Matematika Lanjut 1. Onggo Wiryawan

Ukuran: px
Mulai penontonan dengan halaman:

Download "Matematika Lanjut 1. Onggo Wiryawan"

Transkripsi

1 Mtemtik Lnjut 1 Onggo Wirywn

2 Setip mtriks persegi tu bujur sngkr memiliki nili determinn Nili determinn sklr Mtriks Singulr= Mtriks yng determinnny bernili 0 Determinn & Invers - Onggo Wr 2

3 Mislkn A sutu mtriks bujursngkr Determinn dri A dinotsikn det(a) A Untuk mtriks ordo 2 2 Misl A = Mk det A = A = = Determinn & Invers - Onggo Wr 3

4 Contoh Misl A = Mk det A = A = = = 1 Determinn & Invers - Onggo Wr 4

5 Untuk mtriks ordo 3 3 (Metode Srrus) A det( A) Determinn & Invers - Onggo Wr 5

6 Contoh A det(a) = A = = [(-2 1-1) + (2 3 2) + (-3-1 0)] (-3 1 2) (-2 3 0)-(2-1 -1) = = Determinn & Invers - Onggo Wr 6

7 Definisi 1: Minor Misl A n n MINOR unsur ij dlh determinn yng bersl dri determinn orde ke-n tdi dikurngi dengn bris ke-i dn kolom ke-j. Dinotsikn dengn M ij Contoh Minor dri elemen A M A M Determinn & Invers - Onggo Wr 7

8 Minor-minor dri Mtrik A 3 3 Determinn & Invers - Onggo Wr 8

9 Definisi 2: Kofktor Misl A n n KOFAKTOR dri bris ke-i dn kolom kej dituliskn dengn Dinotsikn dengn c ij Contoh Kofktor dri elemen c ( 1) M M Determinn & Invers - Onggo Wr 9

10 Determinn dri sutu mtriks sm dengn jumlh perklin elemen-elemen dri sembrng bris tu kolom dengn kofktor-kofktorny Determinn & Invers - Onggo Wr 10

11 Contoh: A Determinn Mtriks A dengn metode ekspnsi kofktor bris pertm A c M c M c M Determinn & Invers - Onggo Wr

12 Contoh: A Determinn Mtriks A dengn metode ekspnsi kofktor bris kedu A c M c M c M Determinn & Invers - Onggo Wr

13 Contoh: A Determinn Mtriks A dengn metode ekspnsi kofktor kolom pertm A c M c M c M Determinn & Invers - Onggo Wr

14 Teorem Mislkn A dlh mtriks bujursngkr Jik A memiliki stu bris nol tu kolom nol,mk det(a) = 0 det(a) = det (A T ) Teorem Jik A dlh mtriks segitig nn (segitig ts, segitig bwh tu digonl), mk det(a) dlh perklin entri-entri pd digonl utmny det(a) =... nn Determinn & Invers - Onggo Wr 14

15 Teorem Mislkn A dlh mtriks bujursngkr Jik B dlh mtriks yng dihsilkn dri perklin sutu bris tu kolom dengn sklr k 0 mk det(b) = k det(a) Jik B dlh mtriks yng dihsilkn dri pertukrn du bris tu kolom dri A mk det(b) = det(a) Jik B dlh mtriks yng dihsilkn ketik sutu bris ditmbhkn dengn keliptn bris lin tu sutu kolom ditmbhkn dengn keliptn kolom lin dri A, mk det(b) = det(a) Determinn & Invers - Onggo Wr 15

16 Contoh k k k k k k k Determinn & Invers - Onggo Wr 16

17 Teorem Misl E dlh mtriks elementer ordo n n, Jik E dihsilkn dri sutu bris I n dikli k, mk det(e) = k Jik E dihsilkn dri pertukrn du bris pd I n, mk det(e) = 1 Jik E dihsilkn dri sutu bris ditmbh keliptn bris lin di I n, mk det(e) = 1 Determinn & Invers - Onggo Wr 17

18 Contoh Determinn & Invers - Onggo Wr 18

19 Teorem Jik A dlh mtriks bujursngkr dimn terdpt du bris tu du kolom yng sling berkeliptn, mk det(a) = 0 Determinn & Invers - Onggo Wr 19

20 Contoh A B 2B B 5B = B B ( 2)(1)(1) 17 2 Determinn & Invers - Onggo Wr 20

21 Contoh A C 3C (1)(7)(3)( 26) 546 Determinn & Invers - Onggo Wr

22 Teorem Jik A dn B dlh mtriks bujursngkr dengn ukurn sm, mk det(ab) = det(a).det(b) Teorem Jik A invertible, mk det( A ) det( A) 1 1 Determinn & Invers - Onggo Wr

