BAB 2 STUDI KARAKTERISTIK PENGERINGAN SIMPLISIA. Pendahuluan

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 STUDI KARAKTERISTIK PENGERINGAN SIMPLISIA. Pendahuluan"

Transkripsi

1 BAB 2 STUDI KARAKTERISTIK PENGERINGAN SIMPLISIA Pendahuluan Pengeringan merupakan proses pengeluaran air dari dalam bahan secara termal untuk menghasilkan produk kering. Pengeringan sudah dikenal sejak dulu sebagai salah satu metode pengawetan produk bahan pertanian. Proses ini dipengaruhi oleh kondisi eksternal yaitu suhu, kelembaban, kecepatan dan tekanan udara pengering serta kondisi internal seperti kadar air, bentuk/geometri, luas permukaan dan keadaan fisik bahan. Setiap kondisi yang berpengaruh di atas dapat menjadi faktor pembatas laju pengeringan (Brooker et al. 1981). Pengeringan merupakan metode pengawetan produk yang cukup kompleks terutama disebabkan oleh adanya perubahan yang tidak diinginkan atas kualitas produk keringnya (Madamba et al. 1996; Mujumdar & Menon 1995). Tujuan dasar dalam pengeringan produk pertanian adalah pengurangan air dalam bahan sampai ke tingkat tertentu, di mana mikroba pembusuk dan kerusakan akibat reaksi kimia dapat diminimalisasi (Rizvi 2005), sehingga kualitas produk keringnya dapat dipertahankan. Salah satu produk pertanian yang memerlukan proses pengeringan adalah tanaman obat temu putih (Curcuma zedoaria (Berg.) Rosc.) dan temu lawak (Curcuma xanthorrhiza Roxb.) yang termasuk ke dalam suku Zingiberaceae. Bagian tanaman ini yang digunakan sebagai bahan baku obat tradisional atau lebih dikenal dengan jamu adalah umbi akar (rhizome) berupa irisan yang dikeringkan, disebut simplisia. Kadar air rimpang temu putih dan temu lawak pada saat dipanen berkisar 80-90%, angka ini cukup tinggi sehingga komoditas ini mudah rusak bila tidak segera diolah atau dikeringkan. Menurut Farmakope Herbal Indonesia (Depkes 2008) dan Keputusan Menteri Kesehatan RI No. 661/Menkes/SK/VII/1994 tentang Persyaratan Obat Tradisional, standar kadar air maksimum simplisia adalah 10%. Pada umumnya petani dan pedagang pengumpul melakukan pengeringan dengan cara penjemuran yang rawan kontaminasi. Selain itu tingkat suhu dan kelembaban penjemuran tidak cukup memadai sehingga sulit untuk mencapai standar kadar air yang disyaratkan. Untuk

2 10 meningkatkan kualitas hasil pengeringan maka cara pengeringan dengan penjemuran alami harus diganti dengan teknik pengeringan yang lebih modern. Untuk itu informasi tentang karakteristik pengeringan dan sifat-sifat termofisik setiap produk secara spesifik termasuk temu putih dan temu lawak harus diketahui, hal ini diperlukan dalam membuat desain rancangan proses dan peralatan pengeringannya. Studi tentang perilaku pengeringan tanaman obat dan herbal telah menjadi topik yang menarik bagi berbagai peneliti, antara lain jahe (Balladin et al. 1996), paprika hijau dan bawang (Kiranoudis et al. 1992), bawang (Shaarma et al. 2005), wortel (Doymaz 2004), teh hitam (Panchariya et al. 2002; Temple & Boxtel 1999), daun ketumbar (Ahmed et al. 2001), daun mint (Park et al. 2002), dan rosehip (Erenturk et al. 2004). Tujuan penelitian ini adalah untuk mempelajari pengaruh kondisi suhu, kelembaban relatif dan laju udara pengeringan terhadap karakteristik pengeringan, menentukan model matematis pengeringan serta mengkaji pengaruh kondisi pengeringan terhadap konstanta pengeringan lapisan tipis temu putih dan temu lawak. Tinjauan Pustaka Teori Pengeringan Pengeringan adalah proses penguapan air dari bahan yang dikeringkan dengan memberikan panas atau energi. Panas yang disuplai dapat melalui cara konveksi, konduksi dan radiasi. Lebih dari 85% pengering industri merupakan tipe konveksi dengan medium udara panas atau gas buang. Panas diberikan pada lapisan batas bahan yang dikeringkan dan selanjutnya terdifusi kedalam bahan secara konduktif. Air dalam bahan akan bergerak ke lapisan batas dan kemudian menguap dan dibawa oleh udara pengeringan (Mujumdar & Menon 1995). Air yang diuapkan terdiri dari air bebas dan air terikat. Laju penguapan air bebas sebanding dengan perbedaan tekanan uap pada permukaan air terhadap tekanan uap pengering (Henderson & Perry 1976). Bila konsentrasi air permukaan cukup besar, maka akan terjadi laju penguapan yang konstan.

