BAB 4 Sistem Persamaan Linear

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 4 Sistem Persamaan Linear"

Transkripsi

1 Cttn Kih BAB 4 Sistem Persmn Liner. Tinjn Ung Mtrik. Sistem Liner Segitig Ats. Eiminsi Gss dn Pivoting 4. Invers Mtriks 5. Dekomposisi Segitig 6. Metode Itersi Jcobi dn Gss-Seide 7. Sistem Liner Tridigon

2 Cttn Kih. Tinjn Ung Mtrik Mtrik dh deretn bingn berbentk sik empt yng dissn secr bersistem dm bris-bris dn koom-koom. Mtrik yng mempnyi M bris dn koom disebt mtrik M. Hrf kpit A menytkn st mtrik dn hrf keci berindeks ij menytkn st dri bingn-bingn yng membentk mtrik, ditis A ( ) ntk i M dn ij M dengn ij dh bingn yng d dioksi (i, j), yit eemen yng berd pd bris ke-i dn koom ke-j dm deretn tersebt. Dm bentk rinci ditis, j j A i i ij i Bris ke-i M M Mj M Koom ke-j j

3 Cttn Kih Beberp mtriks khss: Mtriks Bjr sngkr Mtriks bjr sngkr dh mtriks yng bnykny bris sm dengn bnykny koom. A berkrn. Mtriks Digon Mtriks digon dh mtrik bjrsngkr dengn sem eemen bkn digon bernii no. D Mtriks Stn Mtriks stn dh mtrik digon yng sem eemenny bernii st. Mtriks Segitig ts Mtrik segitig ts dh mtriks bjr sngkr dengn sem eemen di bwh digon bernii no. ij ntk i > j. I U

4 Cttn Kih Mtriks Segitig bwh Mtriks segitig bwh dh mtriks bjr sngkr dengn sem eemen di ts digon bernii no. ij ntk i < j. Mtriks Tridigon Mtriks tridigon dh mtrik bjrsngkr yng memenhi ij ntk i j T L Sistem Persmn Liner Sistem M persmn iner t himpnn M persmn iner simtn dm bingn,,, n yng tidk dikethi dh st himpnn persmn berbentk M M M c c c M Koefisien-koefisien ij dn c i dh bingn-bingn yng diberikn Sistem disebt homogen bi sem c i no, jik tidk sistem disebt tk homogen. 4

5 Cttn Kih Sistem persmn iner tersebt dpt jg ditiskn sebgi st persmn vektor, AX C dengn mtriks koefisien A [ ij ] dh mtriks M, c c A Sedngkn X dn C M M M c M dh vektorvektor koom Sosi dri sistem persmn iner dh himpnn bingn,,, yng memenhi sem M persmn tersebt. Vektor sosi dri sistem persmn iner dh vektor X yng komponen-komponenny merpkn sosi dri sistem persmn tersebt. 5

6 Cttn Kih. Sistem Liner Segitig Ats Sistem persmn iner AX C, dengn mtrik koefisien A berp mtrik segitig ts, dpt ditis dm bentk, Dengn smsi eemen-eemen c digon tk no, kk, ntk c k,,,, mk terdpt st sosi tngg dri sistem iner tersebt.,, c Jik smsi ini tidk terpenhi, mk kn tidk terdpt sosi c t tk hingg bnykny sosi Sosiny dpt dicri dengn mekkn penyihn mndr, yit dengn menyeesikn persmn terkhir pertm ki, diperoeh nii, setersny nii - dn yng terkhir diperoh dri persmn pertm dh nii. c Persmn terkhir bi diseesikn kn menghsikn dengn ii yng dikethi dpt dignkn dm persmn sebem persmn terkhir, diperoeh - dengn c,, 6

7 Cttn Kih Senjtny nii dn - dipki ntk mencri nii -. c,,, Seteh nii-nii, X -, -,, k dikethi, diperoeh nii k sebgi, k c k kk kj j k j, k,,, Agoritm Penyihn Mndr ntk sistem iner Segitig ts Mskn : n; ij, i, j,,,, n; c i, i,,,, n Lngkh-ngkh: c : Untk k : n-, n-,, kkn Jmh : Untk j : k, k,, n kkn k c Jmh : jmh kj. j k jmh kk 7