23 Definisi Jik A nn, C ij kofktor dri ij, mk C C C C C C C C 1n n1 n2 nn disebut mtriks kofktor dri A. Trnsposeny disebut mtriks Adjoin dri A, ditulis Adj(A). Determinn & Invers - Onggo Wr

24 Contoh A Kofktor dri A C =, C = 4, C =, C = 6, C = 2, C = 10, C = 16, C = 16, C = 16 Mk mtriks kofktor dri A dlh Adj( A) Determinn & Invers - Onggo Wr 24

25 Teorem Jik A dlh mtriks invertible, mk A 1 1 Teorem (Aturn Crmer) Adj( A) det( A) Jik Ax = b dlh spl dengn n peubh, det(a) 0 mk spl mempunyi solusi tunggl x i det( Ai ) det( A) dimn A i dlh mtriks A dengn kolom ke-i dignti dengn b Determinn & Invers - Onggo Wr 25

26 Contoh Tentukn solusi dri spl Jwb 2x 1 3x 2 = 6 4x 1 + x 2 = Ax = b x 1 x 2 = 6 25 Determinn & Invers - Onggo Wr 26

27 Mtriks Kofktor dri A dlh = Adjoin A dlh Kofktor T = Determinn A = A = = 2 = 14 Determinn & Invers - Onggo Wr 27

28 Definisi Misl A n n, mk A -1 disebut invers mtriks dri A jik A A 1 = A 1 A = I untuk I = mtriks identits ordo n n. Teorem Misl mtriks A dn B invertibel (puny invers). AB 1 = B 1 A 1 Determinn & Invers - Onggo Wr 28

29 Teorem Misl mtriks A invertibel det A 1 = 1 det (A) Determinn & Invers - Onggo Wr 29

30 Determinn & Invers - Onggo Wr 30

31 Rhmi Rusin, Determinn. UB Informtik, Mtriks. Determinn & Invers - Onggo Wr

det DEFINISI Jika A 0 disebut matriks non singular

det DEFINISI Jika A 0 disebut matriks non singular DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:

Lebih terperinci

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.

DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0. DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn

Lebih terperinci

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi

3.1 Permutasi. Secara umum, bilangan-bilangan pada {1, 2,, n} akan mempunyai n! permutasi BB Determinn . Permutsi Definisi Permutsi: (i) Sutu permutsi dri bilngn-bilngn bult {,,,, n} dlh penyusunn bilngn-bilngn tersebut dengn urutn tnp pengulngn. (ii) Brisn bilngn ( j, j,.., j n ) dimn j i

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

Minggu ke 3 : Lanjutan Matriks

Minggu ke 3 : Lanjutan Matriks inggu ke : Lnjutn triks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : triks :. Trnsformsi Elementer. Trnsformsi Elementer pd bris dn kolom. triks Ekivlen. Rnk triks B. Determinn.

Lebih terperinci

Aljabar Linear Elementer

Aljabar Linear Elementer ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi

Lebih terperinci

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN

BAB I. MATRIKS BAB II. DETERMINAN BAB III. INVERS MATRIKS BAB IV. PENYELESAIAN PERSAMAAN LINEAR SIMULTAN DFTR ISI BB I. MTRIKS BB II. DETERMINN BB III. INVERS MTRIKS BB IV. PENYELESIN PERSMN LINER SIMULTN BB I. MTRIKS Mtriks erup sekelompok ilngn yng disusun empt persegi dn ditsi tnd terdiri dri ris dn kolom

Lebih terperinci

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.

M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc. M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil rhdindims@yhoo.com JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng

Lebih terperinci

BAB 10. MATRIKS DAN DETERMINAN

BAB 10. MATRIKS DAN DETERMINAN Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut

Lebih terperinci

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS

PERTEMUAN - 1 JENIS DAN OPERASI MATRIKS PERTEMUN - JENIS DN OPERSI MTRIKS Pengertin Mtriks : merupkn sutu lt tu srn yng sngt mpuh untuk menyelesikn model-model liner. Definisi : Mtriks dlh susunn empt persegi pnjng tu bujur sngkr dri bilngn-bilngn

Lebih terperinci

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.

Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A. Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu

Lebih terperinci

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER)

PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) PENYELESAIAN SISTEM PERSAMAAN LINEAR DENGAN MENGGUNAKAN DETERMINAN (ATURAN CRAMER) Dikethui system Persmn Linier x+ x + x = x+ x + x = x+ x + x = dlm entuk mtriks x x x Penyelesin Dengn Aturn Crmer dlh

Lebih terperinci

A x = b apakah solusi x

A x = b apakah solusi x MTRIKS INVERSI & SIFT-SIFTNY Bil, x, dlh sklr ilngn rel yng memenuhi x, mk x pil. Sekrng, untuk sistem persmn linier x pkh solusi x dpt diselesikn dengn x? Mtriks Identits Untuk sklr (rel numer dn ), mk.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis

Lebih terperinci

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE)

ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) ALJABAR LINIER DAN MATRIKS MATRIKS (DETERMINAN, INVERS, TRANSPOSE) Mcm Mtriks Mtriks Nol () Mtriks yng semu entriny nol. Ex: Mtriks Identits (I) Mtriks persegi dengn entri pd digonl utmny dn pd tempt lin.

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Pert 9 (mengjrkomputer.wordpress.com) NILAI EIGEN DAN VEKTOR EIGEN 9. Definisi Sebuh mtriks bujur sngkr dengn orde n n mislkn A, dn sebuh vektor kolom X. Vektor X dlh vektor dlm rung Euklidin n R yng dihubungkn

Lebih terperinci

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ

MATRIKS. Agustina Pradjaningsih, M.Si. Jurusan Matematika FMIPA UNEJ MTRIKS gustin Prdjningsih, M.Si. Jurusn Mtemtik FMIP UNEJ tinprdj.mth@gmil.com DEFINISI MTRIKS Sutu dftr bilngn-bilngn rel tu kompleks terdiri ts m bris dn n kolom, m dn n bilngn bult positip disebut mtriks

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi

Lebih terperinci

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :

Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh : TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut

Lebih terperinci

Topik: Matriks Dan Sistem Persamaan Linier

Topik: Matriks Dan Sistem Persamaan Linier Mt Kulih: Mtemtik Kode: TKF Topik: Mtriks Dn Sistem Persmn Linier MAT Kompetensi : Dpt menerpkn konsep-konsep mtriks dn sistem persmn linier dlm mempeljri konsep-konsep keteknikn pd mt kulih mt kulih progrm

Lebih terperinci

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)

Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2) Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny

Lebih terperinci

A. PENGERTIAN B. DETERMINAN MATRIKS

A. PENGERTIAN B. DETERMINAN MATRIKS ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom

Lebih terperinci

1. Pengertian Matriks

1. Pengertian Matriks BAB MATRIKS BAB MATRIKS. Pengertin Mtriks. Opersi Mtriks. Trnspose Sutu Mtriks. Kesmn Duh Buh Mtriks. Jenis-Jenis Mtriks. Trnsformsi Elementer 7. Rnk Mtriks . Pengertin Mtriks Mtriks dlh dftr ilngn yng

Lebih terperinci

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks

MATRIKS A. Pengertian, Notasi dan Bagian Dalam Matriks MATRIKS A. Pengertin, Notsi dn Bgin Dlm Mtriks Dlm kehidupn sehri-hri kit sering menemui dt tu informsi dlm entuk tel, seperti tel pertndingn sepkol, tel sensi kels, tel hrg tiket keret pi dn seginy..

Lebih terperinci

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri

Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn

Lebih terperinci

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum

ALJABAR LINIER _1 Matrik. Ira Prasetyaningrum LJR LINIER _ Mtrik Ir Prsetyningrum DEFINISI MTRIKS pkh yng dimksud dengn Mtriks? kumpuln ilngn yng disjikn secr tertur dlm ris dn kolom yng mementuk sutu persegi pnjng, sert termut dintr sepsng tnd kurung.

Lebih terperinci

Matriks. Pengertian. Lambang Matrik

Matriks. Pengertian. Lambang Matrik triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn

Lebih terperinci

BAB III MATRIKS

BAB III MATRIKS BB III MTRIKS PENGERTIN MTRIKS Pengertin Mtriks Mtriks dlh susunn bilngn-bilngn ng berbentuk persegi tu persegi pnjng ng ditur dlm bris dn kolom Bentuk Umum Mtriks : i m i m i m j j j ij mj n n n in mn

Lebih terperinci

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA

Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA Modul PELATIHAN GUIDE MATLAB UNTUK PEMBUATAN ANTARMUKA PEMBELAJARAN PERSAMAAN MATEMATIKA DAN GRAFIKNYA PENGENALAN PROGRAM MATLAB MENGGUNAKAN OPERASI OPERASI MATRIKS Oleh : Nur Hdi Wrnto, S.Si Lbortorium

Lebih terperinci

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik :

Pengertian Matriks. B. Notasi Matriks. a 21 adalah elemen baris 2 kolom 1. Banyaknya baris : Banyaknya kolom : Ordo Matrik : MATRIKS Segi gmrn wl mengeni mteri mtriks mri kit ermti urin erikut ini. Dikethui dt hsil penjuln tiket penerngn tujun Medn dn Sury dri seuh gen tiket selm empt hri erturut-turut disjikn dlm tel erikut.

