 c.
. Nilai dari log 6 log 7 + log adalah. a. - d. b. 0 e. c.. Jika x = 9 dan y = 6 maka nilai 6 x = a. ½ d. b. 8 e. 7 c..y. Agar mendapat untung %, sebuah rumah harus dijual dengan harga Rp. 0.000.000,00.
Pemerintah Kota Semarang. Dinas Pendidikan MKKS Sub Rayon 05 Kota Semarang. JalanPatimura 9 (024) Kota Semarang 50123
Pemerintah Kota Semarang Dinas Pendidikan MKKS Sub Rayon 05 Kota Semarang JalanPatimura 9 (024)3544024 Kota Semarang 50123 KISI-KISI SOAL UKK MATEMATIKA SatuanPendidikan : SMP/MTs. Alokasi Waktu : 120
LEMBAR SOAL National Math Olympiad 3 RD PDIM UB 2014
PETUNJUK UNTUK PESERTA 1. Tuliskan nama lengkap, kelas, asal sekolah, alamat sekolah lengkap dengan nomor telepon, faximile, email sekolah dan nama guru Matematika di tempat yang telah disediakan.. Tes
MODUL ALJABAR Untuk SMP/MTSN
MODUL ALJABAR Untuk SMP/MTSN 1 Pendahuluan Aljabar merupakan bahasa simbol dan relasi. Dalam kehidupan seharihari aljabar seringkali digunakan tanpa memperdulikan apa pengertian aljabar tersebut. Dalam
PERSAMAAN DAN FUNGSI KUADRAT
Materi W2e PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester 1 E. Grafik Fungsi Kuadrat www.yudarwi.com E. Grafik Fungsi Kuadrat Grafik fungsi kuadrat f(x) = ax 2 + bx + c dapat dilukis dengan langkah-langkah
K ata Kunci. K D ompetensi asar. P B engalaman elajar. Bab IX. Sistem Persamaan Linear Dua Variabel. Di unduh dari : Bukupaket.
Bab IX Sistem Persamaan Linear Dua Variabel K ata Kunci Model Persamaan linear dua variabel Subsitusi Eliminasi K D ompetensi asar 1.1 Menghargai dan menghayati ajaran agaman yang dianutnya. 2.1 Menunjukkan
11/17/2015 P O L I N O M I A L. B. Operasi Aljabar pada Polinomial. Peta Konsep. B. Operasi Aljabar pada Polinomial
Peta Konsep Jurnal Materi MIPA Pengertian Polinomial Daftar Hadir PetaKonsep P O L I N O M I A L Nilai Polinomial Materi B(02) Kelas XI, Semester 3 SoalLatihan B. Operasi Aljabar pada Polinomial 2. Operasi
BAB IV PERTIDAKSAMAAN. 1. Pertidaksamaan Kuadrat 2. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak
BAB IV PERTIDAKSAMAAN 1. Pertidaksamaan Kuadrat. Pertidaksamaan Bentuk Pecahan 3. Pertidaksamaan Bentuk Akar 4. Pertidaksamaan Nilai Mutlak 86 LEMBAR KERJA SISWA 1 Mata Pelajaran : Matematika Uraian Materi
pagar kebun, ternyata masih kurang dan Pak Sulis membeli kawat lagi sebanyak 3 m.