3 11 Air bebas adalah bagian air yang terdapat pada permukaan bahan, dapat digunakan oleh mikroba untuk pertumbuhannya serta dijadikan sebagai media reaksi-reaksi kimia. Air bebas dapat dengan mudah diuapkan pada proses pengeringan. Untuk menguapkan air bebas diperlukan energi yang lebih kecil daripada menguapkan air terikat. Air terikat dibagi menjadi dua, yaitu air yang terikat secara fisik dan air yang terikat secara kimiawi. Air yang terikat secara fisik merupakan bagian air yang terdapat dalam jaringan matriks bahan karena adanya ikatan-ikatan fisik. Apabila kandungan ini diuapkan maka pertumbuhan mikroba, reaksi pencoklatan (browning), hidrolisis atau oksidasi lemak dapat dikurangi. Bila air permukaan telah habis, maka akan terjadi migrasi air dan uap dari bagian dalam ke permukaan secara difusi (Hall 1957; Henderson & Perry 1976). Difusi air atau uap air dalam bahan dapat terjadi melalui satu atau beberapa mekanisme berikut (Jangam & Mujumdar 2010): Difusi cair (liquid diffusion), jika suhu bahan berada di bawah suhu titik didih (boiling point) cairan Difusi uap air (vapor diffusion), jika air menguap di dalam bahan Difusi Knudsen, jika pengeringan terjadi pada suhu dan tekanan yang sangat rendah seperti pada proses pengeringan beku Difusi permukaan (surface diffusion), mungkin terjadi walaupun belum terbukti Perbedaan tekanan hidrostatis (hydrostatic pressure differences), terjadi ketika laju penguapan internal lebih besar daripada laju transfer uap air dari bahan ke lingkungan Kombinasi dari mekanisme di atas. Struktur fisik bahan yang dikeringkan mengalami perubahan sepanjang waktu pengeringan sehingga mekanisme penguapan juga dapat berubah. Pengeringan merupakan operasi yang kompleks yang melibatkan fenomena transfer panas dan massa secara simultan. Proses ini dapat menyebabkan terjadinya perubahan fisik dan kimiawi bahan. Perubahan secara fisik meliputi penyusutan, puffing, kristalisasi dan transisi gelas, sedangkan secara kimia menyebabkan perubahan warna, tekstur, bau dan sifat-sifat bahan lainnya.

4 12 Pengeringan merupakan unit operasi dengan tingkat konsumsi energi tinggi dan bersaing dengan proses destilasi sebagai the most energy-intensive unit operation sehubungan dengan tingginya panas laten penguapan air dan ketidakefisienan (inherent inefficiency) dari penggunaan udara panas sebagai media pengeringan pada umumnya (Jangam & Mujumdar 2010). Pada proses pengeringan terdapat dua jenis laju pengeringan, yaitu laju pengeringan konstan (constant rate) dan laju pengeringan menurun (falling rate). Grafik laju pengeringan ini dapat dilihat pada Gambar 2-1. Menurut Brooker et al. (1981) laju pengeringan konstan terjadi pada awal proses pengeringan produk dengan kadar air lebih besar dari 70% bb. dan merupakan fungsi dari suhu, kelembaban udara, dan kecepatan udara pengering. Umumnya laju pengeringan konstan merupakan periode yang singkat sehingga dapat diabaikan dalam proses pengeringan (Henderson & Perry 1976). A B C M D E Gambar 2-1. Kurva pengeringan (Hall 1957) t Laju pengeringan menurun terjadi setelah akhir laju pengeringan konstan, dimana kadar air bahan pada perubahan laju pengeringan ini disebut kadar air kritis (critical moisture content) (Hall 1957; Henderson & Perry 1976). Laju pengeringan menurun sering dibagi menjadi dua tahap, yaitu tahap laju pengeringan menurun pertama dan tahap laju pengeringan menurun kedua. Tahap

5 13 laju pengeringan menurun pertama terjadi pada saat berkurangnya permukaan bahan yang basah karena kecepatan pergerakan air dari dalam lebih kecil dibandingkan kecepatan penguapan di permukaan (Heldman & Singh 1981). Sedangkan laju pengeringan menurun kedua terjadi pada saat bagian dalam bahan menguap dan uap air berdifusi ke permukaan. Gambar laju pengeringan konstan dan laju pengeringan menurun dapat dilihat pada Gambar 2-2, dimana: A-B : periode pemanasan B-C : laju pengeringan konstan C : kadar air kritis C-D : periode penurunan laju pengeringan pertama D-E : periode penurunan laju pengeringan kedua dm/dt Laju pengeringan menurun Laju pengeringan tetap C B A LP D Me E M Gambar 2-2. Kurva karakteristik laju pengeringan (Hall 1957) Kadar air kritis adalah kadar air terendah dimana laju air bebas dari dalam bahan ke permukaan tidak terjadi lagi. Pada periode laju pengeringan menurun terjadi penurunan tekanan uap dari permukaan produk di bawah tekanan uap jenuh. Karena uap air secara terus menerus meninggalkan bahan, maka tekanan uap dalam bahan semakin kecil, yang berarti perbedaan tekanan uap antara bahan dengan udara disekitarnya semakin kecil. Kondisi tersebut akan menghasilkan penurunan pada laju pengeringan produk, sehingga disebut dengan laju pengeringan menurun.

6 14 Besarnya laju pengeringan berbeda-beda pada setiap bahan. Faktor-faktor yang mempengaruhi laju pengeringan tersebut adalah: 1. Bentuk bahan, ukuran, volume dan luas permukaan. 2. Sifat termofisik bahan, seperti: panas laten, panas jenis spesifik, konduktifitas termal dan emisivitas termal. 3. Komposisi kimia bahan, misalnya kadar air awal 4. Keadaan diluar bahan, seperti suhu, kelembaban udara Pada Gambar 2-3 terlihat beberapa tipe kurva pengeringan yang umum digunakan dalam menggambarkan proses pengeringan (Kemp et al. 2001). Gambar 2-3. Kurva Pengeringan (Kemp et al. 2001) Kadar Air Keseimbangan Kadar air keseimbangan didefinisikan sebagai nilai kandungan air bahan pada saat tekanan uap air di permukaan bahan seimbang dengan tekanan uap air lingkungannya (Hall 1957). Konsep kadar air kesimbangan ini penting dalam mempelajari proses pengeringan karena akan menentukan kadar air minimum yang dapat dicapai pada kondisi pengeringan tertentu (Brooker et al. 1981). Jika tekanan uap air di permukaan bahan lebih besar dari udara sekitar akan terjadi pelepasan air dari bahan ke udara (proses desorspsi), sedangkan pada keadaan sebaliknya terjadi penyerapan air oleh bahan (proses adsorpsi). Brooker