8 Cttn Kih Determinn mtrik Segitig Ats Jik A mtrik segitig, mk det(a), determinn A, diberikn oeh hsiki eemen-eemen digon, det(a).. Contoh 4. Gnkn penyihn mndr ntk menyeesikn sistem persmn iner Jwb Dri persmn terkhir diperoeh 4 6/. Dengn memki 4 ntk mendptkn dri persmn ketig, diperoeh 4 5() 6 Dengn memki 4 dn ntk mendptkn dri persmn ked, diperoeh 7 7( ) 4() 4 ( 4) ( ) () 4 Akhirny diperoeh dri persmn pertm, 8

9 Cttn Kih. Eiminsi Gss dn Pivoting Akn dikembngkn sebh skem yng ebih efisien ntk menyeesikn sistem persmn iner mm AX C, dengn persmn dn bingn yng tidk dikethi. Crny dh sistem persmn iner mm tersebt dirbh menjdi sebh sistem persmn segitig ts UX Y yng setr dn kemdin dpt diseesikn menggnkn metode penyihn mndr. D sistem persmn iner berkrn diktkn setr jik himpnnhimpnn sosiny sm. Teorem-teorem dri jbr iner memperihtkn bhw bimn trnsformsi tertent diterpkn pd st sistem yng dikethi, mk himpnn sosiny tidk berbh. Opersi-opersi berikt bi diterpkn pd sistem iner kn menghsikn sistem yng setr.. Pertkrn : rtn dri d persmn dpt ditkr.. Penskn : perkin sebh persmn dengn konstnt tk no.. Penggntin : sebh persmn dpt digntikn oeh jmh persmn it dengn st keiptn sebrng persmn inny. 9

10 Cttn Kih Contoh 4. Crih persmn prbo y A B C yng mei titik-titik (,), (,-) dn (,). Jwb Untk msing-msing titik diperoeh persmn yng mengitkn nii terhdp nii y. Hsiny berp sistem A B A B 4C C A B 9C Pebh A dieiminsi dri persmn ked dn ketig dengn cr msing- msing mengrngkn persmn pertm dri ked dn ketig, diperoeh A B C B C B 8C Pebh B dieiminsi dri persmn ketig dengn cr mengrngknny dengn d ki persmn ked, diperoeh persmn yng setr A B C B C C 4 Dengn penyihn mndr diperoeh C, B -8 dn A 7 sehingg persmn prbo dh y 7-8.

11 Cttn Kih Cr yng ping efisien menyeesikn sistem iner AX C dh menyimpn sem koefisienny dm rry berkrn (). Koefisienkoefisien C disimpn dm koom dri rry, yit i, c i. Tip bris memt sem koefisien yng diperkn ntk menytkn st persmn dm sistem iner. Mtrik yng diengkpi, disingkt mtrik engkp dinytkn oeh [A,C] sehingg sistem iner dinytkn sebgi, c c [ A, C] c Sistem iner AX C dengn mtrik engkp yng diberikn dpt diseesikn dengn mekkn opersi bris eementer (OBE) pd mtrik engkp [A,C]. Pebh-pebh k dh pemegng posisi ntk koefisien-koefisien dn dpt dihingkn smpi khir perhitngn. Opersi-opersi bris berikt bi diterpkn pd mtrik engkp kn menghsikn sistem yng setr.. Pertkrn : rtn dri d bris dpt ditkr.. Penskn : perkin sebh bris dengn konstnt tk no.. Penggntin : sebh bris dpt digntikn oeh jmh bris it dengn st keiptn sebrng bris inny.

12 Cttn Kih Tmpn Bingn kk pd posisi (k, k) yng dipki ntk mengeiminsi k dm bris-bris k, k,, dinmkn eemen tmpn ke-k, dn k disebt bris tmpn. Contoh 4. ytkn sistem berikt dm bentk mtrik engkp dn cri st sistem segitig ts yng setr sert sosiny. 4 4 Jwb Mtrik engkpny dh: Tmpn p p 4 p Diperoeh hsi, Bris pertm sebgi bris tmpn yng dipki ntk mengeiminsi koom pertm dibwh digon dn sebgi eemen tmpn. ii p i dh pengi bris pertm yng hrs dikrngi dri bris i ntk i,, 4.

13 Cttn Kih Tmpn p.5 p Tmpn p Bris ked sebgi bris tmpn yng dipki ntk mengeiminsi koom ked dibwh 4 5 digon dn 6 5 sebgi eemen tmpn. ii p i dh pengi bris ked yng hrs dikrngi dri bris i ntk i, 4. Diperoeh hsi, 4 Bris ketig sebgi bris tmpn yng dipki ntk mengeiminsi koom ketig dibwh 4 5 digon dn sebgi eemen tmpn. ii p 4 dh pengi bris ketig yng hrs dikrngi dri bris ke 4. Diperoeh hsi, 4 Berp mtriks segitig ts. 4 5 Menggnkn goritm penyihn mndr diperoeh 4, 4, - dn. 9 8 Proses yng dikkn di ts disebt dengn proses eiminsi Gss.