PREDIKSI UJIAN NASIONAL 207 [email protected] Pilihlah jawaban yang paling tepat!. Hasil dari - x (-2 + ) : (9 5) adalah... A. - B. - C. D. 2. Pak Sulis mempunyai persediaan kawat sepanjang 5 m. Ketika
A. Menyelesaikan Persamaan Kuadrat
Jurnal Materi Umum Persamaan Kuadrat Peta Konsep Fungsi Kuadrat Peta Konsep Daftar Hadir Materi A SoalLatihan PERSAMAAN DAN FUNGSI KUADRAT Kelas X, Semester A. Menyelesaikan Persamaan Kuadrat Menyelesaikan
[BAB 3 SISTEM PERSAMAAN LINEAR]
http://meetabied.wordpress.com Matematika X Semester SMAN Bone-Bone Salah satu hadiah indah dari kehidupan adalah tidak ada seorang pun yang bisa dengan tulus berupaya menolong orang lain tanpa menolong
A. LATIHAN SOAL UNTUK KELAS 9A
A. LATIHAN SOAL UNTUK KELAS 9A. Hasil dari 5 ( 6) + 24 : 2 ( 3) =... A. -5 B. -6. 0 D. 6 2. Hasil dari 2 : 75% + 8,75 =... A. 4 B. 5. 6 D. 7 3. Uang Irna sama dengan 2 3 uang Tuti. Jika jumlah uang mereka
II. KERJAKAN SOAL-SOAL BERIKUT INI!
II. KERJAKAN SOAL-SOAL BERIKUT INI! Ulangan Harian I. Isilah titik-titik berikut ini dengan tepat! 1. 54 x 20 640 : (-8) =. 2. FPB dari bilangan 45 dan 75 adalah. 3. 750 75 x (-4) + 184 : 8 =. 4. (300
(a) 32 (b) 36 (c) 40 (d) 44
Halaman:. Jika n = 8, maka n0 n bernilai... (a) kurang dari 00 (b) (d) lebih dari 00. Penumpang suatu pesawat terdiri dari anak-anak dari berbagai negara, 6 orang dari Indonesia yang termasuk dari anak-anak
MODUL ALJABAR. February 3, 2006
MODUL ALJABAR February 3, 2006 1 Pendahuluan Aljabar merupakan bahasa simbol dan relasi. Dalam kehidupan seharihari aljabar seringkali digunakan tanpa memperdulikan apa pengertian aljabar tersebut. Dalam
K13 Revisi Antiremed Kelas 11 Matematika
K1 Revisi Antiremed Kelas 11 Matematika Peminatan - Persiapan PTS Semester Genap Halaman 1 01. Grafik berikut ini yang menunjukkan grafik dari parabola x 2 = -12y adalah... (Catatan: Setiap kotak pada
BAB PECAHAN. Tujuan Pembelajaran
BAB PECAHAN 5 Tujuan Pembelajaran Setelah belajar bab ini, kamu dapat: Menjadikan pecahan biasa ke bentuk persen dan sebaliknya. Menjadikan pecahan biasa ke bentuk desimal dan sebaliknya. 3. Menjumlah
PENELAAHAN SOAL MATEMATIKA PREDIKSI UN 2012
PENELHN SOL MTEMTIK PREDIKSI UN 2012 1. INDIKTOR SOL: Peserta didik dapat menghitung hasil operasi campuran bilangan bulat. SOL: Hasil dari 6 5 7 : 8 4. -18 B. -6 C. 6 D. 18 Kunci jawaban : adalah. 2.
37
36 37 38 42 RENCANA PELAKSANAAN PEMBELAJARAN (RPP) Nama Sekolah : SMP Negeri 2 Kauman Mata Pelajaran : Matematika Kelas/Semester : VIII/1 Pertemuan ke- : 1 (pertama) Pokok Bahasan : SPLDV Tahun Pelajaran
SILABUS PEMBELAJARAN. Sekolah :... : VII (Tujuh) Mata Pelajaran : Matematika
SILABUS PEMBELAJARAN Sekolah :... Kelas : VII (Tujuh) Mata Pelajaran : Matematika Semester : I (satu) BILANGAN Standar : 1. Memahami sifat-sifat operasi hitung bilangan dan penggunaannya dalam pemecahan
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-59064 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata
1. Bentuk sederhana dari adalah. a. 3 b. 3 3 c. 4 3 d. 5 3 e adalah. a b c d e.
1. Bentuk sederhana dari 2 8 75 + 12 a. 3 b. 3 3 c. 3 d. 5 3 e. 15 3 2. Bentuk sederhana dari a. 2 6 b. 2 6 2 c. 2 6 d. 6 8 e. 6 8 3. Bentuk sederhana dari.... 2 a. b 8 b. c 8 c. a 16 d. b 16 e. a 10 b
8. Nilai x yang memenuhi 2 log 2 (4x -
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 2. Fungsi kuadrat yang mempunyai nilai maksimum
1. Variabel, Konstanta, dan Faktor Variabel Konstanta Faktor
ALJABAR BENTUK ALJABAR adalah suatu bentuk matematika yang dalam penyajiannya memuat huruf-huruf untuk mewakili bilangan yang belum diketahui Bentuk aljabar dapat dimanfaatkan untuk menyelesaikan masalah
Bab 3. Persamaan Garis Lurus. Standar Kompetensi. Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel.
Bab Persamaan Garis Lurus Standar Kompetensi Memahami bentuk aljabar,persamaan dan pertidaksamaan linier satu variabel. Kompetensi Dasar 1.1. Mengenali bentuk aljabar dan unsur-unsurnya. 1.. Melakukan
Berdasarkan kurikulum yang berlaku MATEMATIKA. Untuk SMP / MTS. Semester gasal. Nama :... Kelas :... Sekolah:...
Berdasarkan kurikulum yang berlaku MATEMATIKA Untuk SMP / MTS 7 7 Semester gasal Nama :... Kelas :... Sekolah:... Melakukan Operasi Hitung Bilangan Bulat dan Pecahan Standar Kompetensi Kompetensi Dasar
LAMPIRAN 1 SOAL TES 34
LAMPIRAN 33 LAMPIRAN 1 SOAL TES 34 SOAL TEST = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = 1. Jumlah dua bilangan cacah adalah 55, dan selisih ke dua bilangan itu adalah 25.
Wardaya College. Tes Simulasi Ujian Nasional SMA Berbasis Komputer. Mata Pelajaran Matematika Tahun Ajaran 2017/2018
Tes Simulasi Ujian Nasional SMA Berbasis Komputer Mata Pelajaran Matematika Tahun Ajaran 2017/2018-1. Jika diketahui x = 8, y = 25 dan z = 81, maka nilai dari x 2 y 2 z adalah.... (a) 0 (b) 00 (c) 500
http://meetabied.wordpress.com Matematika X Semester 1 SMAN 1 Bone-Bone Kita dibentuk oleh sesuatu yang kita lakukan berulang kali. Keunggulan, bukan hasil dari satu tindakan, melainkan dari kebiasaan.
Persamaan dan Pertidaksamaan Linier Satu Variabel
Persamaan dan Pertidaksamaan Linier Satu Variabel Apa yang akan Anda pelajari? o Mengenal PLSV/PtLSV dalam berbagai bentuk dan variabel o Menentukan bentuk setara dari PLSV/PtLSV o Menentukan penyelesaian
PAKET 2 UJIAN NASIONAL TAHUN PELAJARAN 2010/2011 UTAMA SD/MI MATEMATIKA
PAKET UJIAN NASIONAL TAHUN PELAJARAN 010/011 UTAMA SD/MI MATEMATIKA Tim Pembahas: Astuti Waluyati, S.Si, M.Pd.Si Nanny Dharmawati, M.Si Rumiati, S.Pd., M.Ed. Sri Wulandari D, S.Si, M.Pd Verifikator: Drs.