7 et al. (1981) menyebutkan bahwa dalam kondisi seimbang laju desorpsi sama dengan adsorpsi. Kondisi keseimbangan ini spesifik untuk setiap jenis bahan pada kelembaban nisbi dan suhu tertentu. Henderson menggambarkan hubungan antara kadar air keseimbangan dengan kelembaban nisbi dan suhu adalah sebagai berikut (Brooker et al. 1981): 1 - RH = exp (- c T Me n ) (2.1) Kurva persamaan di atas ditampilkan dalam hubungan kadar air keseimbangan terhadap kelembaban nisbi pada suhu tertentu. Persamaan Henderson banyak dipakai termasuk dalam penelitian ini karena bentuknya sederhana walupun demikian persamaan tersebut cukup representatif. Model matematika pengeringan lapisan tipis Henderson & Perry (1976) menyatakan bahwa pengeringan lapisan tipis adalah pengeringan dimana semua bahan yang terdapat dalam lapisan menerima secara langsung aliran udara dengan suhu dan kelembaban relatif yang konstan, dimana kadar air dan suhu bahan seragam. Pengeringan rimpang temu putih menggunakan metode lapisan tipis karena semua permukaan bahan menerima langsung panas yang berasal dari udara pengering. Untuk menduga perubahan kadar air bahan selama pengeringan lapisan tipis, dikembangkan model matematika baik secara teoritis, semi teoritis dan empiris. Luikov (1966) dalam Brooker et al. (1981) telah mengembangkan model matematik dalam bentuk persamaan diferensial untuk menggambarkan proses pengeringan dari produk hasil pertanian sebagai berikut: δm δt = 2 K 1.1 M + 2 K 1.2 T + 2 K 1.3 P δt δt = 2 K 2.1 M + 2 K 2.2 T + 2 K 2.3 P δp δt = 2 K 3.1 M + 2 K 3.2 T + 2 K 3.3 P (2.2) Mekanisme perpindahan massa dalam bahan pertanian adalah kompleks. Pengeringan bahan-bahan biologik pada umumnya mengikuti periode laju pengeringan menurun. Pada periode ini perpindahan air atau uap air dikendalikan secara difusi. Dengan menganggap bahwa resistensi perpindahan air tersebar 15

8 secara merata didalam bahan yang homogen, analogi hukum Newton untuk pendinginan pada persamaan (2.3) dipakai untuk analisis pengeringan. dm dt = k M M e (2.3) Dalam persamaan ini diasumsikan bahwa sampel cukup tipis dan kecepatan udara tinggi (minimum 0.3 m/s), suhu dan kelembaban udara yang melalui bahan dijaga tetap konstan. Pengeringan lapisan tipis didasarkan pada pengeringan bahan yang sepenuhnya terbuka terhadap hembusan udara yang menyebabkan semua bahan dalam lapisan tersebut mengalami pengeringan secara seragam (ASABE 2006). Persamaan (2.3) dapat diintegralkan menjadi (Palipane & Driscoll 1994; Pahlavanzadeh et al. 2001; Doymaz & Pala 2003): MR = M M e M 0 M e = a exp k t (2.4) Konstanta pengeringan merupakan karakteristik bahan dalam mempertahankan air yang terkandung didalamnya terhadap pengaruh udara panas. Konstanta pengeringan dinyatakan sebagai persatuan waktu (1/menit atau 1/jam). Makin tinggi nilai konstanta pengeringan makin cepat suatu bahan membebaskan airnya. Konstanta pengeringan (k) dalam sistem pengeringan lapis tipis tergantung pada kondisi bahan (kadar air, suhu dan geometri bahan) dan kondisi pengeringan (suhu, kelembaban dan laju aliran udara pengering). Model pengeringan lapisan tipis membedakan perilaku pengeringan bahanbahan biologik dalam tiga kategori, yaitu teoritis, semi-teoritis dan empiris. Model semi-teoritis pada umumnya diperoleh dari penyederhanaan deret umum dari solusi hukum Fick kedua atau modifikasi dari penyederhanaan model dan berlaku (valid) pada selang suhu, kelembaban nisbi dan kecepatan udara dimana model dibangun (Ozdemir & Derves 1999). Diantara model-model pengeringan lapisan tipis (Tabel 2-1), model Lewis, Henderson-Pabis, two-term dan model Page adalah yang paling sering digunakan (Akpinar et al. 2003; Madamba et al. 1996). Model-model semi teoritis dan empiris ini pada umumnya dapat menjelaskan proses pengeringan lapisan tipis secara memuaskan (Sarsavadia et al. 1999; Rizvi 2005). 16

9 17 Tabel 2-1. Model-model persaman matematis pengeringan lapisan tipis (Ertekin & Yaldiz 2004; Ceylan et al. 2007) No Model Persamaan 1 Lewis MR = exp( k t) 2 Henderson-Pabis MR = a exp( k t) 3 Page MR = exp( kt n ) 4 Modified Page MR = exp( k t ) n 5 Logarithmic MR = a exp( k t) + c 6 Two-term MR = a exp( k 1 t) + b exp(- k 2 t) 7 Wang and Singh MR = 1 + a t + b t 2 Pengeringan Simplisia Simplisia merupakan produk pertanian yang setelah melalui proses panen dan pasca panen menjadi produk sediaan kefarmasian untuk dipakai atau diproses lebih lanjut. Simplisia juga dibuat untuk pemenuhan stok dalam proses produksi. Proses pembuatan simplisia mempengaruhi mutu simplisia yang mencakup komposisi zat atau bahan aktif, kadar air akhir, kontaminasi dan keawetan. Secara teknis kegiatan pasca panen diawali dengan proses pengangkutan hasil panen, sortasi, pengupasan, pencucian, perajangan, pengeringan, pengepakan, penyimpanan. Pasca panen sebagai mata rantai proses untuk memperoleh jaminan mutu bagi simplisia, secara umum sangat dipengaruhi oleh (1) kandungan air bahan, (2) suhu (pemanasan) selama proses pengeringan, (3) sinar ultra violet dan (4) ph pada saat enzim di dalam jaringan bahan masih dalam kondisi aktif (Pantastico et al. 1975). Ketika tanaman dipanen, aktivitas metabolisme yang terjadi di dalam tanaman berhenti, tetapi komponen-komponen kimia seperti enzim (hidrolase, oksidase, polymerase) yang tertinggal pada jaringan bahan yang dipanen belum berhenti. Enzim memiliki sifat tidak tahan terhadap pemanasan. Aktifitas enzim dapat dihentikan dengan melakukan proses blansir (blanching) terlebih dahulu sebelum pengeringan (Ertekin & Yaldiz 2004). Kerusakan fisik dapat terjadi karena aktivitas air yang kurang terkontrol sehingga menimbulkan cemaran, khususnya mikroba. Proses pengeringan dengan menggunakan sinar matahari atau oven merupakan alternatif lain untuk menghentikan aktivitas enzim dan mencegah timbulnya cemaran mikroba. Tetapi beberapa bahan mudah rusak jika dikeringkan