14 Cttn Kih Proses eiminsi Gss hrs dimodifiksi sehingg dpt dipki dm kedn ppn. Pivoting Jik kk mk bris ke-k tidk dpt dipki sebgi eemen tmpn. Kren it per mencri bris r, dengn rk dn r > k dn kemdin mempertkrkn bris k dn bris r sehingg diperoeh eemen tmpn tk no. Proses ini disebt pivoting, dn kriteri penentn bris mn yng dipiih disebt strtegi pivoting. Jdi strtegi pivoting yng ping sederhn dh jik kk mk ngsng dinjtkn mekkn eiminsi sedngkn jik kk mk dikkn pivoting. Agoritm Eiminsi Gss Diberikn mtrik engkp A [ ij ], n (n); terdiri dri [A,C]. Untk k,,,, n- kkn Cri i > k yng terkeci sehingg ik Jik i demikin tk d mk beri tnd bhw A singir dn berhenti Jik tidk, tkrkn isi bris I dn k dri A dn njtkn Untk i k, k,, n kkn p : ik / b kk Untk j k, k,, n kkn ij : ij p. kj Jik nn mk beri tnd bhw A singir dn berhenti. Lnjtkn dengn goritm penyihn mndr. 4

15 Cttn Kih Pivoting ntk memperkeci gt Jik terdpt beberp eemen tk no pd koom k yng teretk pd t di bwh digon, mk terdpt piihn ntk menentkn bris mn yng yng ditkr. Pivoting prsi ping mm dignkn. Kren kompter menggnkn hitngn presisi tetp, mk dimngkinkn bhw st gt keci kn terjdi setip ki opersi hitngn diksnkn. Untk memperkeci permbtn gt, mk periks besrny sem eemen di koom ke k yng teretk pd t di bwh digon, dn meoksikn bris r yng mempnyi eemen dengn nii mtk terbesr, yit rk mks{ kk, k, k,,, Kemdin menkrkn bris r dn bris k ntk r > k. Bisny mkin besr eemen tmpnny, kn menghsikn permbtn gt yng mkin keci, k k } 5

16 Cttn Kih Agoritm Eiminsi Gss dengn Pivoting Prsi Mskn : n ; ij, i,,, n ; j,,, n Lngkh-ngkh: Untk k,,,, n- kkn : k Untk i k, k,, n kkkn Jik ik > k mk : i Jik k mk mtrik singir dn hentikn proses Jik k mk Untk j k, k,, n kkn t : kj ; kj : j ; j : t Untk i k, k,, n kkn p : ik / kk Untk j k, k,, n kkn ij : ij p. kj n : n,n / nn Untk k : n-, n-,, kkn jmh : Untk j : k, k,, n kkn jmh : jmh kj. j k : ( k,n - jmh)/ kk Ltihn : Apiksikn goritm Eiminsi Gss dengn Pivoting Prsi ntk menyeesikn msh pd Contoh 4.. 6

17 Cttn Kih 4. Invers Mtriks Vrisi in dri eiminsi Gss dh eiminsi Gss-Jordn. Dm h ini penyihn mndr dm eiminsi Gss dihindri dengn mekkn perhitngn tmbhn yng meredksi mtriks ke bentk digon sebgi penggnti bentk segitig. Metode ini mempnyi kentngn dm menyeesikn sistem persmn pd kompter. Invers (bikn) st mtriks bjr sngkr A yng tk singir pd prinsipny dpt ditentkn dri penyeesin n sistem, AX c j, j,,, n dengn c j dh koom ke-j dri mtrik stn nn. Cr in yng ebih diski ntk menghsikn invers dri mtrik A, yit A -, dh menggnkn eiminsi Gss-Jordn ntk mengopersikn mtriks A dn mtrik stn I sehingg msing-msing diredksi menjdi mtrik I dn mtriks A -. Penyeesin sistem persmn iner n n dpt dikkn dengn mencri invers dri mtriks A. Sosi ntk AX C diberikn oeh X A - C. mn secr nmerik cr ini tidk efisien. 7