Silabus. Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL
Silabus Nama Sekolah : SMA Mata Pelajaran : MATEMATIKA Kelas / Program : X / UMUM Semester : GANJIL Sandar Kompetensi:. Memecahkan masalah yang berkaitan dengan bentuk pangkat, akar, dan logaritma Kompetensi
Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005
Soal-soal dan Pembahasan UN Matematika SMP/MTs Tahun Pelajaran 2004/2005 1. Perhatikan himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = { 1 < 11, bilangan ganjil} C = {semua faktor dari 12}
2. FUNGSI KUADRAT. , D = b 2 4ac
. FUNGSI KUADRAT A. Persamaan Kuadrat 1) Bentuk umum persamaan kuadrat : ax + bx + c =, a ) Akar akar persamaan kuadrat dapat dicari dengan memfaktorkan ataupun dengan rumus: x 1, b D, D = b 4ac a 3) Jumlah,
PAKET I SOAL PENGAYAAN UJIAN NASIONAL MATA PELAJARAN
PAKET I SOAL PENGAYAAN UJIAN NASIONAL MATA PELAJARAN MATEMATIKA TAHUN 2014/2015 13 Pengayaan Ujian Nasional PAKET I SOAL PENGAYAAN UJIAN NASIONAL SMP/ MTs MATA PELAJARAN MATEMATIKA TAHUN PELAJARAN 2014/2015
B. 30 X + 10 Y 300; 20 X + 20 Y 400; X 0, Y 0 C. 10 X + 30 Y 300; 20 X + 20 Y 400, X 0, Y 0 D. 10 X + 30 Y 300, 20 X + 20 Y 400, X 0, Y 0
BIDANG STUDI : MATEMATIKA 1. Harga 3 kg pepaya dan 5 kg jeruk adalah Rp 13.000, sedangkan harga 4 kg papaya dan 3 kg jeruk adalah Rp 10.000, maka harga 2 kg papaya dan 4 kg jeruk adalah. A. Rp 10.000 B.
SOLUSI. Solusi: Solusi: [E] Solusi: [C] Himpunan penyelesaiannya adalah 3. 1 Husein Tampomas, Solusi TO UN Matematika IPA-A Provinsi Jawa Barat, 2016
SOLUSI Solusi: 6 5x x Himpunan penyelesaiannya adalah Solusi: [E] log w log, 4 0,8h log50 log,4 0,8h 0,8h log 50 log, 4, 6990 0, 80, 88,88 h,6585,66 0,8 Solusi: [C] g o f a g f a g a a 5 a a 5 a a 5 a
NASKAH SOAL SELEKSI OLIMPIADE MATEMATIKA SD KECAMATAN SENDURO TAHUN 2013
NASKAH SOAL SELEKSI OLIMPIADE MATEMATIKA SD KECAMATAN SENDURO TAHUN 2013 Nama :... Alokasi Waktu : 90 menit No. Peserta :... Nilai : Sekolah Asal :... Berikan jawabanmu saja pada kotak di sebelah kanan!
C. B dan C B. A dan D
1. Perhatikan Himpunan di bawah ini! A = {bilangan prima kurang dari 11} B = {x < x 11, x bilangan ganjil} C = {semua faktor dari 12} D = {bilangan genap antara 2 dan 14} Himpunan di atas yang ekuivalen
PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57 NO SOAL PEMBAHASAN. Ingat! a = a a a A = 643 = 64 = 4 2 = 16. Ingat!
PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : E57 NO SOAL PEMBAHASAN Hasil dari 64 adalah.... a = a a a A. 8 B. 6. = C.. = D. 56 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari 5 + ( : ) adalah...
matematika PEMINATAN Kelas X PERSAMAAN KUADRAT K-13 A. BENTUK UMUM PERSAMAAN KUADRAT
K-13 Kelas X matematika PEMINATAN PERSAMAAN KUADRAT TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami definisi dan bentuk umum persamaan kuadrat..
