Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Beberapa Metode Alternatif untuk Analisis Data Sampel Berpasangan"

Transkripsi

1 Prosdg Statstka ISSN Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga Rma Rzka Yuar Tet Sofa Yat, 3 Abdul Kudus,,3 Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl Tamasar No Badug 46 e-mal: 3 Abstrak: Terdapat beberapa metode alteratf yag dapat dguaka utuk meguj data sampel berpasaga utuk statstka parametrk da statstka o parametrk Statstka parametrk dguaka jka dstrbus dar sampel dambl dar populas berdstrbus ormal, da skala pegukura mmal terval, sedagka statstka o parametrk tdak meutut terpeuhya bayak asums sehgga serg dsebut sebaga bebas dstrbus da skala pegukura yag dguaaka mmal ordal Metode yag dguaka utuk meguj sampel data berpasaga pada skrps adalah uj tada utuk dua sampel berpasaga, da uj pergkat bertada Wlcoxo Dalam skrps juga megealka beberapa metode modfkas sepert modfkas uj tada, modfkas uj sampel berpasaga, da modfkas uj pergkat bertada Wlcoxo Peguja-peguja tersebutdterapka utuk megetahu apakah ada perbedaa la pegetahua sswa SD Mathla ul Khoeryah terhadap peyakt lmfatk flarass sebelum da sesudah dber perlakua game edukas Hasl peguja hpotess meujukka bahwa ada perbedaa la pegetahua peyakt lmfatk flarass sebelum da sesudah dber perlakua game edukas Kata kuc : Data Berpasaga,Noparametrk, Parametrk A Pedahulua Dalam berbaga seg kehdupa, khususya kehdupa sehar-har pada umumya serg kal dtemu pegguaa metode-metode atau tekk-tekk statstka Tekk statstk yag aka dguaka tergatug pada teraks dua hal, yatu asums da jes data yag aka daalss Dalam peguja utuk sampel basaya terbag mejad dua macam yatu peguja dua sampel da peguja lebh dar dua sampel Dalam peguja dua sampel terbag mejad dua kelompok sampel, yatu sampel berpasaga da sampel salg bebas Sampel berpasaga adalah sebuah pegamata dega subjek yag sama amu megalam dua perlakua atau pegukura yag berbeda, atau pegamata yag memag segaja dpasagka (Segel, 997)Cotoh sampel berpasaga msalya para peelt meds g megetahu efek suatu obat terhadap peuru paas bada mausa, sehgga dukur paas bada sebelum da sesudah dberka obat Dega demka, kerja obat dapat dketahu dega cara membadgka kods objek peelta sebelum, da sesudah dberka obat Utuk meguj dua sampel berpasaga dapat megguaka statstka parametrk maupu o parametrk Statstka parametrk dguaka jka sampel berasal dar populas yag berdstrbus ormal, sampel dperoleh secara radom, da skala pegukura mmal terval, sedagka utuk statstka o parametrk tdak meutut terpeuhya bayak asums, oleh karea tu statstka o parametrk serg dsebut sebaga bebas dstrbus Statstka o parametrk basaya dguaka utuk melakuka aalss pada data berskala mmal ordal Dalam skrps aka dbahas beberapa peguja hpotess da perbadga datara peguja-peguja hpotess utuk dua sampel berpasaga sehgga medapatka metode yag lebh efse Peguja statstk yag dguaka utuk sampel berpasaga dalam skrps adalah uj tada utuk dua sampel berpasaga, modfkas uj tada, uj pergkat bertada Wlcoxo utuk data berpasaga,

2 Rma Rzka Yuar, et al modfkas uj pergkat bertada Wlcoxo, da modfkas uj sampel berpasaga megguaka rakg B Tjaua Pustaka Uj Tada utuk Dua Sampel Berpasaga Msalka ( ) adalah pasaga pegamata dar populas da yag dambl secara acak, utuk =,,, Selajutya tetuka d x x, jka d msalka u, utuk =,,,, jka d Perhatka bahwa jka la x x maka pegamata tersebut dabaka da tdak usah dmasukka kedalam perhtuga Msalka p u ) W u ( Dega demka EW ; Var W Hpotess yag dguaka adalah sebaga berkut: H :,5 Vs H :, 5 Terdapat dua statstk uj yag dapat dguaka utuk peguja uj tada, yatu megguaka dstrbus ch kuadrat ( ) da dstrbus ormal baku (z) berkut stattstk uj yag dapat dguaka utuk ch kuadrat yatu: W,5,5 Adapu krtera pegujaya adalah tolak H pada taraf sgfkas α jka, dmaa la ( ;) ( ;) ddapat dar tabel dstrbus ch kuadrat Sedagka, statstk uj megguaka dstrbus ormal baku sebaga berkut: W,5 W,5,5 z,5 W,5, Dmaa W,5 W,5, jka W jka W Krtera uj utuk peguja adalah H dtolak pada taraf sgfkas α jka z z, dmaa la z dperoleh dar tabel ormal baku Uj Pergkat Bertada Wlcoxo utuk Data Berpasaga Uj hampr sama dega uj tada basa, tetap yag membedakaya adalah rakg utuk la mutlak dar selsh d,datara la-la pada pegamata berpasaga utuk =,,, Msalka ( ) adalah pasaga pegamata dar populas da yag dambl secara acak, utuk =,,, Hpotess yag dguaka pada uj adalah Prosdg Peelta Svtas AkademkaUsba (Sas da Tekolog)

3 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga 3 H,5 vs H, 5 : : Msalka T r d u, dmaa d r adalah pergkat yag dberka d kepada la mutlakdar selsh x x Sedagka la ekspektas da varas dar T adalah sebaga berkut E T ; Var T 6 Statstk uj yag dapat dguaka adalah sebaga berkut: T 4 umodfed 4 Adapu krtera pegujaya adalah tolak H pada taraf sgfkas α, jka ( ;),dmaa la ( ;) ddapat dar tabel dstrbus ch kuadrat 3 Modfkas Uj Tada Msalka ( ) adalah pasaga pegamata dar populas da yag dambl secara acak, utuk =,,, Selajutya kta spesfkaska, jka x x u, jka x x Utuk =,,,, jka x x Msalka p u ; pu ; pu, dmaa taksra berdasarka sampel bag,, da berturut turut adalah: f f f ˆ ; ˆ ; ˆ, dmaa f, f, da f adalah jumlah dar masgmasg la,, da - dar la u, utuk =,,, W f f ˆ ˆ Hpotess yag dguaka dega kosta adalah H : vs H :, Statstk uj yag dguaka dalam peguja adalah W modfed ˆ ˆ ˆ ˆ Krtera peguja utuk uj adalah tolak H pada taraf sgfkas α, jka ( ;),dmaa la ( ;) ddapat dar tabel dstrbus ch kuadrat 4 Modfkas Uj Sampel berpasaga dega Rakg Metode pada uj adalah sebuah metode alteratf yag baru da relatf lebh efse dbadgka dega metode-metode sebelumya Msalka ( ) adalah pasaga pegamata dar populas da yag dambl secara acak, utuk =,,, Selajutya utuk pasaga ( )dtetuka: Statstka, Gelombag, Tahu Akademk 4-5