Lebih terperinci

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)...

MATRIKS Definisi: Matriks Susunan persegi panjang dari bilangan-bilangan yang diatur dalam baris dan kolom. Matriks ditulis sebagai berikut (1)... MATRIKS Definisi: Mtriks Susunn persegi pnjng dri ilngn-ilngn yng ditur dlm ris dn kolom. Mtriks ditulis segi erikut ()... m... m... n... n......... mn Susunn dits diseut mtriks m x n kren memiliki m ris

Lebih terperinci

,, % ,, % -0: 0 -0: 0! 2 % 26, &

,, % ,, % -0: 0 -0: 0! 2 % 26, & PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh

Lebih terperinci

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK

TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK TUGAS MATAKULIAH ALJABAR LINIER DAN MATRIK Disusun Oleh :. NIM.. NAMA. NIM.. NAMA. NIM.. NAMA PROGRAM STUDI TEKNIK INFORMATIKA S- FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO SEMARANG OKTOBER, .

Lebih terperinci

DETERMINAN DAN INVERS MATRIKS BLOK 2 2

DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok

Lebih terperinci

Universitas Esa Unggul

Universitas Esa Unggul ALJABAR LINIER DAN MATRIKS BHAN KULIAH DRA SURYARI PURNAMA, MM Universits Es Unggul Minggu I Mtriks Pokok Bhsn Sub Pokok Bhsn Tujun Instruksionl Umum Tujun Instruksionl Khusus : Pendhulun Mtriks : A. Pengertin

Lebih terperinci

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ).

BAB I MATRIKS. Aljabar matriks merupakan salah satu cabang matematika yang. dikembangkan oleh seorang matematikawan Inggris Arthur Cayley ( ). BAB I MATRIKS Aljbr mtriks merupkn slh stu cbng mtemtik yng dikembngkn oleh seorng mtemtikwn Inggris Arthur Cyley (8 89) Mtriks berkembng kren pernnny dlm cbng-cbng Mtemtik linny, mislny bidng ekonomi,

Lebih terperinci

Aljabar Linier Elementer. Kuliah 7

Aljabar Linier Elementer. Kuliah 7 Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan

Lebih terperinci

MODUL 2 DETERMINAN DAN INVERS MATRIKS

MODUL 2 DETERMINAN DAN INVERS MATRIKS MODUL DETERMINN DN INVERS MTRIKS.. Determinn Definisi. (Determinn) Untuk setip mtriks berukurn n x n, yng dikitkn dengn sutu bilngn rel dengn sift tertentu dinmkn determinn, dengn notsi dri determinn mtriks

Lebih terperinci

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut:

1. Matriks dan Jenisnya Definisi: Matrik A berukuran m x n ialah suatu susunan angka dalam persegi empat ukuran m x n, sebagai berikut: triks dn opersiny by yudiri ATRIKS DAN OPERASINYA. triks dn Jenisny Definisi: trik A berukurn x n ilh sutu susunn ngk dl persegi ept ukurn x n, sebgi berikut: A = n n n triks berukurn (ordo) x n. tu A

Lebih terperinci

2.Matriks & Vektor (1)

2.Matriks & Vektor (1) .triks & Vektor () t Kulih: ljbr Liner dn triks Semester Pendek T. / S Teknik Informtik Dosen Pengmpu: Heri Sismoro,.Kom. STIK IKO YOGYKRT Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 7 88 Fx 7-888 Website:

Lebih terperinci

BAB I PENDAHULUAN. A. Latar belakang

BAB I PENDAHULUAN. A. Latar belakang BAB I PENDAHULUAN A. Ltr belkng Bnyk orng yng bernggpn bhw Mtemtik itu rumit, kren lsn itulh bnyk orng yng menghindri Mtemtik. Pdhl Mtemtik dpt kit jumpi di dlm kehidupn sehri-hri, dn mu tidk mu kit psti

Lebih terperinci

Bab 3 M M 3.1 PENDAHULUAN

Bab 3 M M 3.1 PENDAHULUAN B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model

Lebih terperinci

MUH1G3/ MATRIKS DAN RUANG VEKTOR

MUH1G3/ MATRIKS DAN RUANG VEKTOR MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi

Lebih terperinci

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I

DETERMINAN. Matematika Industri I. TIP FTP UB Mas ud Effendi. Matematika Industri I DETERMINAN Mtemtik Industri I TIP FTP UB Ms ud Effendi Mtemtik Industri I Pokok Bhsn Determinn Determinn orde-ketig Persmn simultn dengn tig ilngn tidk dikethui Konsistensi sutu set persmn Sift-sift determinn