Operasi Hitung Pecahan
Bab Operasi Hitung Pecahan Pernahkah kamu melihat ibumu memotong kue? Berapa bagian potongan kue tersebut? Tiap-tiap potongan kue itu merupakan pecahan dari kue yang ibu potong. Pada pembelajaran kali
Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL
Standar Kompetensi Modul 6 SISTEM PERSAMAAN LINEAR DUA VARIABEL Memahami dan dapat melakukan operasi bentuk aljabar, persamaan dan pertidaksamaan linear satu variabel, himpunan serta dapat menggunakan
1 C17. C. Rp B. Rp
1 C17 1. Joko ingin kuliah di Fakultas kedokteran UNAIR melalui SNMPTN jalur tulis. Dari 15 soal kemampuan dasar di hari pertama, Joko menjawab 5 soal benar dan soal tidak dijawab. Jika menjawab benar
TRY OUT UJIAN NASIONAL. MATEMATIKA (C-19) SMP/MTs (UTAMA) P19 DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN
TRY OUT UJIAN NASIONAL P19 MATEMATIKA (C-19) SMP/MTs (UTAMA) DINAS PENDIDIKAN PROPINSI KALIMANTAN SELATAN DOKUMEN NEGARA SANGAT RAHASIA Mata Pelajaran Jenjang : Matematika : SMP/MTs MATA PELAJARAN Hari
PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : E57. NO SOAL PEMBAHASAN 1 Hasil dari adalah = Ingat!
PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : E57 NO SOAL PEMBAHASAN Hasil dari 64 adalah... A. 8. a = a a a B. 6. a n n = a C.. a m n n = a m D. 56 Hasil dari 6 8 adalah... A. 6 B. 4 C. 4 D. 4 6 4 Hasil dari
MATEMATIKA 3. Untuk SD/MI Kelas III. Hak Cipta pada Departemen Pendidikan Nasional dilindungi oleh Undang-Undang. : Ninik Puji Astuti
i ii Hak Cipta pada Departemen Pendidikan Nasional dilindungi oleh Undang-Undang MATEMATIKA 3 Untuk SD/MI Kelas III Penyusun Penelaah Editor Design Cover Ukuran Buku : Suharyanto : C. Jacob : Ninik Puji
Matematika Proyek Perintis I Tahun 1979
Matematika Proyek Perintis I Tahun 979 MA-79-0 Irisan himpunan : A = { x x < } dan himpunan B = { x < x < 8 } ialah himpunan A. { x x < 8 } { x x < } { x < x < 8 } { x < x < } { x < x } MA-79-0 Apabila
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l B. 2 < p < 3 C.
1. Agar F(x) = (p - 2) x² - 2 (2p - 3) x + 5p - 6 bernilai positif untuk semua x, maka batas-batas nilai p adalah... A. p > l 2 < p < 3 p > 3 1 < p < 2 p < 1 atau p > 2 Kunci : C Persamaan fungsi : F(x)
MATA PELAJARAN PELAKSANAAN PETUNJUK UMUM
MATA PELAJARAN Mata Pelajaran : Matematika PELAKSANAAN Hari/Tanggal : Selasa, 8 November 008 Jam :.0 7.0 PETUNJUK UMUM. Isikan identitas Anda ke dalam Lembar Jawaban Ujian Nasional (LJUN) yang tersedia
PANDUAN MATERI UJIAN NASIONAL TAHUN PELAJARAN
PANDUAN MATERI UJIAN NASIONAL TAHUN PELAJARAN 2004/2005 SMP/MTs M A T E M A T I K A DEPARTEMEN PENDIDIKAN NASIONAL BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENILAIAN PENDIDIKAN Hak Cipta pada Pusat Penilaian
1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. A. cm. B. cm. C. cm D. 2 cm A. 0,2 B. 0,5 C. 1,5 D.
1. Suatu kubus mempunyai panjang diagonal ruang 6 cm, maka panjang rusuk kubus tersebut adalah. cm cm cm 2 cm 2.. 0,2 0,5 1,5 15 3. Suatu pekerjaan jika dikerjakan 15 orang dapat selesai bekerja dalam
SMP kelas 8 - MATEMATIKA BAB 14. PERBANDINGANLATIHAN SOAL BAB cm cm cm cm 2
SMP kelas 8 - MATEMATIKA BAB 14. PERBANDINGANLATIHAN SOAL BAB 14 1. Perbandingan panjang dan lebar persegi panjang adalah 4:3. Jika kelilingnya 70 cm, maka luas persegi panjang adalah... 300 cm 2 315 cm
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp.