4 4 Rma Rzka Yuar, et al k, jka x x k, jka x x r k, jka x x r k, jka x x k, jka x x k, jka x x r utuk =,,, dmaa k adalah blaga rl Msalka r r, jka r u, jka r Kemuda tetuka, jka r, Utuk =,,, Defska W r u, dmaa da masg-masg adalah jumlah dar pergkat yag dberka utuk pegamata sampel dar populas X da X Nla-la tersebut aka dguaka utuk meetuka statstk uj Var W r r k t ˆ ˆ ˆ 4 ˆ t ˆ ˆ ˆ ˆ Tampak bahwa VarW r r k t 4 t bebas dar la k, sebagamaa dtujukka dbawah : Dmaa t adalah bayakya pegamata kembar datara populas X da X da r da r masg-masg adalah jumlah kuadrat dar pergkat yag dberka kepada sampel dar populas X da X Hpotess yag dguaka utuk peguja adalah sebaga berkut: H : H :, Statstk uj yag dguaka adalah W 4 t ˆ ˆ ˆ ˆ Krtera uj yag dguaka adalah tolak H pada taraf sgfkas jka ; Asalka la k merupaka blaga rl, maka tdak aka berpegaruh pada statstk uj, tetap utuk lebh prakts dsaraka megambl la k blaga bulat Metode modfkas uj tada da metode modfkas uj sampel berpasaga dega rakg lebh efse darpada uj Wlcoxo yag tdak dmodfkas (Ebuh da Oyeka, ) Utuk meujukka hal, kta perhatka bahwa efses yag relatf W terhadap T adalah: RE W; T Var Var T W ˆ ˆ ˆ / 4 ˆ 4 ˆ Karea da dega demka RE W; T Utuk semua 3 da meujukka bahwa W lebh efse darpada T kecual utuk kasus-kasus yag sagat jarag terjad dmaa kta haya memlk satu atau dua sampel berpasaga (Ebuh da Oyeka, ) Prosdg Peelta Svtas AkademkaUsba (Sas da Tekolog)

5 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga 5 5 Modfkas Uj Pergkat Bertada Wlcoxo utuk Sampel Berpasaga Metode dracag utuk megoreks kekuraga dar uj pergkat bertada Wlcoxo basa Msalka ( ) adalah pasaga pegamata dar populas da yag dambl secara acak, utuk =,,, Selajutya dar pasaga ( )asumska d x x, jka d u, jka d, jka d T Defska rd u, Dmaa r d ET da adalah pergkatyagdberka kepada la mutlakdar selshadapu Var T adalah E T ˆ ˆ Var T ˆ ˆ ˆ ˆ, 6 Hpotess yag dguaka utuk peguja adalah H : H :, Statstk uj yag dguaka adalah T modfed ˆ ˆ ˆ ˆ 6 Utuk yag cukup besar medekatdstrbuschkuadrat degaderajat bebas H dtolak padatarafsgfkasjka C Baha da Metode ; Aalss yag aka dguaka adalah uj tada, uj pergkat bertada Wlcoxo, modfkas uj tada, modfkas uj sampel berpasaga, da modfkas uj pergkat bertada Wlcoxo aka daplkaska pada data la pegetahua terhadap peyakt lmfatk flarass sebelum da sesudah dberka perlakua game edukas Baha yag dguaka megguaka data sekder yag dperoleh dar perpustakaa fakultas kedoktera Uverstas Islam Badug Dalam megaalss data pertama-tama melakuka peguja megguaka uj tada dega ch kuadrat, uj tada dega ormal baku, uj pergkat bertada Wlcoxo, modfkas uj tada, modfkas uj sampel berpasaga, da modfkas uj pergkat bertada Wlcoxo, lalu membadgka datara keeam metode tersebut utuk megetahu metode maa yag lebh efse D Hasl Pembahasa Hasl Peguja Hpotess Hasl peguja beberapa metode utuk sampel berpasaga utuk melhat apakah terdapat perbedaa atara la pegetahua megea peyakt lmfatk flarass sswa SD Mathla ul Khoeryah sebelum da sesudah dberka game edukas dsajka pada tabel dbawah : Statstka, Gelombag, Tahu Akademk 4-5

6 6 Rma Rzka Yuar, et al Tabel 3Hasl Peguja Hpotess No Metode Statstk uj Krtera uj Uj tada auj Tada χ b Uj Tada Normal Baku a,574 b -4,34659 Kesmpula a 3,846 b,96 Tolak H Uj Pergkat Bertada 9,95 3,846 Tolak H Wlcoxo 3 Modfkas Uj Tada 57, ,846 Tolak H 4 Modfkas Uj Sampel Berpasaga 7,987 3,846 Tolak H 5 Modfkas Uj Pergkat Bertada Wlcoxo,634 3,846 Tolak H Dar hasl tabel datas dapat dketahu bahwa utuk uj tada, uj pergkat bertada Wlcoxo, Modfkas uj tada, modfkas uj sampel berpasaga, da modfkas uj pergkat bertada Wlcoxo meyataka utuk meolak H yag berart ada perbedaa la pegetahua megea peyakt lmfatk flarass sebelum da sesudah pembera game edukas Perbadga Varas-varas utuk Sampel Berpasaga Utuk melhat metode maa yag palg efse maka dguaka perbadga varas-varas atara metode satu da metode laya Hasl dar perhtuga perbadga varas-varas tersebut dsajka dalam tabel berkut: Tabel 3 Perbadga Beberapa Varas-varas Metode ,64573 (),363 (), (),368 (),4 (),37 (),366 (),8534 (),59 () 3 9,477 (4) 58,79 (5),589 (3) 4,67857 (4),59 (4) 5,974 (5) Keteraga: Metode adalah metode uj tada χ, Metode adalah metode uj tada ormal baku, Metode 3 adalah metode uj pergkat bertada Wlcoxo, Metode 4 adalah metode modfkas uj tada, Metode 5 adalah metode modfkas uj sampel berpasaga, Metode 6 adalah metode modfkas uj pergkat bertada WlcoxoAgka dalam kurug d dalam sel meyataka metode peguja yag lebh efse Prosdg Peelta Svtas AkademkaUsba (Sas da Tekolog)