10 18 langsung dibawah paparan sinar matahari yang mengandung sinar ultra violet, misalnya bahan yang mengandung minyak atsiri, pro-vitamin A dan zat antioksidan. Demikian juga dengan suhu pengeringan yang terlalu tinggi dapat menyebabkan kandungan zat aktif dalam bahan berkurang bahkan hilang. Pengaturan suhu selama proses pengeringan merupakan salah satu kunci keberhasilan dalam menghasilkan simplisia yang baik, secara fisik maupun kimia. Untuk memperoleh kualitas optimal, Farmakope Herbal Indonesia menyatakan pengeringan sebaiknya dilakukan pada suhu tidak lebih dari 60 o C (Depkes 2008). Studi tentang perilaku pengeringan tanaman obat telah menjadi topik yang menarik bagi berbagai peneliti, antara lain jahe (Balladin et al. 1996), paprika hijau dan bawang (Kiranoudis et al. 1992), bawang (Shaarma et al. 2005), wortel (Doymaz 2004), teh hitam (Panchariya et al. 2002; Temple & Boxtel 1999), daun ketumbar (Ahmed 2001), daun mint (Park et al. 2002), dan rosehip (Erenturk et al. 2004). Izadifar & Baik (2007) melakukan studi tentang pengeringan akar tanaman obat Podophyllum peltatum. Studi yang komprehensif tentang karakteristik pengeringan lapisan tipis rimpang tanaman obat temu putih dan temu lawak belum dilakukan. METODE Waktu dan Tempat Penelitian dilaksanakan di Laboratorium Pindah Panas dan Massa Departemen Teknik Pertanian, Fateta IPB Bogor pada bulan Maret 2009 hingga Juni Bahan dan Alat Bahan yang dipakai dalam penelitian ini adalah rimpang temu putih dan temu lawak yang diperoleh dari Kebun Percobaan Balittro Bogor. Alat-alat yang digunakan antara lain: pengering laboratorium terkendali-terakuisisi, timbangan digital model AQT 200 (kapasitas 200 gram dan ketelitian 1 gram), oven Ikeda Scientific SS204D, desikator, anemometer Kanomax A541 dan seperangkat pengolah data.

11 19 Pengering Laboratorium Alat pengering laboratorium didesain dan dibuat memenuhi standar untuk percobaan lapisan pengeringan tipis dimana suhu dan kelembaban nisbi (RH) dapat dijaga konstan (Lampiran 1). Pengontrolan kondisi pengeringan dilakukan dengan kontrol PID dengan akurasi suhu ± 1 o C dan RH ± 2% sesuai dengan standar (ASABE 2006). Kondisi pengeringan yang dapat dilakukan berada pada selang suhu o C dan RH 20-90%. Sensor suhu dan RH menggunakan SHT15 keluaran Sensirion. Secara keseluruhan alat pengering dikontrol oleh mikroprosesor AVR Atmel. Alat ini dilengkapi juga dengan sistim humidifier 2000 W, sistim pemanas 2000 W, kipas elektrik dan dehumidifier. Kecepatan udara pengering yang melalui ruang pengering (drying chamber) yang berdimensi 35 cm 35 cm 35 cm dikontrol secara manual dan diukur dengan menggunakan anemometer digital Kanomax dengan akurasi ± 0.1 m/s. Skema alat pengering terlihat pada Gambar Gambar 2-4. Skema fungsional (kiri) alat pengering laboratorium (kanan) Prosedur Percobaan Bahan berupa rimpang temu putih dan temu lawak dibersihkan, dicuci dan diiris melintang dengan menggunakan pisau. Sebelum dikeringkan, irisan temu putih dan temu lawak direndam dahulu dalam air dengan suhu 95 o C (diblansir) selama 5 menit (Ertekin & Yaldiz 2004). Sampel temu putih kemudian diletakkan

12 pada wadah sedemikian rupa dalam bentuk lapisan tipis. Tebal irisan sampel sekitar 3-4 mm dan berat sampel setiap pengeringan berkisar 150 gram. Pada setiap percobaan, alat pengering dihidupkan sekitar setengah sampai satu jam sebelum percobaan dimulai untuk menstabilkan ruangan pengering sesuai dengan kondisi percobaan yang diinginkan. Kondisi percobaan pengeringan lapisan tipis temu putih yang dilakukan adalah pada suhu 40, 50, 60 dan 70 o C dengan RH 20%, 40%, 60%, dan 80% serta laju aliran udara pengering v 1 (-0.9 m/s) dan v 2 (-0.3 m/s) (Tabel 2.2) sedangkan untuk pengeringan temu lawak dilakukan pada suhu 50, 60 dan 70 o C serta RH 20%, 30% dan 40% (Tabel 2.3). Tabel 2-2. Kondisi percobaan pengeringan lapisan tipis temu putih Suhu RH 20% 40% 60% 80% * 40 o C 50 o C 60 o C 70 o C Laju alira udara v 1 (-0.9 m/s) - v 2 (-0.3 m/s) * ) hanya v 1 Tabel 2-3. Kondisi percobaan pengeringan lapisan tipis temu lawak Suhu RH 20% 30% 40% 50 o C 60 o C 70 o C Laju aliran udara -0.9 m/s Berat dan suhu bahan serta suhu dan kelembaban udara pengering dimonitor secara kontinu dan direkam datanya setiap 5 menit selama percobaan. Perubahan berat sampel diukur langsung secara otomatis dengan menggunakan timbangan GF-3000 A&D dengan kapasitas g dan akurasi 1 g. Percobaan dihentikan setelah berat sampel konstan. Kadar air akhir percobaan ditentukan dengan mengeringkan sampel selama 24 jam pada suhu 103 ± 2 o C dengan memakai oven (Kashaninejad et al. 2003). 20