18 Cttn Kih Contoh 4.4 Tentkn invers dri mtrik Jwb A 5 Mi dengn mtrik engkp [A, I] Eiminsi eemen-eemen pd koom keci pd digon A Tkr bris dengn bris, kemdin bgi bris sehingg Tkr bris dengn bris, kemdin bgi bris sehingg..4 Bgi bris dengn - sehingg Mtrik Stn mnc pd bgin kiri dri mtriks engkp dn mtriks invers pd bgin knn, sehingg Eiminsi eemen-eemen pd koom di bwh digon Eiminsi eemen-eemen pd koom di ts digon 8

19 Cttn Kih Agoritm Gss-Jordn ntk Invers Mtriks Mskn : n ; ij, i,,, n ; j,,, n (Mtrik A dh mtrik engkp [A,I]) Lngkh-ngkh: Untk k,,,, n kkn : k Jik k n, njtkn ke ngkh () Untk i k, k,, n kkkn Jik ik > k mk : i () Jik k mk mtrik singir dn hentikn proses Jik k mk Untk j k, k,, n kkn t : kj ; kj : j ; j : t Untk j k, k,, n kkn kj : kj / kk kk : Untk i,,, n kkn jik i k mk p : ik / b kk ntk j : k, k,, n kkn ij : ij - p kj Ltihn : Apiksikn goritm Eiminsi Gss-Jordn ntk invers mtriks ntk menyeesikn msh pd Contoh 4.4. rwen, M.Si / Jrsn Mtemtik FMIPA Unnd 9

20 Cttn Kih 5. Dekomposisi Segitig Pd sb-bb terdh teriht bhw betp mdhny ntk menyeesikn sistem segitig ts. Kren it, diberikn mtrik A yng tksingir, kemdin fktorkn mtrik A tersebt menjdi mtrik segitig ts U dn mtrik segitig bwh L. Agr mtrik U dn L tngg mk eemen-eemen digonny tidk boeh sebrng. Ad d mcm pemfktorn.. Pemfktorn Dooitte, mensyrtkn eemen digon L semny bernii dn eemen digon U tkno. Miskn mtrik A berkrn, bi A. difktorkn diperoeh: b. Pemfktorn Crot, mensyrtkn eemen digon L tkno dn sem eemen digon U bernii. Miskn mtrik A A berkrn, bi. difktorkn diperoeh:

21 Cttn Kih Jik penkrn bris tidk diperkn pd wkt menggnkn eiminsi Gss, mk pengi-pengi p ij dh eemen-eemen digon bwh dri mtrik L dm pemfktorn Dooitte. Miskn ntk mtriks A berkrn, mk p, p dn p. Sein it, eemen-eemen dri mtrik L dn U dpt dihitng secr ngsng, dengn menghitng hsi ki LU kemdin memki sift kesmn d mtriks LU A. Penyeesin sistem persmn iner. Miskn A dh mtrik koefisien dri sistem iner AX C yng mempnyi pemfktorn segitig A LU. Sosi dri sistem iner LUX C diperoeh dengn cr mendefinisikn Y UX dn kemdin menyeesikn d sistem LY C dn UX Y. Pertm diseesikn Y dri persmn LY C memki goritm penyihn mj dn diikti dengn menyeesikn X dri UX Y memki goritm penyihn mndr.

22 Cttn Kih Contoh 4.5 Diberikn sitem persmn iner berikt, Bi A dh mtrik koefisien dri sistem persmn iner di ts, tentkn mtrik segitig L dn U sebgi fktor dri mtrik A. b. Tentkn sosi dri sistem persmn iner dits dengn menggnkn dekomposisi mtrik A tersebt. Jwb. Tis 4 A

23 Cttn Kih Dri kesmn d mtriks dn kesmn eemen yng seetk, diperoeh Sehingg mtrik segitig bwh L dn mtrik segitig ts U dh 4 L.5 U b. Gnkn metode penyihn mj ntk menyeesikn persmn LY C. y.5 y.5 y y.5 y y 7 Diperoeh nii-nii y - y 9 y 7 Gnkn metode penyihn mndr ntk menyeesikn persmn UX Y Diperoeh nii-nii -4

24 Cttn Kih Pemfktorn Choesky Miskn A dh mtrik bjr sngkr yng definit positif dn simetri. Mk A dpt ditis dm bentk A LU dengn L dn U dh mtrikmtrik segitig bwh dn ts, dengn U L T. Contoh 4.6 Gnkn metode Choesky ntk menentkn sosi dri sitem persmn iner, Jwb Tis 4 A Dri kesmn d mtriks dn kesmn eemen yng seetk, diperoeh 4 4 ; 7; 5 ; ;