7 Beberapa Metode Alteratf utuk Aalss Data Sampel Berpasaga 7 Hasl perhtuga d atas adalah hasl perhtuga varas metode yag ada d kolom dbag dega varas metode yag ada d bars Bars : Jka uj tada dbadgka dega metode laya, memperlhatka uj tada dega lebh efse, kecual utuk uj tada ormal baku lebh efse dar uj tada Bars : Jka uj tada ormal baku dbadgka dega uj laya dluar uj tada, makauj tada ormal baku lebh efse dbadgka dega uj layabars 3: Jka uj pergkat bertada Wlcoxo dbadgka dega modfkas uj tada maka uj tada lebh efse dar uj pergkat bertada Wlcoxo, jka modfkas uj sampel berpasaga dbadgka dega uj pergkat bertada Wlcoxo maka modfkas uj sampel berpasaga lebh efse dar uj pergkat bertada Wlcoxo, sedagka jka modfkas uj pergkat bertada Wlcoxodbadgka dega uj pergkat bertada Wlcoxo maka uj pergkat bertada Wlcoxo lebh efse dar modfkas uj pergkat bertada WlcoxoBars 4: Jka modfkas uj tada dbadgka dega modfkas uj sampel berpasaga da modfkas uj pergkat bertada Wlcoxo, memperlhatka modfkas uj tada lebh efse dar modfkas uj sampel berpasaga da modfkas uj pergkat bertada WlcoxoBars 5: Jka modfkas uj sampel berpasaga dbadgka dega modfkas uj pergkat bertada Wlcoxo, memperlhatka modfkas uj sampel berpasaga lebh efse dar modfkas uj pergkat bertada Wlcoxo E Kesmpula Pada peguja hpotess utuk uj tada sampel berpasaga, uj pergkat bertada Wlcoxo, modfkas uj tada, modfkas uj sampel berpasaga megguaka rakg, da modfkas uj pergkat bertada Wlcoxo hasl peguja pada masg-masg metode adalah sgfka, artya ada perbedaa la pegetahua peyakt lmfatk flarass sebelum da sesudah dberka perlakua game edukas Metode uj tada χ lebh efse jka dbadgka dega uj pergkat bertada Wlcoxo, modfkas uj tada, modfkas uj sampel berpasaga, modfkas uj pergkat bertada Wlcoxo, kecual jka dbadgka dega uj tada ormal baku lebh efse darpada uj tada χ 3 Metode uj tada ormal lebh efse jka dbadgka dega metode uj pergkat bertada Wlcoxo, modfkas uj tada, modfkas uj sampel berpasaga, modfkas uj pergkat bertada Wlcoxo 4 Metode uj pergkat bertada Wlcoxo lebh efse jka dbadgka dega metode uj pergkat bertada Wlcoxo, kecual jka dbadgka dega modfkas uj tada da modfkas uj sampel berpasaga lebh efse darpada uj pergkat bertada Wlcoxo 5 Metode modfkas uj tada lebh efse jka dbadgka dega metode modfkas uj sampel berpasaga da modfkas uj pergkat bertada Wlcoxo 6 Metode modfkas uj sampel berpasaga lebh efse jka dbadgka dega metode modfkas uj pergkat bertada Wlcoxo Statstka, Gelombag, Tahu Akademk 4-5

8 8 Rma Rzka Yuar, et al DAFTARPUSTAKA Dah, S A J, (4), Pegaruh Game Edukas (EDU-GAME) TerhadapPegetahua Peyakt Lmfatk Flarass Sswa d Sekolah Dasar Mathla ul Khoeryah Keluraha Tamasar Kota Badug Badug:SkrpsUverstas Islam Badug Gbbos, J D, Chakrabort, S (3), Noparametrc Statstcal Iferece, Fourth EdtoNew York: Marcel Dekker Hurd, D, Jeugs, E (9) Stadardzed Educatoal Games Ratgs Suggested Crtera: Karya Tuls Ilmah Oyeka, I C A, Ebuh, G A (), Modfed Wlcoxo Sged Rak Sum Test Ope Joural of Statstcs, :7-76 Oyeka, I C A, Ebuh, G A (), Statstcal Comparso of Eght Alteratve Methods for the Aalyss of Pared Sample Data wth Applcatos Ope Joural of Statstcs, : Segel, S (997), Statstka No parametrkutukilmu-lmusosal Jakarta: PT Grameda Pustaka Utama Sudjaa (996) Metode Statstka Eds ke-6 Badug: Tarsto Badug Prosdg Peelta Svtas AkademkaUsba (Sas da Tekolog)

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah

Uji Modifikasi Peringkat Bertanda Wilcoxon Untuk Masalah Dua Sampel Berpasangan 1 Wili Solidayah 2 Siti Sunendiari 3 Lisnur Wachidah Prosdg Statstka ISSN 40-45 Uj Modfkas Pergkat Bertada Wlcoxo Utuk Masalah Dua Sampel Berpasaga 1 Wl Soldayah St Suedar 3 Lsur Wachdah 1, Statstka, Fakultas MIPA, Uverstas Islam Badug, Jl. Tamasar No. 1

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Pedahulua Sebelum membahas megea prosedur peguja hpotess, terlebh dahulu aka djelaska beberapa teor da metode yag meujag utuk mempermudah pembahasa. Adapu teor da metode tersebut

Lebih terperinci

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri

III. METODE PENELITIAN. yang hidup dan berguna bagi masyarakat, maupun bagi peneliti sendiri III. METODE PEELITIA A. Metodolog Peelta Metodolog peelta adalah cara yag dlakuka secara sstemats megkut atura-atura, recaaka oleh para peeltutuk memecahka permasalaha yag hdup da bergua bag masyarakat,

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu.

BAB 2 LANDASAN TEORI. Regresi linier sederhana yang variabel bebasnya ( X ) berpangkat paling tinggi satu. BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa yag varabel bebasya ( berpagkat palg tgg satu. Utuk regres ler sederhaa, regres ler haya melbatka dua varabel ( da. Persamaa regresya dapat dtulska

Lebih terperinci

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai

BAB 2 LANDASAN TEORI. perkiraan (prediction). Dengan demikian, analisis regresi sering disebut sebagai BAB LANDASAN TEORI. Kosep Dasar Aalss Regres Aalss regres regressso aalyss merupaka suatu tekk utuk membagu persamaa da megguaka persamaa tersebut utuk membuat perkraa predcto. Dega demka, aalss regres

Lebih terperinci

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten

BAB III METODE PENELITIAN. Tempat penelitian ini dilaksanakan di SMP Negeri 4 Tilamuta Kabupaten BAB III METODE PENELITIAN 3. Tempat da Waktu Peelta 3.. Tempat Tempat peelta dlaksaaka d SMP Neger 4 Tlamuta Kabupate Boalemo pada sswa kelas VIII. 3.. Waktu Peelta dlaksaaka dalam waktu 3 bula yatu dar

Lebih terperinci

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier

BAB 2 LANDASAN TEORI. Regresi linier sederhana merupakan bagian regresi yang mencakup hubungan linier BAB LANDASAN TEORI. Regres Ler Sederhaa Regres ler sederhaa merupaka baga regres yag mecakup hubuga ler satu peubah acak tak bebas dega satu peubah bebas. Hubuga ler da dar satu populas dsebut gars regres

Lebih terperinci

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES

* MEMBUAT DAFTAR DISTRIBUSI FREKUENSI MENGGUNAKAN ATURAN STURGES * PENYAJIAN DATA Secara umum, ada dua cara peyaja data, yatu : 1. Tabel atau daftar. Grafk atau dagram Macam-macam daftar yag dkeal : a. Daftar bars kolom b. Daftar kotges c. Daftar dstrbus frekues Sedagka

Lebih terperinci

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN

11/10/2010 REGRESI LINEAR SEDERHANA DAN KORELASI TUJUAN // REGRESI LINEAR SEDERHANA DAN KORELASI. Model Regres Lear. Peaksr Kuadrat Terkecl 3. Predks Nla Respos 4. Iferes Utuk Parameter-parameter Regres 5. Kecocoka Model Regres 6. Korelas Utrwe Mukhayar MA