PEMERINTAH KABUPATEN SUKOHARJO DINAS PENDIDIKAN SMA KABUPATEN SUKOHARJO Sekretariat : Jl. Jend. Sudirman No.197 Sukoharjo Telp. 071-59064 5751 TRY OUT UJIAN NASIONAL TAHAP 1 TAHUN PELAJARAN 01/01 Mata
PEMBAHASAN SOAL-SOAL UN TAHUN 2012 KODE : C37 NO SOAL PEMBAHASAN 1
PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C7 SMP N Kalibagor NO SOAL PEMBAHASAN Hasil dari 5 + ( : ) adalah... Urutan pengerjaan operasi hitung A. 9 Operasi hitung Urutan pengerjaan B. Dalam kurung C. 9 Pangkat
Contoh 6.1. Contoh 6.2
Contoh 6.1 a. Dua dikurang m sama dengan satu. Merupakan kalimat terbuka karena memiliki variabel yaitu m. b. y adalah bilangan prima yang lebih dari empat. Merupakan kalimat terbuka yang memiliki variabel
Y. Putri H. Siregar MATEMATIKA. untuk Siswa SD/MI Kelas III
Y. Putri H. Siregar MATEMATIKA untuk Siswa SD/MI Kelas III i Hak Cipta pada Departemen Pendidikan Nasional Dilindungi Undang-undang Matematika untuk Siswa SD/MI Kelas III Jilid 3 Penulis Y. Putri H. Siregar
NO SOAL PEMBAHASAN 1
PEMBAHASAN SOAL-SOAL UN TAHUN 0 KODE : C7 NO SOAL PEMBAHASAN Hasil dari 5 + ( : ) adalah... Urutan pengerjaan operasi hitung A. 9 Operasi hitung Urutan pengerjaan B. Dalam kurung C. 9 Pangkat ; Akar D.
TINGKAT SMP KOMET 2018 SE-JAWA TIMUR. c. 6 d. 7 e Jika n memenuhi Jika x = 2
. Jika x = + + 06 08 08 08 08 08 dan y = maka nilai xy x - - -. Jika a, b, c, d, e, f, 7, h,...,7, z adalah barisan aritmetika, maka nilai k+o+m+e+t 0 77 80 7 77. Jika z = 57 88 57 87 dan a = 57 87, maka
A. Persamaan-Persamaan Lingkaran
Peta Konsep Jurnal Materi Umum Peta Konsep Lingkaran Daftar Hadir Materi A LINGKARAN 1 Kelas XI, Semester 3 Berpusat di O(0, 0) Berpusat di P(a, b) A. Persamaan-Persamaan Lingkaran Kedudukan Titik dan
SMK N 1 Demak Jurusan Multimedia Kelas X Semester 1
SOAL LATIHAN ULANGAN SEMESTER GASAL KELAS X MM BAB SISTEM BILANGAN REAL Himpunan-Himpunan Bilangan pada Sistem Bilangan Real. Bilangan-bilangan berikut adalah irasional, kecuali... 4 7. Bilangan-bilangan
I. PETUNJUK: Untuk soal nomor 1 sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!
I. PETUNJUK: Untuk soal nomor sampai dengan nomor, pilihlah salah satu jawaban yang paling tepat!. Persamaan ( p + ) x ( p + ) x + ( p ) = 0, p, merupakan persamaan kuadrat dalam x untuk nilai p... p c.
Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya
Contoh Soal Sistem Persamaan Linear Dua Variabel dan Pembahasannya Contoh Soal 1 Tentukan penyelesaian dari SPLDV berikut ini dengan metode substitusi: x + y = 8 2x + 3y = 19 Jawab : x + y = 8. (1) 2x