25 Cttn Kih Sehingg mtrik segitig bwh L dn mtrik segitig ts L T dh L T L Gnkn metode penyihn mj ntk menyeesikn persmn LY C. y y 7 y 4 y y 5 y 4 55 Diperoeh nii-nii y 7 y -7 y 5 Gnkn metode penyihn mndr ntk menyeesikn persmn L T X Y Diperoeh nii-nii -6 5

26 Cttn Kih 6. Metode Itersi Jcobi dn Gss-Seide Metode penyeesin sistem persmn iner yng teh dibhs sebemny dh metode perhitngn secr ngsng. Senjtny kn dibhs metode penyeesin sistem persmn iner secr tkngsng t metode itertif. Itersi Jcobi Miskn diberikn sistem persmn iner, c c c dengn mtrik Koefisien A 6

RUANG VEKTOR REAL. Kania Evita Dewi

RUANG VEKTOR REAL. Kania Evita Dewi RUANG VEKTOR REAL Kni Eit Dewi Definisi Vektor dlh besrn yng mempnyi rh. Notsi: Notsi pnjng ektor: k j i ˆ ˆ ˆ Vektor stn Vektor dengn pnjng t norm sm dengn st Opersi ektor Penjmlhn ntr ektor Mislkn dn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

5. RUANG-RUANG VEKTOR

5. RUANG-RUANG VEKTOR 5. RUANG-RUANG VEKTOR Rng-Rng Vektor 5.. RUANG-N EUCLIDIS DEFINISI 5.: RUANG -N Jik n dlh sebh bilngn blt positif mk n-psngn terrt dlh (.. n ) dimn i i..n dlh bilngn riil. Himpnn sem n-psngn terrt ini

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

BAB 8 TRANSFORMASI LINEAR. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 8 TRANSFORMASI LINEAR. Dr. Ir. Abdul Wahid Surhim, MT. BAB 8 RANSFORMASI LINEAR Dr. Ir. Abdl Whid Srhim, M. KERANGKA PEMBAHASAN. rnsformsi Linier secr Umm. Kernel dn Rnge 3. rnsformsi Linier Iners 4. Mtriks rnsformsi Liner 5. Similrits 7. RANSFORMASI LINIER

Lebih terperinci

Bab 4. Contoh 4.1 : Berikut adalah beberapa contoh notasi vektor : b. b = b 1 i ˆ +b kˆ

Bab 4. Contoh 4.1 : Berikut adalah beberapa contoh notasi vektor : b. b = b 1 i ˆ +b kˆ B 4 Vektor di Bidng dn di Rng Vektor merpkn esrn yng mempnyi rh. Pd ini kn dijelskn tentng ektor di idng dn di rng, yng diserti opersi dot prodct, cross prodct, dn penerpnny pd proyeksi ektor dn perhitngn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII rnsformsi Liner B VIII

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ [email protected] DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan

PERSAMAAN DAN FUNGSI KUADRAT. Oleh Shahibul Ahyan PERSAMAAN DAN FUNGSI KUADRAT Oleh Shhil Ahyn A. Bentk Umm Persmn Kdrt Definisi : Mislkn,, Rdn, mk persmn yng erentk + + = dinmkn persmn kdrt dlm peh. Berkitn dengn nili-nili dri,, dikenl eerp persmn kdrt

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA

VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA VEKTOR DEPARTEMEN TEKNIK ELEKTRO UNIVERSITAS INDONESIA Pengertin Dsr Vektor merpkn kombinsi dri st besrn dn st rh Vektor dpt dintkn dlm pnh-pnh, pnjng pnh mentkn besrn ektor dn rh pnh mennjkkn rh ektor

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

8. FUNGSI TRANSENDEN 1

8. FUNGSI TRANSENDEN 1 8. FUNGSI TRANSENDEN 8. Fngsi Invers Mislkn : D R dengn Deinisi 8. Fngsi = disebt st-st jik = v mk = v t jik v mk v v ngsi = st-st ngsi =- st-st ngsi tidk st-st Secr geometri grik ngsi st-st dn gris ng

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

III. LIMIT DAN KEKONTINUAN

III. LIMIT DAN KEKONTINUAN KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3

4. VEKTOR-VEKTOR DI RUANG-2 DAN RUANG-3 Diktt Aljbr Liner Vektor di Rng dn Rng 4. VEKTOR-VEKTOR DI RUANG- DAN RUANG- 4.. PENGANTAR DEFINISI 4.: VEKTOR Vektor dlh st besrn yng memiliki besr dn rh. Vektor yng memiliki pnjng dn rh yng sm diktkn