Lebih terperinci

BAB 2. Tinjauan Teoritis

BAB 2. Tinjauan Teoritis BAB Tjaua Teorts.1 Regres Lear Sederhaa Regres lear adalah alat statstk yag dperguaka utuk megetahu pegaruh atara satu atau beberapa varabel terhadap satu buah varabel. Varabel yag mempegaruh serg dsebut

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel

BAB I PENDAHULUAN. 1.1 Statistika Deskriptif dan Statistika Inferensial. 1.2 Populasi dan Sampel BAB I PENDAHULUAN 1.1 Statstka Deskrptf da Statstka Iferesal Dewasa d berbaga bdag lmu da kehdupa utuk memaham/megetahu sesuatu dperluka dat Sebaga cotoh utuk megetahu berapa bayak rakyat Idoesa yag memerluka

Lebih terperinci

Uji Statistika yangb digunakan dikaitan dengan jenis data

Uji Statistika yangb digunakan dikaitan dengan jenis data Uj Statstka yagb dguaka dkata dega jes data Jes Data omal Ordal Iterval da Raso Uj Statstka Koefse Kotges Rak Spearma Kedall Tau Korelas Parsal Kedall Tau Koefse Kokordas Kedall W Pearso Korelas Gada Korelas

Lebih terperinci

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling

BAB 2 LANDASAN TEORI. Analisis regresi adalah suatu proses memperkirakan secara sistematis tentang apa yang paling BAB LANDASAN TEORI Kosep Dasar Aalss Regres Aalss regres adalah suatu proses memperkraka secara sstemats tetag apa yag palg mugk terjad dmasa yag aka datag berdasarka formas yag sekarag dmlk agar memperkecl

Lebih terperinci

3 Departemen Statistika FMIPA IPB

3 Departemen Statistika FMIPA IPB Supleme Respos Pertemua ANALISIS DATA KATEGORIK (STK51) Departeme Statstka FMIPA IPB Pokok Bahasa Sub Pokok Bahasa Referes Waktu U potess Tga Cotoh atau Lebh U Kruskal-Walls (aalss ragam satu-arah berdasarka

Lebih terperinci

UKURAN GEJALA PUSAT DAN UKURAN LETAK

UKURAN GEJALA PUSAT DAN UKURAN LETAK UKURAN GEJALA PUSAT DAN UKURAN LETAK MODUL 4 UKURAN GEJALA PUSAT DAN UKURAN LETAK. Pedahulua Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu persoala, bak megea sampel atau pu

Lebih terperinci

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal)

LANGKAH-LANGKAH UJI HIPOTESIS DENGAN 2 (Untuk Data Nominal) LANGKAH-LANGKAH UJI HIPOTESIS DENGAN (Utuk Data Nomal). Merumuska hpotess (termasuk rumusa hpotess statstk). Data hasl peelta duat dalam etuk tael slag (tael frekues oservas) 3. Meetuka krtera uj atau

Lebih terperinci

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI

BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI BAB IX PENGGUNAAN STATISTIK DALAM SIMULASI 9.1. Dstrbus Kotu Dstrbus memlk sfat kotu dmaa data yag damat berjala secara kesambuga da tdak terputus. Maksudya adalah bahwa data yag damat tersebut tergatug

Lebih terperinci

S2 MP Oleh ; N. Setyaningsih

S2 MP Oleh ; N. Setyaningsih S2 MP Oleh ; N. Setyagsh MATERI PERTEMUAN 1-3 (1)Pedahulua pera statstka dalam peelta ; (2)Peyaja data : dalam betuk (a) tabel da (b) dagram; (3) ukura tedes setaral da ukura peympaga (4)dstrbus ormal

Lebih terperinci

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu

BAB II LANDASAN TEORI. Dalam pengambilan sampel dari suatu populasi, diperlukan suatu BAB II LADASA TEORI Dalam pegambla sampel dar suatu populas, dperluka suatu tekk pegambla sampel yag tepat sesua dega keadaa populas tersebut. Sehgga sampel yag dperoleh adalah sampel yag dapat mewakl

Lebih terperinci

Notasi Sigma. Fadjar Shadiq, M.App.Sc &

Notasi Sigma. Fadjar Shadiq, M.App.Sc & Notas Sgma Fadjar Shadq, M.App.Sc (fadjar_pg@yahoo.com & www.fadjarpg.wordpress.com Notas sgma memag jarag djumpa dalam kehdupa sehar-har, tetap otas tersebut aka bayak djumpa pada baga matematka yag la,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1 Pegerta Regres Istlah regres pertama kal dperkealka oleh Fracs Galto Meurut Galto, aalss regres berkeaa dega stud ketergatuga dar suatu varabel yag dsebut tak bebas depedet varable,

Lebih terperinci

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM

PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM PERTEMUAN III PERSAMAAN REGRESI TUJUAN PRAKTIKUM 1 Megetahu perhtuga persamaa regres ler Meggambarka persamaa regres ler ke dalam dagram pecar TEORI PENUNJANG Persamaa Regres adalah persamaa matematka

Lebih terperinci

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah

BAB III INTEGRAL RIEMANN-STIELTJES. satu pendekatan untuk membentuk proses titik. Berkaitan dengan masalah BAB III INEGRAL RIEMANN-SIELJES. Pedahulua Pada Bab, telah dsggug bahwa ukura meghtug merupaka salah satu pedekata utuk membetuk proses ttk. Berkata dega masalah perhtuga, ada hal meark yag perlu amat,

Lebih terperinci

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam

III. METODOLOGI PENELITIAN. Metode penelitian merupakan strategi umum yang di anut dalam III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka strateg umum yag d aut dalam pegumpula data da aalss data yag dperluka, gua mejawab persoala yag dhadap. Meurut Arkuto (006 : 3) peelta

Lebih terperinci

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS

SUM BER BELA JAR Menerap kan aturan konsep statistika dalam pemecah an masalah INDIKATOR MATERI TUGAS C. Pembelajara 3 1. Slabus N o STANDA R KOMPE TENSI KOMPE TENSI DASAR INDIKATOR MATERI TUGAS BUKTI BELAJAR KON TEN INDIKA TOR WAK TU SUM BER BELA JAR Meerap ka atura kosep statstka dalam pemecah a masalah

Lebih terperinci

BAB III UKURAN PEMUSATAN DATA

BAB III UKURAN PEMUSATAN DATA BAB III UKURAN PEMUSATAN DATA A. Ukura Gejala Pusat Ukura pemusata adalah suatu ukura yag meujukka d maa suatu data memusat atau suatu kumpula pegamata memusat (megelompok). Ukura pemusata data adalah

Lebih terperinci

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas:

ANALISIS REGRESI. Model regresi linier sederhana merupakan sebuah model yang hanya terdiri dari satu peubah terikat dan satu peubah penjelas: ANALISIS REGRESI Pedahulua Aalss regres berkata dega stud megea ketergatuga satu peubah (peubah terkat) terhadap satu atau lebh peubah laya (peubah pejelas). Jka Y dumpamaka sebaga peubah terkat da X1,X,...,X

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. melakukan smash sebelum dan sesudah latihan power otot lengan adalah sebagai BAB IV HASIL PENELITIAN DAN PEMBAHASAN 4. Deskrps Peelta Berdasarka hasl peelta, d peroleh data megea kemempua sswa melakuka smash sebelum da sesudah latha power otot lega adalah sebaga berkut : Tabel.