Lebih terperinci

METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3

METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 METODE ALTERNATIF BARU UNTUK MENGHITUNG DETERMINAN MATRIKS ORDE 3 X 3 Glng Ismu Hndoko 1, M Ntsir 2, Sigit Sugirto 2 1 Mhsisw Progrm S1 Mtemtik 2 Dosen Jurusn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm

Lebih terperinci

Sistem Persamaan Linier

Sistem Persamaan Linier b I Sistem Persmn Linier I Sistem Persmn Linier TUJUN PEMELJRN: Mhsisw memhmi konsep-konsep tentng sistem persmn linier, eksistensi dn keunikn sistem persmn linier, keunikn sistem persmn linier homogen,

Lebih terperinci

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom.

1. Introduction. Aljabar Linear dan Matriks Semester Pendek TA 2009/2010 S1 Teknik Informatika. Mata Kuliah: Dosen Pengampu: Heri Sismoro, M.Kom. 1. Introduction Mt Kulih: Aljbr Liner dn Mtriks Semester Pendek TA 9/1 S1 Teknik Informtik Dosen Pengmpu: Heri Sismoro, M.Kom. STMIK AMIKOM YOGYAKARTA Jl. Ringrod Utr Condong Ctur Yogykrt. Telp. 74 8841

Lebih terperinci

DAFTAR ISI. DAFTAR ISI... iii

DAFTAR ISI. DAFTAR ISI... iii DAFTAR ISI DAFTAR ISI... iii BAB I MATRIKS DAN OPERASINYA.... Konsepsi Mtriks.... Opersi Aljbr Mtriks.... Trnspose dri Sutu Mtriks... 5. Beberp Jenis Mtriks Khusus... 5.5 Trnsformsi Elementer... 8.6 Rnk

Lebih terperinci

DETERMINAN MATRIKS dan

DETERMINAN MATRIKS dan DETERMINN MTRIKS d TRNSFORMSI ELEMENTER gusti Prdjigsih, M.Si. Jurus Mtemtik FMIP UNEJ tiprdj.mth@gmil.com DEFINISI Utuk setip mtriks bujursgkr berordo x dpt dikitk deg tuggl sutu bilg rel yg dimk determi.

Lebih terperinci

DETERMINAN dan INVERS MATRIKS

DETERMINAN dan INVERS MATRIKS // DETERMINN n INVERS MTRIKS Trnspose Mtriks () Jik mtriks mxn, mk trnspose ri mtriks ( t ) lh mtriks erukurn nxm yng iperoleh ri mtriks engn menukr ris engn kolom. Ex: t // SIFT Trnspose Mtriks () Sift:.

Lebih terperinci

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah.

MATRIKS. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan masalah. MATRIKS Stndr Kompetensi : Menggunkn konsep mtriks, vektor, dn trnsformsi dlm pemechn mslh Kompetensi Dsr : Menggunkn sift-sift dn opersi mtriks untuk menentukn invers mtriks persegi Menggunkn determinn

Lebih terperinci

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR

BAB 3 SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR A SOLUSI NUMERIK SISTEM PERSAMAAN LINEAR. Metode Eliminsi Guss Tinu sistem persmn liner ng terdiri dri i ris dn peuh, kni,,,, erikut.......... i i i Jik =, sistem persmn linern diseut sistem homogen, sedngkn

Lebih terperinci

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Hands Out Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hnds Out Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo

Lebih terperinci

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd.

Handout Mata Kuliah: Aljabar Matriks (2 SKS) Dosen: Dra. Hj Ade Rohayati, M. Pd. Hndout Mt Kulih: Aljbr Mtriks ( SKS) Dosen: Dr. Hj Ade Rohyti, M. Pd. No. Indiktor Urin Mteri. menyebutkn definisi mtriks.. membut beberp contoh mtriks dengn menggunkn notsi yng tept.. menentukn ordo dri

Lebih terperinci

VEKTOR. Vektor vektor yang mempunyai panjang dan arah yang sama dinamakan ekuivalen.