13 21 Model Matematika berikut: Besarnya laju pengeringan selama percobaan dihitung dengan persamaan Laju pengeringan = M t+dt M t dt (2.5) dimana M t dan M t+dt masing-masing adalah kadar air pada saat t dan kadar air pada saat t + dt (kg uap air/kg bahan kering), t adalah waktu pengeringan (menit) (Erenturk et al., 2004). Hubungan antara konstanta dari model matematik terbaik dengan variabel pengeringan yaitu suhu dan kelembaban juga akan ditentukan. Beberapa model akan dipakai untuk menjelaskan kesesuaian (fitted) model terhadap data pengeringan yang didapatkan, yaitu model Lewis, Henderson-Pabis dan Page (lihat Tabel 2.1). Untuk menentukan model persamaan terbaik dipakai kriteria coefficient of determination (COD atau R 2 ) (Lee et al. 2004) sedangkan untuk menghitung keragaman dalam kurva pengeringan digunakan standard error (SE) (Menges & Ertekin 2006). Nilai R 2 menunjukkan kemampuan model (the ability of the model) dengan nilai tertingginya adalah 1. Nilai SE menunjukkan deviasi antara hasil hitung terhadap data pengukuran, nilai yang diinginkan adalah mendekati nol. Kedua kriteria tersebut digunakan untuk menentukan ketepatan model (the goodness of the fit), semakin tinggi nilai R 2 dan semakin kecil nilai standard error (SE) maka model semakin tepat. Persamaan kriteria statistik tersebut adalah sebagai berikut: SE = N i=1 MR exp,i MR pre,i 2 N n (2.6) R 2 = 1 N i=1 N i=1 MR exp,i MR pre,i 2 MR exp,i MR exp 2 (2.7) dimana MR exp,i adalah rasio kadar air percobaan ke-i, MR pre,i adalah rasio kadar air hitung ke-i, N adalah jumlah pengamatan, n adalah jumlah konstanta dalam model pengeringan dan MR exp adalah nilai rata-rata dari rasio kadar air percobaan. Hubungan konstanta dan koefisien dari model yang terbaik dengan parameter

14 22 pengeringan, dalam hal ini suhu, ditentukan dengan menggunakan teknik regresi (Menges & Ertekin 2006; Midili & Kucuk 2003a). Model pengeringan yang dipilih adalah model dengan nilai R 2 tertinggi serta SE terkecil, persamaan tersebut merupakan model terbaik dalam mewakili data percobaan pengeringan lapisan tipis temu putih dan temu lawak. Penentuan Konstanta Pengeringan Konstanta pengeringan pada persamaan (2.4) ditentukan dengan metode regresi non-linier berdasarkan data percobaan pengeringan dengan bantuan program CurveExpert versi Program ini menggunakan metode Levenberg- Marquardt (LM) untuk pemecahan regresi non-linear. Metode LM merupakan kombinasi metode steepest-descent dengan metode ekspansi deret Taylor. Penjelasan tentang metode regresi non linier ini terdapat pada Lampiran 8. Kadar air keseimbangan (M e ) temu putih ditentukan dari kadar air akhir pengeringan (Kashaninejad et al. 2007). Nilai ini digunakan untuk menghitung rasio kadar air (MR) berdasarkan persamaan berikut: MR = M M e M 0 M e (2.8) HASIL DAN PEMBAHASAN Kinetika Pengeringan Temu Putih Plot data pengeringan lapisan tipis temu putih terlihat pada Gambar 2-5 yang menunjukkan pengaruh kelembaban terhadap kadar air pada suhu tetap, sedangkan Gambar 2-6 menunjukkan pengaruh suhu pengeringan pada RH tetap. Gambar 2-7 dan 2-8 memperlihatkan waktu pengeringan yang dibutuhkan untuk mencapai keseimbangan pada berbagai suhu dan RH. Baik suhu dan RH berpengaruh terhadap waktu pengeringan, semakin tinggi suhu dan semakin rendah RH, maka waktu untuk mencapai keseimbangan semakin cepat. Dari kurva pengeringan juga terlihat bahwa proses pengeringan berjalan cepat pada saat awal pengeringan yang ditandai dengan menurunnya kurva secara tajam dan kemudian semakin melambat di akhir pengeringan.

15 23 Gambar 2-9 menunjukkan pengaruh suhu terhadap laju pengeringan menurut waktu pada RH tetap, sedangkan Gambar 2-10 menunjukkan pengaruh RH pengeringan terhadap laju pengeringan menurut waktu pada suhu tetap. Kurva laju pengeringan menurut waktu memperlihatkan bahwa pada saat awal proses pengeringan, laju pengeringan tinggi dan semakin melambat pada akhir pengeringan. Hal ini identik dengan umumnya kurva pengeringan yaitu akibat masih tingginya kadar air bahan pada saat awal pengeringan. 40 C, 80% 40 C, 60% 40 C, 40% MR () 50 C, 60% 50 C, 40% 50 C, 20% MR () 60 C, 60% 60 C, 40% 60 C, 20% Gambar 2-5. Kurva pengeringan temu putih pada suhu 40 o C (atas kiri), 50 o C (atas kanan) dan 60 o C (bawah)

16 24 MR () Time (min) 60 C, 20% 50 C, 20% MR () 60 C, 40% 50 C, 40% 40 C, 40% MR () 60 C, 60% 50 C, 60% 40 C, 60% Gambar 2-6. Kurva pengeringan temu putih pada RH 20% (atas kiri), 40% (atas kanan) dan 60% (bawah) C 50 C 60 C % Relative humidity 60% Gambar 2-7. Pengaruh suhu terhadap waktu pengeringan untuk mencapai kadar air keseimbangan temu putih pada RH 40% & 60%