Lebih terperinci

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2

Jawablah pertanyaan berikut dengan ringkas dan jelas menggunakan bolpoin. Total nilai 100. A. ISIAN SINGKAT (Poin 20) 2 M 81 STTISTIK DSR SEMESTER II 11/1 KK STTISTIK, FMIP IT SOLUSI UJIN TENGH SEMESTER (UTS) Sabtu, 1 Me 1, Pukul 9. 1.4 WI (1 met) Kelas 1. Pegajar: Udjaa S. Pasarbu/Rr. Kura Novta Sar, Kelas. Pegajar: Utrwe

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN A. Jes Peelta Dalam pelta peelt megguaka racaga eksperme. Eksperme adalah observas dbawah kods buata (artfcal codto), dmaa kods tersebut dbuat da d atur oleh s peelt. Dega

Lebih terperinci

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran

STATISTIKA: UKURAN PEMUSATAN. Tujuan Pembelajaran Kurkulum 013/006 matematka K e l a s XI STATISTIKA: UKURAN PEMUSATAN Tujua Pembelajara Setelah mempelajar mater, kamu dharapka memlk kemampua berkut. 1. Dapat meetuka rata-rata data tuggal da data berkelompok..

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Latar Belakag Sampa saat, model Regres da model Aalss Varas telah dpadag sebaga dua hal ag tdak berkata. Meskpu merupaka pedekata ag umum dalam meeragka kedua cara pada taraf permulaa,

Lebih terperinci

BAB 5. ANALISIS REGRESI DAN KORELASI

BAB 5. ANALISIS REGRESI DAN KORELASI BAB 5. ANALISIS REGRESI DAN KORELASI Tujua utama aalss regres adalah mecar ada tdakya hubuga ler atara dua varabel: Varabel bebas (X), yatu varabel yag mempegaruh Varabel terkat (Y), yatu varabel yag dpegaruh

Lebih terperinci

UKURAN GEJALA PUSAT (UGP)

UKURAN GEJALA PUSAT (UGP) UKURAN GEJALA PUSAT (UGP) Pegerta: Rata-rata (average) alah suatu la yag mewakl suatu kelompok data. Nla dsebut juga ukura gejala pusat karea pada umumya mempuya kecederuga terletak d tegah-tegah da memusat

Lebih terperinci

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440)

Prosiding SNaPP2011 Sains, Teknologi, dan Kesehatan. 1 Joko Riyono. (Kampus A Jl.Kiyai Tapa No.1,Jakarta11440) Prosdg NaPP as, Tekolog, da Kesehata IN:89-58 MODIFIKAI TATITIK UJI-t PADA TET INFERENIA MEAN MEREDUKI PENGARUH KEAIMETRIKAN POPULAI MENGGUNAKAN EKPANI CORNIH-FIHER Joko Ryoo taf.pegajar Fakultas Tekolog

Lebih terperinci

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan,

BAB II TINJAUAN TEORITIS. Statistik merupakan cara cara tertentu yang digunakan dalam mengumpulkan, BAB II TINJAUAN TEORITIS.1 Kosep Dasar Statstka Statstk merupaka cara cara tertetu yag dguaka dalam megumpulka, meyusu atau megatur, meyajka, megaalsa da member terpretas terhadap sekumpula data, sehgga

Lebih terperinci

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data

4/1/2013. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut. Dengan: n = banyak data //203 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas Ukura

Lebih terperinci

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut

3/19/2012. Bila X 1, X 2, X 3,,X n adalah pengamatan dari sampel, maka rata-rata hitung dirumuskan sebagai berikut 3/9/202 UKURAN GEJALA PUSAT DAN UKURAN LETAK Kaa Evta Dew, S.Pd., M.S. Ukura gejala pusat Utuk medapatka gambara yag lebh jelas tetag sekumpula data megea sesuatu hal, bak tu dar sampel ataupu populas

Lebih terperinci

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi.

Mean untuk Data Tunggal. Definisi. Jika suatu sampel berukuran n dengan anggota x1, x2, x3,, xn, maka mean sampel didefinisiskan : n Xi. Mea utuk Data Tuggal Des. Jka suatu sampel berukura dega aggota x1, x, x3,, x, maka mea sampel ddesska : 1... N 1 Mea utuk Data Kelompok Des Mea dar data yag dkelompoka adalah : x x 1 1 1 dega : x = ttk

Lebih terperinci

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam

BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL. Masalah regresi invers dengan bentuk linear dapat dijumpai dalam BAB III MENYELESAIKAN MASALAH REGRESI INVERS DENGAN METODE GRAYBILL 3. Pegerta Masalah regres vers dega betuk lear dapat djumpa dalam berbaga bdag kehdupa, dataraya dalam bdag ekoom, kesehata, fska, kma

Lebih terperinci

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET

ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA Fakultas MIPA, Uverstas Neger Yogyakarta, 6 Me 9 ANALISIS INDEKS DISTURBANCES STORM TIME DENGAN KOMPONEN H GEOMAGNET Sty Rachyay Pusat Pemafaata Sas Atarksa,

Lebih terperinci

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu

Di dunia ini kita tidak dapat hidup sendiri, tetapi memerlukan hubungan dengan orang lain. Hubungan itu pada umumnya dilakukan dengan maksud tertentu KORELASI 1 D dua kta tdak dapat hdup sedr, tetap memerluka hubuga dega orag la. Hubuga tu pada umumya dlakuka dega maksud tertetu sepert medapat kergaa pajak, memperoleh kredt, memjam uag, serta mta pertologa/batua

Lebih terperinci

b) Untuk data berfrekuensi fixi Data (Xi)

b) Untuk data berfrekuensi fixi Data (Xi) B. Meghtug ukura pemusata, ukura letak da ukura peyebara data serta peafsraya A. Ukura Pemusata Data Msalka kumpula data berkut meujukka hasl pegukura tgg bada dar orag sswa. 0 cm 30 cm 5 cm 5 cm 35 cm

Lebih terperinci

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu,

BAB II TINJAUAN PUSTAKA. dua sampel berpasangan akan menggunakan statistik uji T 2 -Hotelling. Untuk itu, BAB II TINJAUAN PUSTAKA. Pedahulua Dalam bab aka dbahas tetag uj t utuk meguj sebuah parameter rata-rata da selsh dua parameter rata-rata dua sampel berpasaga dbawah asums populas berdstrbus ormal. Pada

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA. Peahulua Dalam bab aka membahas megea teor-teor tetag statstka oparametrk, korelas parsal tau Keall a korelas parsal meurut Ebuh GU a Oeka ICA.. Statstka Noparametrk Istlah oparametrk

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu

BAB 2 TINJAUAN TEORITIS. regresi berkenaan dengan studi ketergantungan antara dua atau lebih variabel yaitu BAB TINJAUAN TEORITIS. Pegerta Aalsa Regres Istlah regres pertama kal dperkealka oleh Fracs Galto. Meurutya, aalss regres berkeaa dega stud ketergatuga atara dua atau lebh varabel yatu varabel yag meeragka