VEKTOR. Vektor vektor yang mempunyai panjang dan arah yang sama dinamakan ekuivalen. VEKTOR Vektor dlh sesutu yng mempunyi esrn tu pnjng dn rh. Vektor dpt dinytkn ser geometris segi segmen segmen gris terrh tu pnh pnh di rung- tu rung- dengn rh pnh menentukn rh vektor dn pnjng pnh menytkn

Lebih terperinci

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang

VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung

Lebih terperinci

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ

b. Notasi vektor : - Vektor A dinotasikan a atau a atau PQ - Panjang vektor a dinotasikan a atau PQ BAB 4 VEKTOR Stndr Kompetensi: 3. Menggunkn konsep mtriks, vektor, dn trnsformsi Kompetensi Dsr: 3.4 Menggunkn sift-sift dn opersi ljbr vktor dlm pemechn mslh 3.5 Menggunkn sift-sift dn opersi perklin

Lebih terperinci

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M

BAB I PENDAHULUAN. Sebuah sistem sebarang yang terdiri dari m persamaan linear dengan n M M M M M BAB I PENDAHUUAN Sebuh sistem sebrng yng teriri ri m persmn liner engn n bilngn tk ikethui kn ituliskn sebgi : x + x +... + n x n = b x + x +... + n x n = b n x + n x +... + nn x n = b n imn x, x,...,

Lebih terperinci

Matriks Jawab:

Matriks Jawab: Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan

Lebih terperinci

Skew- Semifield dan Beberapa Sifatnya 1

Skew- Semifield dan Beberapa Sifatnya 1 Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: ytiuny@yhoo.com Abstrk Sutu field ( lpngn ) F dlh struktur ljbr

Lebih terperinci

Part III DETERMINAN. Oleh: Yeni Susanti

Part III DETERMINAN. Oleh: Yeni Susanti Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)

Lebih terperinci

BAB 2. DETERMINAN MATRIKS

BAB 2. DETERMINAN MATRIKS BAB. DETERMINAN MATRIKS DETERMINAN MATRIKS . Definisi DETERMINAN Determinan : produk (hasil kali) bertanda dari unsur-unsur matriks sedemikian hingga berasal dari baris dan kolom yang berbeda, kemudian

Lebih terperinci

BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu

Lebih terperinci

SMA / MA IPA Mata Pelajaran : Matematika

SMA / MA IPA Mata Pelajaran : Matematika Konsep yng erkitn dengn : www.ujinnsionl.we.id Ringksn Teori Ujin Nsionl 011 Sekolh Menengh Ats / Mdrsh Aliyh IPA SMA / MA IPA Mt Peljrn : Mtemtik Brisn dn Deret = U = S 1 1 U n = S n S n1 untuk n =, 3,

Lebih terperinci

SIMAK UI 2011 Matematika Dasar

SIMAK UI 2011 Matematika Dasar SIMAK UI 0 Mtemtik Dsr Kode Sol Doc. Nme: SIMAKUI0MATDAS999 Version: 0-0 hlmn 0. Sebuh segitig sm kki mempunyi ls 0 cm dn tinggi 5 cm. Jik dlm segitig tersebut dibut persegi pnjng dengn ls terletk pd ls

Lebih terperinci

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real

SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri

Lebih terperinci

MODUL MATEMATIKA I. Hikmayanti Huwaida, S.Si NIP

MODUL MATEMATIKA I. Hikmayanti Huwaida, S.Si NIP ODUL TETIK I Hikmynti Huwid, SSi NIP 97 99 KEENTRIN PENDIDIKN DN KEBUDYN POLITEKNIK NEGERI BNJRSIN PROGR STUDI NJEEN INFORTIK BNJRSIN BB I TRIKS Tujun Instruksionl Umum Setelh mengikuti mt kulih temtik

Lebih terperinci

BAB II LANDASAN TEORI. himpunan bilangan bulat dan diberi simbol dengan hurup besar B. Anggota

BAB II LANDASAN TEORI. himpunan bilangan bulat dan diberi simbol dengan hurup besar B. Anggota BB II LNDSN EORI. Bilngn Bult Himpunn bilngn bilngn {..,-,-,-,,,,,..} disebut himpunn bilngn bult dn diberi simbol dengn hurup besr B. nggot nggot dri {-,-,-,..} disebut bilngn bilngn bult negtif. Definisi

Lebih terperinci

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks

Bab. Matriks. A. Pengertian dan Jenis. Matriks. B. Operasi Aljabar pada. Matriks Bb IV Sumber: www.gerrysckes.com Mtriks Pd bb sebelumny, And telh mempeljri persmn dn pertidksmn. Bentuk persmn dpt diubh ke bentuk mtriks untuk mempermudh dlm perhitungn, mislny pliksi berikut ini. Ti,

Lebih terperinci

Modul 1. Pendahuluan

Modul 1. Pendahuluan Modul Pendhulun.. Pengertin Mtriks Definisi. (Pengertin Mtriks) Mtriks didefinisikn sebgi sutu susunn bilngn berbentuk segiempt. Bilngnbilngn yng terdpt dlm susunn itu disebut elemen mtriks tersebut. Secr