17 Time (min) % 40% 60% C Temperature 60 C Gambar Pengaruh RH terhadap waktu pengeringan untuk mencapai kadar air keseimbangan temu putih pada suhu 50 & 60 o C Laju pengeringan (g/mnt) 60 C, 20% 50 C, 20% Laju pengeringan (g/mnt) 60 C, 40% 50 C, 40% 40 C, 40% Laju pengeringan (g/mnt) 60 C, 60% 50 C, 60% 40 C, 60% Gambar 2-9. Pengaruh suhu terhadap laju pengeringan menurut waktu pada RH 20% (atas kiri), 40% (atas kanan) dan 60% (bawah)

18 26 Laju pengeringan (g/mnt) Laju pengeringan (g/mnt) 60 C, 60% 60 C, 40% 60 C, 20% Laju pengeringan (g/min) C, 80% 40 C, 60% 40 C, 40% C, 60% 50 C, 40% 50 C, 20% Gambar Pengaruh RH terhadap laju pengeringan menurut waktu pada suhu 60 o C (atas kiri), 50 o C (atas kanan) dan 40 o C (bawah) Gambar 2-11 adalah grafik yang menunjukkan pengaruh suhu terhadap laju pengeringan menurut rasio kadar air (MR) pada RH tetap, sedangkan Gambar 2-12 pengaruh RH terhadap laju pengeringan menurut rasio kadar air (MR) pada suhu tetap. Sebagaimana kurva laju pengeringan menurut waktu, baik suhu maupun RH mempunyai pengaruh terhadap laju pengeringan menurut rasio kadar air, semakin tinggi suhu dan semakin rendah RH maka laju pengeringan semakin tinggi. Pengaruh perbedaan RH terhadap laju pengeringan cenderung terlihat lebih besar daripada perbedaan suhu. Gambar 2-13 memperlihatkan pengaruh laju aliran udara pengeringan terhadap waktu pengeringan dan laju pengeringan. Laju aliran udara pengering yang tinggi v 1 (-0.9 m/s) cenderung membuat laju pengeringan yang tinggi pula sehingga proses pengeringan lebih cepat dibandingkan dengan laju aliran v 2 yang rendah (-0.3 m/s) dan sebaliknya.

19 27 Dari semua kurva laju pengeringan pada berbagai kondisi pengeringan tidak terlihat adanya laju pengeringan tetap atau konstan sehingga dapat dikatakan bahwa pengeringan temu putih berlangsung pada periode laju pengeringan menurun (the falling rate period). Pada fase ini difusi merupakan mekanisme pengontrol utama pergerakan air/uap air dalam bahan sebagaimana hal yang sama dilaporkan oleh Lee et al. (2004) untuk irisan rimpang chicory dan Ahmed et al. (2001) dalam studi pengeringan daun ketumbar (corriander leaves). Laju pengeringan (g/mnt). 60 C, 20% 50 C, 20% Laju pengeringan (g/mnt) 60 C, 60% 50 C, 60% 40 C, 60% Gambar Pengaruh suhu terhadap laju pengeringan menurut MR pada RH 20% (atas kiri), 40% (atas kanan) dan 60% (bawah) Laju Pengeringan (g/mnt) 60 C, 40% 50 C, 40% 40 C, 40%

20 28 Laju pengeringan (g/mnt) 60 C, 60% 60 C, 40% 60 C, 20% Laju pengeringan (g/mnt) 50 C, 60% 50 C, 40% 50 C, 20% Laju pengeringan (g/mnt) 40 C, 80% 40 C, 60% 40 C, 40% Gambar Pengaruh RH terhadap laju pengeringan menurut MR pada suhu 60 o C (atas kiri), 50 o C (atas kanan) dan 40 o C (bawah) MR suhu 50, RH 40%, v1 suhu 50, RH 40%, v Laju Pengeringan (%bk/menit) suhu 50, RH 40%, v1 suhu 50, RH 40%, v KA (%bk) Gambar Pengaruh laju aliran udara pengeringan (v 1 dan v 2 ) terhadap waktu pengeringan (kiri) dan laju pengeringan (kanan)

21 29 Kadar Air Keseimbangan Temu Putih Kadar air keseimbangan adalah tingkat keseimbangan dinamis kadar air bahan dengan lingkungan, dimana laju perpindahan uap air dari dan ke permukaan bahan sama besar. Nilai kadar air keseimbangan ditentukan dari kadar air akhir percobaan pada berbagai kondisi pengeringan, yaitu pada saat berat sampel sudah tidak lagi mengalami perubahan. Nilai kadar air keseimbangan pada berbagai nilai RH pada suhu yang sama akan membentuk satu garis yang dikenal sebagai kurva sorpsi isotermis (Gambar 2-14). Kelembaban nisbi pada suhu dan kadar air keseimbangan tertentu disebut dengan kelembaban nisbi keseimbangan (ERH) (Brooker et al. 1981). Pada Tabel 2-4 dicantumkan nilai kadar air keseimbangan temu putih pada berbagai suhu dan kelembaban nisbi udara pengeringan. Dari tabel tersebut dapat diketahui bahwa semakin tinggi suhu pengeringan maka kadar air keseimbangan semakin rendah dan sebaliknya. Berlawanan dengan suhu, semakin tinggi kelembaban nisbi (RH) udara pengering maka kadar air keseimbangan akan semakin tinggi pula dan sebaliknya. Dengan kata lain untuk mendapatkan kadar air keseimbangan yang rendah diperlukan suhu udara pengeringan yang tinggi dan RH udara pengeringan yang rendah Kadar air (% bk.) C 50 C 60 C 70 C Kelembaban nisbi (%) Gambar Kurva sorpsi isotermis kadar air keseimbangan temu putih