Lebih terperinci

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian

BAB IV HASIL PENELITIAN. Hasil penelitian ini berdasarkan data yang diperoleh dari kegiatan penelitian BAB IV HASIL PENELITIAN Hasl peelta berdasarka data yag dperole dar kegata peelta yag tela dlaksaaka ole peelt d MTs Salafya II Radublatug Blora pada kelas VIII A tau ajara 1 11. Data asl peelta tersebut

Lebih terperinci

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI

BAB 6 PRINSIP INKLUSI DAN EKSKLUSI BB 6 PRINSIP INKLUSI DN EKSKLUSI Pada baga aka ddskuska topk berkutya yatu eumeras yag damaka Prsp Iklus da Eksklus. Kosep dalam bab merupaka perluasa de dalam Dagram Ve beserta oepras rsa da gabuga, amu

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB LANDASAN TEORI.1 Pegerta Regres Regres dalam statstka adalah salah satu metode utuk meetuka tgkat pegaruh suatu varabel terhadap varabel yag la. Varabel yag pertama dsebut dega bermacam-macam stlah:

Lebih terperinci

8. MENGANALISIS HASIL EVALUASI

8. MENGANALISIS HASIL EVALUASI 8. MENGANALISIS HASIL EVALUASI Tujua : Mampu megaalsa tgkat kesukara hasl evaluas utuk megkatka hasl proses pembelajara Kegata megaals hasl evaluas merupaka upaya utuk memperbak programprogram pembelajara

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Idah Vltr, Harso, Haposa Srat Mahassa Program S Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu

Lebih terperinci

REGRESI LINIER SEDERHANA

REGRESI LINIER SEDERHANA MODUL REGRESI LINIER SEDERHANA Dsusu oleh : I MADE YULIARA Jurusa Fska Fakultas Matematka Da Ilmu Pegetahua Alam Uverstas Udayaa Tahu 016 Kata Pegatar Puj syukur saya ucapka ke hadapa Tuha Yag Maha Kuasa

Lebih terperinci

SIFAT-SIFAT LANJUT FUNGSI TERBATAS

SIFAT-SIFAT LANJUT FUNGSI TERBATAS Bulet Ilmah Mat. Stat. da Terapaya (Bmaster) Volume 03, No. 2(204), hal 35 42. SIFAT-SIFAT LANJUT FUNGSI TERBATAS Suhard, Helm, Yudar INTISARI Fugs terbatas merupaka fugs yag memlk batas atas da batas

Lebih terperinci

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis

STATISTIK. Ukuran Gejala Pusat Ukuran Letak Ukuran Simpangan, Dispersi dan Variasi Momen, Kemiringan, dan Kurtosis STATISTIK Ukura Gejala Pusat Ukura Letak Ukura Smpaga, Dspers da Varas Mome, Kemrga, da Kurtoss Notas Varabel dyataka dega huruf besar Nla dar varabel dyataka dega huruf kecl basaya dtuls Tmes New Roma

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013.

BAB III METODOLOGI PENELITIAN. Propinsi Gorontalo tahun pelajaran 2012/2013. BAB III METODOLOGI PENELITIAN 3.. Tempat da Waktu Peelta Peelta dlaksaaka d SMP Neger 3 Gorotalo kota Gorotalo Props Gorotalo tahu pelajara 0/03. D SMP Neger 3 Gorotalo memlk 6 romboga belajar yag terdr

Lebih terperinci

MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS. Anneke Iswani A **

MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS. Anneke Iswani A ** MENAKSIR PROPORSI CALON PEMIMPIN DARI KELOMPOK MINORITAS Aeke Iswa A ** Abstrak Apaba berhadapa dega data has meghtug yag berupa frekues, kemuda dtetuka varabe bebas da tak bebas yag berupa propors, maka

Lebih terperinci

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi

STATISTIKA A. Definisi Umum B. Tabel Distribusi Frekuensi STATISTIKA A. Des Umum. Pegerta statstk Statstk adalah kumpula akta yag berbetuk agka da dsusu dalam datar atau tabel yag meggambarka suatu persoala. Cotoh: statstk kurs dolar Amerka, statstk pertumbuha

Lebih terperinci

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB

Penarikan Contoh Gerombol (Cluster Sampling) Departemen Statistika FMIPA IPB Pearka Cotoh Gerombol (Cluster Samplg) Departeme Statstka FMIPA IPB Radom samplg (Revew) Smple radom samplg Stratfed radom samplg Rato, regresso, ad dfferece estmato Systematc radom samplg Cluster radom

Lebih terperinci

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu

METODOLOGI PENELITIAN. pengaruh atau akibat dari suatu perlakuan atau treatment, dalam hal ini yaitu 47 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta yag dguaka dalam peelta adalah metode eksperme. Metode dguaka atas pertmbaga bahwa sfat peelta ekspermetal yatu mecobaka suatu program latha

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Defes Aalss Korelas da Regres a Aalss Korelas adalah metode statstka yag dguaka utuk meetuka kuatya atau derajat huuga lear atara dua varael atau leh. Semak yata huuga ler gars lurus,

Lebih terperinci

X a, TINJAUAN PUSTAKA

X a, TINJAUAN PUSTAKA PENELITIAN SEBELUMNYA Statstka Deskrptf TINJAUAN PUSTAKA TINJAUAN STATISTIKA Uj Idepedes Uj depedes dguak utuk megetahu adaya hubuga atara dua varabel (Agrest, 1990). H 0 : tdak ada hubuga atara varabel

Lebih terperinci

BAB 1 STATISTIKA RINGKASAN MATERI

BAB 1 STATISTIKA RINGKASAN MATERI BAB STATISTIKA A RINGKASAN MATERI. Pegerta Data adalah kumpula keteraga-keteraga atau catata-catata megea suatu kejada, dapat berupa blaga, smbol, sat atau kategor. Masg-masg keteraga dar data dsebut datum.

Lebih terperinci

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang

III. METODOLOGI PENELITIAN. Menurut Arikunto (1991 : 3) penelitian eksperimendalah suatu penelitian yang 37 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta merupaka suatu cara tertetu yag dguaka utuk meelt suatu permasalaha sehgga medapatka hasl atau tujua yag dgka. Meurut Arkuto (1991 : 3) peelta

Lebih terperinci

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2

INTERVAL KEPERCAYAAN UNTUK PERBEDAAN KOEFISIEN VARIASI DARI DISTRIBUSI LOGNORMAL I. Pebriyani 1*, Bustami 2, S. Sugiarto 2 INTERVAL KEPERCAAAN UNTUK PERBEDAAN KOEFIIEN VARIAI DARI DITRIBUI LOGNORMAL I. Pebrya * Bustam. ugarto Mahasswa Program Matematka Dose Jurusa Matematka Fakultas Matematka da Ilmu Pegetahua Alam Uverstas

Lebih terperinci

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP

TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM. Sudarno Jurusan Matematika FMIPA UNDIP JURNAL MATEMATIKA DAN KOMPUTER Vol. 7. No. 1, 11-19, Aprl 004, ISSN : 1410-8518 TAKSIRAN UMUR SISTEM DENGAN UMUR KOMPONEN BERDISTRIBUSI SERAGAM Sudaro Jurusa Matematka FMIPA UNDIP Abstrak Sstem yag dbetuk