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII Trnsformsi Liner B VIII

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer Aljr Liner Elementer MA SKS Sils : B I Mtriks dn Opersiny B II Determinn Mtriks B III Sistem Persmn Liner B IV Vektor di Bidng dn di Rng B V Rng Vektor B VI Rng Hsil Kli Dlm B VII Trnsformsi Liner B VIII

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB

IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Respons Respons IX. RANCANGAN ACAK LENGKAP POLA FAKTORIAL AxB Rncngn Ack Lengkp Pol Fktoril AxB dlh rncngn ck lengkp yng terdiri dri d peh es (Fktor dlm klsfiksi silng yit fktor A yng terdiri dri trf dn

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

Topik: Matriks Dan Sistem Persamaan Linier

Topik: Matriks Dan Sistem Persamaan Linier Mt Kulih: Mtemtik Kode: TKF Topik: Mtriks Dn Sistem Persmn Linier MAT Kompetensi : Dpt menerpkn konsep-konsep mtriks dn sistem persmn linier dlm mempeljri konsep-konsep keteknikn pd mt kulih mt kulih progrm

Lebih terperinci

BAB I PENDAHULUAN. Olimpiade Matematika Mahasiswa Persamaan Kuadrat 1

BAB I PENDAHULUAN. Olimpiade Matematika Mahasiswa Persamaan Kuadrat 1 BAB I PENDAHULUAN A. Ltr Belkng Mtemtik merpkn slh st disiplin ilm yng srt dengn st ilngn. Mtemtik jg merpkn st hs dimn hs pd mtemtik tidk memiliki mkn yng mig t pemknn dri hs mtemtik tidk menimlkn mkn

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

Sistem Persamaan Linear Bagian 1

Sistem Persamaan Linear Bagian 1 Sistem Persmn Liner Bgin. SISTEM PERSAMAAN LINEAR PENGANTAR Dlm bgin ini kn kit perkenlkn istilh dsr dn kit bhs sebuh metode untuk memechkn sistem-sistem persmn liner. Sebuh gris dlm bidng xy secr ljbr

Lebih terperinci

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.

r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat. Husn Arifh,M.Sc : Persmn Legendre Emil : [email protected] Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi

Lebih terperinci

LIMIT FUNGSI DAN KEKONTINUAN

LIMIT FUNGSI DAN KEKONTINUAN LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:

Lebih terperinci

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a

CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu

Lebih terperinci

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut:

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut: triks dn opersiny by yudiri ATRIKS DAN OPERASINYA. triks dn Jenisny Definisi: trik A berukurn x n ilh sutu susunn ngk dl persegi ept ukurn x n, sebgi berikut: A = n n n triks berukurn (ordo) x n. tu A

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

Aljabar Linier & Matriks. Tatap Muka 3

Aljabar Linier & Matriks. Tatap Muka 3 Aljbr Linier & Mtriks Ttp Muk Eliminsi Guss-Jordn Sistem persmn linier dengn n vribel dn m persmn secr umum dinytkn sbg: Sistem persmn linier tsb dpt dinytkn dlm bentuk mtriks sbb: A x X = b dengn A dlh

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: [email protected] Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

P=1t GP.R A (Garis Pengaruh Reaksi di A)

P=1t GP.R A (Garis Pengaruh Reaksi di A) MODUL III (MEKNIK TEKNIK) -18- ontoh ok gerber seperti pd gmbr x ri gris pengruh reksi-reksiny P=1t P=1t x 1 GP.R (Gris Pengruh Reksi di ) 1 S S 2 P berjn dri ke S x = vribe bergerk sesui posisi P dri

Lebih terperinci

MODUL 1 INTEGRAL. Sekilas Info

MODUL 1 INTEGRAL. Sekilas Info MODUL INTEGRAL Sekils Info Orng yng pertm kli menemkn integrl tertent dlh George Friedrih Bernhrd Riemnn, seorng Mtemtikwn sl Jermn yng lhir pd thn 6. Riemnn menjelskn integrl tertent dengn menggnkn ls

Lebih terperinci

7. Ruang L 2 (a, b) f(x) 2 dx < }.

7. Ruang L 2 (a, b) f(x) 2 dx < }. 7. Rung L (, b) Rung L (, b) didefinisikn sebgi rung semu fungsi f yng kudrtny terintegrlkn pd [, b], ykni L (, b) := {f : b f(x) dx < }. Rung ini menckup fungsi-fungsi f yng tk terbts pd [, b] tetpi f