Lebih terperinci

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu

4. Perkalian Matriks. Riki 3 2 Fera 2 5. Data harga bolpoin dan buku (dinyatakan oleh matriks Q), yaitu Sift-Sift Perklin Sklr Mislkn dn b sklr, D dn H mtriks sebrng dengn ordo sm, mk berlku sift-sift sebgi berikut. D + H (D + H) 2. D + bd ( + b)d 3. (bd) (b)d 4. Perklin Mtriks Du buh mtriks tu lebih selin

Lebih terperinci

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh :

RUANG VEKTOR UMUM. Dosen Pengampu : Darmadi S.Si M.Pd. Disusun oleh : RUNG VEKTOR UMUM Dosen Pengmpu : Drmdi S.Si M.Pd Disusun oleh : 1. gung Dwi Chyono (84.56) 2. rdie Kusum (84.73) 3. Heri Chyono (84.145) 4. Lingg Nio Prdn (84.18) 5. Yudh Sofyn Mhmudi (84.293) PROGRM STUDI

Lebih terperinci

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R.

RELASI DAN FUNGSI. A disebut daerah asal dari R (domain) dan B disebut daerah hasil (range) dari R. REASI DAN FUNGSI A. REASI Adlh hubungn ntr elemen himpunn dengn elemen himpunn yng lin. Cr pling mudh untuk menytkn hubungn ntr elemen himpunn dlh dengn himpunn psngn terurut. Himpunn psngn terurut diperoleh

Lebih terperinci

VEKTOR. Adri Priadana. ilkomadri.com

VEKTOR. Adri Priadana. ilkomadri.com VEKTOR Adri Pridn ilkomdri.com Pengertin Dlm Fisik dikenl du buh besrn, yitu 1. Besrn Sklr. Besrn Vektor Pengertin Besrn Sklr dlh sutu besrn yng hny mempunyi nili dn dinytkn dengn sutu bilngn tunggl diserti

Lebih terperinci

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006

Soal-soal dan Pembahasan Matematika Dasar SBMPTN-SNMPTN 2006 www.purwntowhyudi.com Hl- Sol-sol dn Pemhsn Mtemtik Dsr SBMPTN-SNMPTN 006. Jik > 0, > 0 dn mk A. C. E. B. D. Jw:. Jwnny dlh A. Jik p - dn q -, mk q p. A. C. E. B. D. Jw: q p Jwnny dlh A . Grfik y terletk

Lebih terperinci

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan.

Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan. Apliksi Teori Perminn Lwn pemin (puny intelegensi yng sm) Setip pemin mempunyi beberp strtegi untuk sling menglhkn Two-Person Zero-Sum Gme Perminn dengn pemin dengn perolehn (keuntungn) bgi slh stu pemin

Lebih terperinci

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2

Determinan. Untuk menghitung determinan ordo n terlebih dahulu diberikan cara menghitung determinan ordo 2 Determinan Determinan Setiap matriks bujur sangkar A yang berukuran (nxn) dapat dikaitkan dengan suatu skalar yang disebut determinan matriks tersebut dan ditulis dengan det(a) atau A. Untuk menghitung

Lebih terperinci

NILAI EIGEN DAN VEKTOR EIGEN

NILAI EIGEN DAN VEKTOR EIGEN Hl di 9 NILAI EIGEN DAN VEKTOR EIGEN 7. Definisi Sebuh mtiks buju sngk dengn ode n n mislkn A, dn sebuh vekto kolom X. Vekto X dlh vekto dlm ung Euklidin dengn sebuh pesmn: n R yng dihubungkn AX X (7.)

Lebih terperinci

BAB I V E K T O R. 1.1 Pengertian

BAB I V E K T O R. 1.1 Pengertian Vektor BAB I V E K T O R Pengertin Bnyk kuntits fisik, seperti lus, pnjng, mss dn tempertur, dpt dijelskn secr lengkp pbil besrn kuntits tersebut telh diberikn Kuntits seperti ini dinmkn sklr Kulits fisik

Lebih terperinci

GENERALISASI ATURAN CRAMER

GENERALISASI ATURAN CRAMER GENERALISASI ATURAN CRAMER Ferry Syhrindi, Thresye, Akhmd Yusuf Progrm Studi Mtemtik Fkults MIPA Universits Lmbung Mngkurt Jl. A. Yni Km. 36, Bnjrbru 70714, Klsel Emil : ferryexfresh@gmil.com ABSTRAK Sistem

Lebih terperinci

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT)

VECTOR DI BIDANG R 2 DAN RUANG R 3. Nurdinintya Athari (NDT) VECTOR DI BIDANG R DAN RUANG R Nurdininty Athri (NDT) VEKTOR DI BIDANG (R ) DAN DI RUANG (R ) Pokok Bhsn :. Notsi dn Opersi Vektor. Perklin titik dn Proyeksi Ortogonl. Perklin silng dn Apliksiny Beerp

Lebih terperinci

Kode MAT.01. Matriks

Kode MAT.01. Matriks MAT.. Mtriks i Kode MAT. Mtriks BAGIAN PROYEK PENGEMBANGAN KURIKULUM DIREKTORAT PENDIDIKAN MENENGAH KEJURUAN DIREKTORAT JENDERAL PENDIDIKAN DASAR DAN MENENGAH DEPARTEMEN PENDIDIKAN NASIONAL MAT.. Mtriks

Lebih terperinci

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan.