Lebih terperinci

BAB III PERSAMAAN PANAS DIMENSI SATU

BAB III PERSAMAAN PANAS DIMENSI SATU BAB III PERSAMAAN PANAS DIMENSI SAU Pada baga sebelumya, kta telah membahas peerapa metoda Ruge-Kutta orde 4 utuk meyelesaka masalah la awal dar persamaa dferesal basa orde. Pada bab, kta aka melakuka

Lebih terperinci

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan

III BAHAN/OBJEK DAN METODE PENELITIAN. Objek yang digunakan dalam penelitian ini adalah 50 ekor sapi Pasundan III BAHAN/OBJEK DAN METODE PENELITIAN 3.1. Baha da Alat Peelta 3.1.1. Baha Peelta Objek yag dguaka dalam peelta adalah 50 ekor sap Pasuda jata da beta dewasa dega umur -3 tahu da tdak butg utuk meghdar

Lebih terperinci

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL

ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Prosdg Semar Nasoal Peelta, Peddka da Peerapa MIPA, Fakultas MIPA, Uverstas Neger Yogyakarta, 4 Me ANALISIS PEUBAH PREDIKTOR YANG MEMUAT KESALAHAN PENGUKURAN DENGAN REGRESI ORTOGONAL Ksmat Jurusa Peddka

Lebih terperinci

Analisis Korelasi dan Regresi

Analisis Korelasi dan Regresi Aalss Korelas da Regres Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uad LOGO www.themegaller.com LOGO Data varat Data dega dua varael Terhadap satu pegamata dlakuka pegukurapegamata terhadap varael

Lebih terperinci

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat.

KALKULUS LANJUT. Pertemuan ke-4. Reny Rian Marliana, S.Si.,M.Stat. KALKULUS LANJUT Pertemua ke-4 Rey Ra Marlaa, S.S.,M.Stat. Plot Mater Notas Jumlah & Sgma Itegral Tetu Jumlah Rema Pedahulua Luas Notas Jumlah & Sgma Purcell, et all. (page 226,2003): Sebuah fugs yag daerah

Lebih terperinci

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas

TEKNIK SAMPLING. Hazmira Yozza Izzati Rahmi HG Jurusan Matematika FMIPA Universitas Andalas TEKNIK SAMPLING Hazmra Yozza Izzat Rahm HG Jurusa Matematka FMIPA Uverstas Adalas Defs Suatu cotoh gerombol adalah suatu cotoh acak sederhaa dmaa setap ut pearka cotoh adalah kelompok atau gerombol dar

Lebih terperinci

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE)

Jurnal Matematika Murni dan Terapan Vol. 4 No.2 Desember 2010: ANALISIS REGRESI LINEAR BERGANDA DENGAN SATU VARIABEL BONEKA (DUMMY VARIABLE) Jural Matematka Mur da Terapa Vol. 4 No. esember : 4 - ANALISIS REGRESI LINEAR BERGANA ENGAN SATU VARIABEL BONEKA (UMMY VARIABLE Tat Krsawardha Nur Salam da ew Aggra Program Stud Matematka Uverstas Lambug

Lebih terperinci

Regresi Linier Sederhana Definisi Pengaruh

Regresi Linier Sederhana Definisi Pengaruh Regres Ler Sederhaa Dah Idra Baga Bostatstka da Kepeduduka Fakultas Kesehata Masyarakat Uverstas Arlagga Defs Pegaruh Jka terdapat varabel, msalka da yag data-dataya dplot sepert gambar dbawah 3 Defs Pegaruh

Lebih terperinci

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si.

Ukuran Pemusatan Data. Arum Handini P., M.Sc Ayundyah K., M.Si. Ukura Pemusata Data Arum Had P., M.Sc Ayudyah K., M.S. Notas utuk Populas da Sampel Notas: Mea (rata-rata) Sample x Populas μ Varas s 2 σ 2 Smpaga baku s σ Ukura Pemusata Data 1. Mea (rata-rata) 2. Meda

Lebih terperinci

Penarikan Contoh Acak Sederhana (Simple Random Sampling)

Penarikan Contoh Acak Sederhana (Simple Random Sampling) Pearka Cotoh Acak Sederhaa (Smple Radom Samplg) Defs Jka sebuah cotoh berukura dambl dar suatu populas sedemka rupa sehgga setap cotoh berukura ag mugk memlk peluag sama utuk terambl, maka prosedur tu

Lebih terperinci

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI

KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI KOMBINASI PENAKSIR RASIO UNTUK RATA-RATA POPULASI PADA SAMPLING ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KOEFISIEN KURTOSIS DAN KOEFISIEN VARIASI Defl Ardh 1, Frdaus, Haposa Srat defl_math@ahoo.com

Lebih terperinci

SOLUSI TUGAS I HIMPUNAN

SOLUSI TUGAS I HIMPUNAN Program Stud S1 Tekk Iformatka Fakultas Iformatka, Telkom Uversty SOLUSI TUGAS I HIMPUNAN Matematka Dskrt (MUG2A3) Halama 1 dar 6 Soal 1 Tetukalah eleme-eleme dar hmpua berkut! 2 x x adalah blaga real

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE MAKSIMUM LIKELIHOOD Eka Mer Krst ), Arsma Ada ), Sgt Sugarto ) ekamer_tross@ymal.com ) Mahasswa Program S Matematka FMIPA-UR

Lebih terperinci

2.2.3 Ukuran Dispersi

2.2.3 Ukuran Dispersi 3 Ukura Dspers Yag aka dbahas ds adalah smpaga baku da varas karea dua ukura dspers yag palg serg dguaka Hubuga atara smpaga baku dega varas adalah Varas = Kuadrat dar Smpaga baku otas yag umum dguaka

Lebih terperinci

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN

PENAKSIR RASIO REGRESI LINEAR YANG EFISIEN UNTUK RATA-RATA POPULASI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN PENAKIR RAIO REGREI LINEAR ANG EFIIEN UNTUK RATA-RATA POPULAI DENGAN MENGGUNAKAN DUA VARIABEL TAMBAHAN Ed Jamlu 1* Harso Haposa rat 1 Mahasswa Program tud 1 Matematka Dose Jurusa Matematka Fakultas Matematka

Lebih terperinci

BAB III ISI. x 2. 2πσ

BAB III ISI. x 2. 2πσ BAB III ISI 4. Keadata Normal Multvarat da Sfat-sfatya Keadata ormal multvarat meruaka geeralsas dar keadata ormal uvarat utuk dmes. f ( x) [( x )/ ] / = e x π x = ( x )( ) ( x ). < < (-) (-) Betuk (-)

Lebih terperinci

III. METODOLOGI PENELITIAN. Metode penelitian adalah adalah suatu cara berfikir dan berbuat, yang

III. METODOLOGI PENELITIAN. Metode penelitian adalah adalah suatu cara berfikir dan berbuat, yang 8 III. METODOLOGI PENELITIAN A. Metode Peelta Metode peelta adalah adalah suatu cara berfkr da berbuat, yag dpersapka dega bak utuk megadaka suatu kegata peelta da utuk mecapa suatu tujua dega sebak mugk

Lebih terperinci

*Corresponding Author:

*Corresponding Author: Prosdg Semar Sas da Tekolog FMIPA Umul Vol. No. Jul 0, Samarda, Idoesa ISSN : - 0 STRUCTURAL EQUATION MODELLING DENGAN PENDEKATAN PARTIAL LEAST SQUARE (Stud Kasus: Pegaruh Locus of Cotrol, Self Effcacy,

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

BAB IV HASIL PENELITIAN DAN PEMBAHASAN 5 BAB IV HASIL PENELITIAN DAN PEMBAHASAN A. Dekrp Data Hal Peelta Setelah melakuka peelta, peelt medapatka hal tud lapaga utuk memperoleh data dega tekk te, etelah dlakuka uatu pembelajara atara kelompok

Lebih terperinci

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real.