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

MA3231 Analisis Real

MA3231 Analisis Real MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)

Lebih terperinci

Modul 1. Pendahuluan

Modul 1. Pendahuluan Modul Pendhulun.. Pengertin Mtriks Definisi. (Pengertin Mtriks) Mtriks didefinisikn sebgi sutu susunn bilngn berbentuk segiempt. Bilngnbilngn yng terdpt dlm susunn itu disebut elemen mtriks tersebut. Secr

Lebih terperinci

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA

PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI

KALKULUS 2. Oleh : SRI ESTI TRISNO SAMI, ST, MMSI KALKULUS KALKULUS Oleh : SRI ESTI TRISNO SAMI, ST, MMSI 0805 Bhn Bcn / Refferensi :. Frnk Ayres J. R., Clcls, Shcm s Otline Series, Mc Grw-Hill Book Compny.. Ysf Yhy, D. Srydi H. S. Dn Ags S, Mtemtik ntk

Lebih terperinci

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.

INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L. INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

Matematika Lanjut 1. Onggo Wiryawan

Matematika Lanjut 1. Onggo Wiryawan Mtemtik Lnjut 1 Onggo Wirywn Setip mtriks persegi tu bujur sngkr memiliki nili determinn Nili determinn sklr Mtriks Singulr= Mtriks yng determinnny bernili 0 Determinn & Invers - Onggo Wr 2 Mislkn A sutu

Lebih terperinci

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)

BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1) BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

BAB 3 VEKTOR DI R 2 DAN R 3. Dr. Ir. Abdul Wahid Surhim, MT.

BAB 3 VEKTOR DI R 2 DAN R 3. Dr. Ir. Abdul Wahid Surhim, MT. BAB VEKTOR DI R DAN R Dr. Ir. Adl Whid Srhim, MT. KERANGKA PEMBAHASAN. Definisi Vektor di R dn R. Hsil Kli Slr. Hsil Kli Silng 4. Gris dn Bidng di R . DEFINISI VEKTOR DI R DAN R Notsi dn Opersi Vektor

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

Studi Perpindahan Panas Dengan Menggunakan Sistem Koordinat Segitiga

Studi Perpindahan Panas Dengan Menggunakan Sistem Koordinat Segitiga JURNAL EKNIK POMIS Vol., No., () -5 Stdi Perpindhn Pns Dengn Menggnkn Sistem Koordint Segitig Frd Nr Pristin, Drs. Lkmn Hnfi, M.S Jrsn Mtemtik, Fklts MIPA, Institt eknologi Seplh Nopember (IS) Jl. Arief

Lebih terperinci

Yijk = µ + Ai + Bj(i) + є ijk

Yijk = µ + Ai + Bj(i) + є ijk XI. RANCANGAN ACAK LENGKAP POLA TERSARANG Rncngn Ack Lengkp Pol Tersrng dlh rncngn percon dengn mteri homogen t tnp peh penggngg, terdiri dri d peh es t fktor dlm klsfiksi tersrng yit Fktor A terdiri dri

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN

PEMBAHASAN SOAL OSN MATEMATIKA SMP 2013 TINGKAT KABUPATEN www.sip-osn.blogspot.com @Mret 0 PEMBAHASAN SOAL OSN MATEMATIKA SMP 0 TINGKAT KABUPATEN. B. x ( x ) ( x + )( x ) ( x ( ) )( x ) ( x + )( x )( x + )( x ) (d fktor) Tidk d penjelsn tentng fktor hrus bilngn

Lebih terperinci

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA PENGENALAN PROGRAM MATLAB MENGGUNAKAN OPERASI OPERASI MATRIKS Oleh : Nur Hdi Wrnto, S.Si Lbortorium

Lebih terperinci

Integral Kompleks (Bagian Kesatu)

Integral Kompleks (Bagian Kesatu) Integrl Kompleks (Bgin Kestu) Supm Jurusn Mtemtik, FMIPA UGM Yogykrt 55281, INDONESIA Emil:[email protected], [email protected] (Pertemun Minggu XI) Outline 1 Fungsi Bernili Kompleks 2 Lintsn tu Kontur 3 Integrl

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

6. Himpunan Fungsi Ortogonal

6. Himpunan Fungsi Ortogonal 6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn

Lebih terperinci

Sistem Persamaan Linear

Sistem Persamaan Linear Sistem Persmn Liner Muhtdin, ST. MT. Metode Numerik & Komputsi. By : Muhtdin Persmn Aljbr Liner Simultn Metode Numerik & Komputsi. By : Muhtdin 9 Menyelesikn SPL sederhn Grphicl Method dri kedu persmn

Lebih terperinci

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..