1. Identitas Trigonometri. 1. Identitas trigonometri dasar berikut ini merupakan hubungan kebalikan. 1. Identits Trigonometri Pengertin Identits Trigonometri dlh kesmn yng memut entuk trigonometri dn erlku untuk semrng sudut yng dierikn. Jenis Identits Trigonometri 1. Identits trigonometri dsr erikut

Lebih terperinci

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu Determinn Determinn dlh sutu fungsi tertentu yng menghubungkn sutu bilngn rel dengn sutu mtriks bujursngkr. Sebgi contoh, kit mbil mtriks A A tentukn determinn A untuk mencri determinn mtrik A mk, deta

Lebih terperinci

Jarak Titik, Garis dan Bidang dalam Ruang

Jarak Titik, Garis dan Bidang dalam Ruang Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.

Lebih terperinci

Trihastuti Agustinah

Trihastuti Agustinah TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN

Lebih terperinci

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:

1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini: ) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut

Lebih terperinci

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II)

1. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) MATA KULIAH KODE MK Dosen : FISIKA DASAR II : EL-22 : Dr. Budi Mulynti, MSi Pertemun ke-6 CAKUPAN MATERI. HUKUM SAMBUNGAN KIRCHOFF (HUKUM KIRCHOFF I) 2. HUKUM CABANG KIRCHOFF (HUKUM KIRCHOFF II) SUMBER-SUMBER:.

Lebih terperinci

PERSAMAAN LINIER. b a dimana : a, b, c, d adalah

PERSAMAAN LINIER. b a dimana : a, b, c, d adalah PERSAMAAN LINIER ). Persmn Linier Stu Vriel Bentuk umum : x, imn n konstnt Penyelesin : x Contoh : ). 5x x x 5 8 ). x 8 x x 8 ). Persmn Linier Vriel Bentuk umum : ). Persmn Linier Tig Vriel Bentuk umum

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN 3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp

Lebih terperinci

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar

3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar . LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn

Lebih terperinci

15. INTEGRAL SEBAGAI LIMIT

15. INTEGRAL SEBAGAI LIMIT 15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini

Lebih terperinci

LIMIT DAN KONTINUITAS

LIMIT DAN KONTINUITAS LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

RUANG VEKTOR (lanjut..)

RUANG VEKTOR (lanjut..) RUANG VEKTOR (Vector Spce) dn Rung Bgin (Subspce) 8/0/009 budi murtiys ums surkrt RUANG VEKTOR (VECTOR SPACE) Dikethui himpunn V dengn u, v, w V dn opersi i(+)b berlku dintr nggot-nggot t V. Dikethui Field

Lebih terperinci

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan

Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f

Lebih terperinci

3. LIMIT DAN KEKONTINUAN

3. LIMIT DAN KEKONTINUAN . LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti

Lebih terperinci

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah

Definisi Vektor. Vektor adalah besaran yang mempunyai besar dan arah VEKTOR Definisi Vektor Vektor dlh esrn yng mempunyi esr dn rh Besr vektor rtiny pnjng vektor Arh vektor rtiny sudut yng dientuk dengn sumu X positif Vektor disjikn dlm entuk rus gris errh Gmr Vektor B

Lebih terperinci

Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) a p a q = a p+q b) a p : a q = a p q

Jika a dan b bilangan real serta n, p, q bilangan bulat positif, maka berlaku: a) a p a q = a p+q b) a p : a q = a p q Modul : Pngkt dn Akr Pngkt ) Pngkt negtif dn nol Mislkn R dn 0, mk: ) n = ) 0 = tu n = n ) Sift Sift Pngkt n Jik dn ilngn rel sert n, p, q ilngn ult positif, mk erlku: ) p q = p+q ) p : q = p q p c) (

Lebih terperinci

Matriks. Modul 1 PENDAHULUAN

Matriks. Modul 1 PENDAHULUAN Modul 1 Mtriks Dr. Whyu Widyt, M.Ec. S PENDAHULUAN ering kli kit berhdpn dengn mslh mencri solusi dri sistem persmn linier, tu mslh optimissi sutu fungsi dengn jumlh vribel yng bnyk. Mslh-mslh tersebut

Lebih terperinci