22 Tabel 2-4. Kadar air keseimbangan (% bb.) temu putih Suhu 40 o C 50 o C 60 o C 70 o C RH 40% 60% 80% 20% 40% 60% 20% 40% 60% 20% 40% v 1 (-0.9 m/s) v 2 (-0.3 m/s) Model Henderson pada persamaan (2.1) ditentukan dengan menggunakan regresi non-linier berdasarkan data percobaan pada Tabel 2-4. Nilai konstanta c dan n persamaan tersebut masing-masing adalah 173 dan 423 dengan koefisien korelasi (R 2 ) dan standard error (SE) masing-masing sebesar 5 dan 3.5, sehingga model persamaan Henderson untuk kadar air keseimbangan temu putih dapat dituliskan sebagai berikut: 1 - RH = exp (- 173 T Me 423 ) (2.9) Pada Tabel 2-5 dapat dilihat nilai kadar air keseimbangan hasil perhitungan pada berbagai kondisi suhu dan RH pengeringan berdasarkan model Henderson dan model terbaik (best-fit) dengan menggunakan program CurveExpert Model Pengeringan Lapisan Tipis Temu Putih Model pengeringan lapisan tipis temu putih yang digunakan adalah model Lewis, Henderson-Pabis dan Page sebagaimana ditampilkan pada Tabel 2-1. Model-model ini dipakai karena masing-masing dapat mewakli model teoritis, semi teoritis dan empiris. Dalam pemodelan, semua data kadar air percobaan digunakan dalam bentuk kadar air basis kering. Data kadar air pada berbagai kondisi pengeringan dikonversi menjadi nilai rasio kadar air (MR) dan dipaskan (fitted) dengan model sehingga didapatkan kurva nilai MR dugaan model (predicted MR) terhadap waktu pengeringan. model-model tersebut kemudian dibandingkan secara statistik dengan menggunakan kriteria koefisien korelasi dan standard error. Hasil pemodelan pengeringan lapisan tipis temu putih berdasarkan model Lewis, Henderson-Pabis dan Page dapat dilihat pada Gambar 2-15, 2-16 dan Dari gambar-gambar tersebut terlihat bahwa model Page adalah model persamaan yang paling baik dalam mewakili data percobaan pengeringan temu putih.

23 31 Tabel 2-5. Kadar air keseimbangan perhitungan dan pengukuran temu putih Suhu ( o C) RH (%) KA Keseimbangan (Me) Pengukuran Henderson Best fit (% bk.) (% bb.) (% bk.) (% bb.) (% bk.) (% bb.) Hal ini juga didukung secara statistik dimana model Page memiliki rata-rata koefisien determinasi yang paling tinggi serta standard error yang paling rendah (Tabel 2-6). Model Page adalah model dengan nilai rata-rata R 2 yang paling tinggi dan standard error paling rendah yaitu dan 079 dibandingkan dengan dan 226 untuk model Henderson-Pabis serta dan 281 untuk model Lewis, sehingga model Page adalah persamaan yang paling mewakili karakteristik pengeringan temu putih. Model Page memiliki nilai R 2 dan SE masing-masing pada kisaran dan , model Henderson-Pabis kisaran nilainya masing-masing dan sedangkan Model Lewis kisaran nilainya adalah masing-masing dan Pada model Lewis dan Page curve fitting terbaik terjadi pada suhu dan RH pengeringan 60 o C dan 20%, sedangkan model Henderson-Pabis pada suhu 70 o C dan RH 20%.

24 32 MR () 50 C, 60% 50 C, 40% 50 C, 20% Model Lewis MR () 60 C, 60% 60 C, 40% 60 C, 20% Model Lewis Gambar Kurva MR percobaan dan perhitungan dari model Lewis MR () 50 C, 60% 50 C, 40% 50 C, 20% Model H&P MR () 60 C, 60% 60 C, 40% 60 C, 20% Model H&P Gambar Kurva MR percobaan dan perhitungan dari model Henderson-Pabis MR () 50 C, 60% 50 C, 40% 50 C, 20% Model Page MR () 60 C, 60% 60 C, 40% 60 C, 20% Model Page Gambar Kurva MR percobaan dan perhitungan dari model Page

25 33 Suhu ( o C) Tabel 2-6. Evaluasi statistik model pengeringan simplisia temu putih RH Model Lewis Model H&P Model Page (%) R 2 SE R 2 SE R 2 SE Rata-rata Nilai konstanta untuk model Lewis, Henderson-Pabis dan Page pada berbagai kondisi pengeringan dapat dilihat pada Tabel 2-7. Persamaan Lewis dan Henderson-Pabis mempunyai nilai konstanta k yang hampir sama, hal ini dibedakan oleh pendekatan pada suku pertama dari pemecahan analitis persamaan umum difusi (8/π 2 ) dimana model Lewis mengansumsikan suku tersebut sama dengan satu (unity) (Zogzas & Maroulis 1996), sedangkan model Henderson- Pabis mengganti dengan konstanta a yang nilainya juga mendekati satu. Adanya konstanta a membuat model Henderson-Pabis lebih baik daripada model Lewis. Tabel 2-7. Nilai konstanta model pengeringan simplisia temu putih Suhu ( o C) Model Model RH Model Page Lewis Henderson-Pabis (%) k k a k n

26 34 Konstanta Pengeringan Temu Putih Secara empiris nilai konstanta pengeringan (k) dalam satuan 1/menit didapatkan dengan menggunakan persamaan (2.4) atau dikenal juga dengan model Henderson-Pabis (Babalis dan Belessiotis, 2004; Lee et al., 2004), nilainya tertera pada Tabel 2.6. Besaran konstanta k dan a masing-masing bervariasi dari /menit, dan Konstanta pengeringan (k) merupakan koefisien yang berkaitan dengan nilai difusivitas bahan sehingga nilai konstanta pengeringan juga merupakan fungsi dari suhu udara pengeringan. Semakin tinggi suhu udara pengeringan maka semakin tinggi nilai konstanta pengeringan. Plot nilai konstanta pengeringan terhadap suhu ditampilkan pada Gambar Konstanta k (1/menit) RH 20% RH 40% RH 60% k Hitung Suhu ( o C) Gambar Kurva pengaruh suhu pengeringan terhadap konstanta pengeringan Untuk menyatakan hubungan antara konstanta pengeringan dan suhu pengeringan digunakan persamaan berikut: k = a exp (b T) (2.10) dimana a dan b merupakan konstanta persamaan dan T adalah suhu pengeringan. Gambar 2-18 memperlihatkan bahwa konstanta pengeringan meningkat secara eksponensial terhadap suhu pada setiap level RH udara pengeringan. Nilai konstanta a dan b diperoleh dengan regresi non-linier dan hasilnya tertera pada Tabel 2-8 bersama nilai koefisien determinasi dan standard error. Nilai R 2 bervariasi antara dan tertinggi pada tingkat RH 60%. Pada Tabel 2-9