Lebih terperinci

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab :

VEKTOR. Bab 20. a. Penjumlahan dan Pengurangan Vektor. ; OB b. maka OA AB OB. dan. maka. Contoh : Tentukan nilai x dan y dari Jawab : VEKTOR B Penjmlhn dn Pengrngn Vektor. OA ; OB mk OA AB OB AB OB OA AB dn v c d mk v c c d d Contoh : Tentkn nili x dn y dri Jw : Jdi nili x - 8 dn y - ½ Pnjng Vektor Misl, mk pnjng (esr/nili) vector ditentkn

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ).

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ). BAB I MATRIKS Aljbr mtriks merupkn slh stu cbng mtemtik yng dikembngkn oleh seorng mtemtikwn Inggris Arthur Cyley (8 89) Mtriks berkembng kren pernnny dlm cbng-cbng Mtemtik linny, mislny bidng ekonomi,

Lebih terperinci

12. LUAS DAERAH DAN INTEGRAL

12. LUAS DAERAH DAN INTEGRAL 12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)

Lebih terperinci

INTEGRAL OLEH : WILDAN SUHARTINI (KELAS L)

INTEGRAL OLEH : WILDAN SUHARTINI (KELAS L) Tgs Mtemtik indstri TIP-FTP-UB INTEGRAL OLEH : WILDAN SUHARTINI 5 (KELAS L) A. INTEGRAL TENTU DAN INTEGRAL TAK TENTU Integrl dlh kelikn dri trnn (diferensil). Oleh kren it integrl diset jg nti diferensil.

Lebih terperinci

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan

A. Kompetensi Dasar : Menyelesaikan sistem persamaan linear. B. Materi : 1. Sistem Persamaan Linear dan Matriks 2. Determinan (Oleh: Winit Sulndri, M.Si) A. Kompetensi Dsr : Menyelesikn sistem persmn liner B. Mteri :. Sistem Persmn Liner dn Mtriks. Determinn C. Indiktor :. Mendefinisikn persmn liner dn sistem persmn liner. Mengenl

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS

CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...

Lebih terperinci

VEKTOR. Information System Department TELKOM Polytechnic Bandung

VEKTOR. Information System Department TELKOM Polytechnic Bandung VEKTOR Mt Klih Oleh : Clls (MF) : Hnng N. Prsetyo Informtion System Deprtment TELKOM Polytehni Bndng Clls/Hnng NP/Politeknik Telkom . Vektor di Rng Besrn Sklr dn Besrn Vektor Besrn sklr dlh esrn yng hny

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

Vektor di R 2 dan R 3

Vektor di R 2 dan R 3 Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl

Lebih terperinci

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII

Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl

Lebih terperinci

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan.

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan. Apliksi Teori Perminn Lwn pemin (puny intelegensi yng sm) Setip pemin mempunyi beberp strtegi untuk sling menglhkn Two-Person Zero-Sum Gme Perminn dengn pemin dengn perolehn (keuntungn) bgi slh stu pemin

Lebih terperinci

FISIKA BESARAN VEKTOR

FISIKA BESARAN VEKTOR K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.

Lebih terperinci

SUKU BANYAK ( POLINOM)

SUKU BANYAK ( POLINOM) SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)

Lebih terperinci

Pertemuan 9 DIFFERENSIAL

Pertemuan 9 DIFFERENSIAL Pertemn 9 DIFFERENSIAL Y' d f '() f( h) - f() h Rms rms diferensil ng perl dikethi : n n Y Y n Y e Y e Y Y ln 4 Y ln Y 5 Y log Y ' ln 6 Y V Y V 7 Y - V Y - V 8 Y V Y V V 9 Y ' V - V' V V Y Y cos Y cos

Lebih terperinci

MODUL 2 DETERMINAN DAN INVERS MATRIKS

MODUL 2 DETERMINAN DAN INVERS MATRIKS MODUL DETERMINN DN INVERS MTRIKS.. Determinn Definisi. (Determinn) Untuk setip mtriks berukurn n x n, yng dikitkn dengn sutu bilngn rel dengn sift tertentu dinmkn determinn, dengn notsi dri determinn mtriks

Lebih terperinci

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK Disusun Oleh :. NIM.. NAMA. NIM.. NAMA. NIM.. NAMA PROGRAM STUDI TEKNIK INFORMATIKA S- FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO SEMARANG OKTOBER, .

Lebih terperinci