BAB 5 BARISAN DAN DERET KOMPLEKS. Secara esensi, pembahasan tentang barisan dan deret komlpeks sama dengan barisan dan deret real. BAB 5 BARIAN DAN DERET KOMPLEK ecara eses, pembahasa tetag barsa da deret komlpeks sama dega barsa da deret real. 5. Barsa Barsa merupaka sebuah fugs dega doma berupa hmpua blaga asl N. ebuah barsa kompleks

Lebih terperinci

; θ ) dengan parameter θ,

; θ ) dengan parameter θ, Vol. 4. No. 3, 5-59, Desember 00, ISSN : 40-858 APLIKASI METODE BESARAN PIVOTAL DALAM PENENTUAN SELANG KEYAKINAN TAKSIRAN PARAMETER POPULASI. Agus Rusgyoo Jurusa Matematka FMIPA UNDIP Abstraks Dberka populas

Lebih terperinci

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J)

STATISTIKA. A. Tabel Langkah untuk mengelompokkan data ke dalam tabel distribusi frekuensi data berkelompok/berinterval: a. Rentang/Jangkauan (J) STATISTIKA A. Tabel Lagkah utuk megelompokka data ke dalam tabel dstrbus frekues data berkelompok/berterval: a. Retag/Jagkaua (J) J X maks X m b. Bayak kelas (k) Megguaka atura Sturgess, yatu k,. log c.

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB METODE PENELTAN 3.1 Tempat da Waktu Peelta Peelta dlaksaaka d areal/wlaah koses huta PT. Sarmeto Parakata Tmber, Kalmata Tegah pada bula Aprl sampa dega Me 007. 3. Baha da Alat Baha ag dguaka utuk

Lebih terperinci

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP

BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP BAB IV BATAS ATAS BAGI JARAK MINIMUM KODE SWA- DUAL GENAP Msal dguaka kode ler C[, k, d] dega matrks pembagu G da matrks cek partas H. Sebuah blok formas x = x 1 x 2 x k, x = 0 atau 1, yag aka dkrm terlebh

Lebih terperinci

Tabel Distribusi Frekuensi

Tabel Distribusi Frekuensi Tabel Dstrbus Frekues Tabel dstrbus frekues adalah susua data meurut kelas-kelas terval tertetu atau meurut kategor tertetu dalam sebuah daftar. Dar dstrbus frekues, dapat dperoleh keteraga atau gambara

Lebih terperinci

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI

MINGGU KE-10 HUBUNGAN ANTAR KONVERGENSI MINGGU KE-0 HUBUNGAN ANTAR KONVERGENSI Hubuga atar koverges Hrark atar koverges dyataka dalam teorema berkut. Teorema Msalka X da X, X, X 3,... adalah varabel radom yag ddefska pada ruag probabltas yag

Lebih terperinci

XI. ANALISIS REGRESI KORELASI

XI. ANALISIS REGRESI KORELASI I ANALISIS REGRESI KORELASI Aalss regres mempelajar betuk hubuga atara satu atau lebh peubah bebas dega satu peubah tak bebas dalam peelta peubah bebas basaya peubah yag dtetuka oelh peelt secara bebas

Lebih terperinci

Bab II Teori Pendukung

Bab II Teori Pendukung Bab II Teor Pedukug.. asar Statstka Utuk keperlua peaksra outstadg clams lablty, pegetahua dalam statstka mead hal yag petg. asar statstka yag dguaka dalam tess atara la :. strbus ormal Sebuah peubah acak

Lebih terperinci

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan

PENDAHULUAN Metode numerik merupakan suatu teknik atau cara untuk menganalisa dan menyelesaikan masalah masalah di dalam bidang rekayasa teknik dan Aalsa Numerk Baha Matrkulas PENDAHULUAN Metode umerk merupaka suatu tekk atau cara utuk megaalsa da meyelesaka masalah masalah d dalam bdag rekayasa tekk da sa dega megguaka operas perhtuga matematk Masalah-masalah

Lebih terperinci

BAB V ANALISIS HIDROLOGI

BAB V ANALISIS HIDROLOGI ANALISIS HIDROLOGI 64 BAB V ANALISIS HIDROLOGI 5.. Tjaua Umum Utuk meetuka debt recaa, dapat dguaka beberapa metode atau cara. Metode yag dguaka sagat tergatug dar data yag terseda, data data tersebut

Lebih terperinci

TINJAUAN PUSTAKA Evaluasi Pengajaran

TINJAUAN PUSTAKA Evaluasi Pengajaran TINJAUAN PUSTAKA Evaluas Pegajara Evaluas adalah suatu proses merecaaka, memperoleh da meyedaka formas yag sagat dperluka utuk membuat alteratf- alteratf keputusa. Dalam hubuga dega kegata pegajara evaluas

Lebih terperinci

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo

BAB III METODOLOGI PENELITIAN. Penelitian ini dilaksanakan di SMP Negeri 15 di kota Gorontalo BAB III METODOLOGI PENELITIAN 3. Tempat Da Waktu Peelta 3.. Tempat peelta Peelta dlaksaaka d SMP Neger 5 d kota Gorotalo 3.. Waktu peelta Peelta dlaksaaka sejak bula oktober hgga bula desember, yag melput

Lebih terperinci

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling.

METODE PENELITIAN. Kota Bogor. Kecamatan Bogor Barat. Purposive. Kelurahan Cilendek Barat RW 05 N1= 113. Cluster random sampling. METODE PENELITIAN Desa, Tempat da Waktu Peelta Peelta megguaka desa cross sectoal study. Lokas peelta d Kota Bogor. Pemlha lokas peelta secara purposve dega pertmbaga merupaka salah satu kecamata dega

Lebih terperinci

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani

FMDAM (2) TOPSIS TOPSIS TOPSIS. Charitas Fibriani FMDAM (2) Chartas Fbra Techque for Order Preferece by Smlarty to Ideal Soluto () ddasarka pada kosep dmaa alteratf terplh yag terbak tdak haya memlk jarak terpedek dar solus deal postf, amu juga memlk

Lebih terperinci

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL

TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL TAKSIRAN PARAMETER DISTRIBUSI WEIBULL DENGAN MENGGUNAKAN METODE MOMEN DAN METODE KUADRAT TERKECIL Hesty ala, Arsma Ada, Bustam hestyfala@ymalcom Mahasswa Program S Matematka MIPA-UR Dose Matematka MIPA-UR

Lebih terperinci