27 dapat dilihat konstanta pengeringan hasil perhitungan dengan menggunakan persamaan (2.10) dan konstanta pengeringan percobaan. Tabel 2-8. Nilai konstanta a dan b persamaan (2.15) RH a b R2 SE 20% % % Tabel 2-9. Nilai k (1/menit) percobaan dan hasil perhitungan Suhu RH 20% RH 40% RH 60% k k hitung k k hitung k k hitung 40 o C o C o C o C Kinetika Pengeringan Temu lawak Plot data pengeringan lapisan tipis temu lawak terlihat pada Gambar 2-19 yang menunjukkan pengaruh kelembaban terhadap kadar air pada suhu tetap, sedangkan Gambar 2-20 menunjukkan pengaruh suhu pengeringan pada RH tetap. Gambar 2-21 dan 2-22 memperlihatkan waktu pengeringan yang dibutuhkan untuk mencapai keseimbangan pada berbagai suhu dan RH. Baik suhu dan RH berpengaruh terhadap waktu pengeringan, semakin tinggi suhu dan semakin rendah RH, maka waktu untuk mencapai keseimbangan semakin cepat. Dari kurva pengeringan juga terlihat bahwa proses pengeringan temu lawak berjalan cepat pada saat awal pengeringan yang ditandai dengan menurunnya kurva secara tajam dan kemudian semakin melambat diakhir pengeringan. Gambar 2-23 menunjukkan pengaruh suhu terhadap laju pengeringan menurut waktu pada RH tetap. Kurva laju pengeringan menurut waktu memperlihatkan bahwa pada saat awal proses pengeringan, laju pengeringan tinggi dan semakin melambat pada akhir pengeringan. Hal ini identik dengan kurva pengeringan temu putih, disebabkan masih tingginya kadar air bahan pada saat awal pengeringan.

28 36 50 C, 40% 50 C, 30% 50 C, 20% 60 C, 40% 60 C, 30% 60 C, 20% C, 40% 70 C, 30% 70 C, 20% Gambar Kurva pengeringan temu lawak pada suhu 50 o C (atas kiri), 60 o C (atas kanan) dan 70 o C (bawah) 50 C, 20% 60 C, 20% 70 C, 20% 50 C, 30% 60 C, 30% 70 C, 30%

29 37 50 C, 40% 60 C, 40% 70 C, 40% Gambar Kurva pengeringan temu lawak pada RH 20% (atas kiri), 30% (atas kanan) dan 40% (bawah) % 30% 40% 0 50 C 60 C 70 C Suhu Gambar Pengaruh suhu terhadap waktu pengeringan untuk mencapai kadar air keseimbangan temu lawak C 60 C 70 C 0 20% 30% 40% RH Gambar Pengaruh RH terhadap waktu pengeringan untuk mencapai kadar air keseimbangan temu lawak

30 38 Laju pengeringan (ΔMR/menit) C, 20% 60 C, 20% 70 C, 20% Laju pengeringan (ΔMR/menit) C, 30% 60 C, 30% 70 C, 30% Laju pengeringan (ΔMR/menit) C,40% 60 C, 40% 70 C, 40% Gambar Pengaruh suhu terhadap laju pengeringan temu lawak menurut waktu pada RH 20% (atas kiri), 30% (atas kanan) dan 40% (bawah) Grafik pada Gambar 2-24 memperlihatkan pengaruh suhu terhadap laju pengeringan menurut rasio kadar air (MR) pada RH tetap, sedangkan Gambar 2-25 pengaruh RH terhadap laju pengeringan menurut rasio kadar air (MR) pada suhu tetap. Sebagaimana kurva laju pengeringan menurut waktu, baik suhu maupun RH mempunyai pengaruh terhadap laju pengeringan menurut rasio kadar air, semakin tinggi suhu dan semakin rendah RH maka laju pengeringan semakin tinggi. Pengaruh perbedaan RH terhadap laju pengeringan cenderung terlihat lebih nyata daripada perbedaan suhu sedangkan pengaruh perbedaan suhu terhadap laju pengeringan terlihat bahwa suhu 50 dan 60 o C tidak terlalu berbeda. Dari semua kurva laju pengeringan pada berbagai kondisi pengeringan tidak terlihat adanya laju pengeringan tetap atau konstan sehingga dapat dikatakan bahwa pengeringan temu lawak berlangsung pada periode laju pengeringan menurun (the falling rate period). Pada fase ini difusi merupakan mekanisme

31 39 pengontrol utama pergerakan air dalam bahan, hal yang sama terjadi pada pengeringan temu putih.. 12 Drying Rate (Δ MR/min) C, 20% 50 C, 30% 50 C, 40% 12 Drying rate (ΔMR/min) C, 20% 60 C, 30% 60 C, 40% Drying Rate (ΔMR/min) C, 20% 70 C, 30% 70 C, 40% 00 Gambar Pengaruh RH terhadap laju pengeringan temu lawak menurut MR pada suhu 50 o C (atas), 60 o C (tengah) dan 70 o C (bawah)

32 40 Laju pengeringan (ΔMR/menit) C, 20% 60 C, 20% 70 C, 20% Laju pengeringan (ΔMR/menit) C, 30% 60 C, 30% 70 C, 30% Laju pengeringan (ΔMR/menit) C,40% 60 C, 40% 70 C, 40% Gambar Pengaruh suhu terhadap laju pengeringan temu lawak menurut MR pada RH 20% (atas), 30% (tengah) dan 40% (bawah)

33 41 Kadar Air Keseimbangan Temu Lawak Pada Tabel 2-10 tercantum nilai kadar air keseimbangan temu lawak pada berbagai suhu dan kelembaban nisbi udara pengeringan. Dari tabel tersebut dapat diketahui bahwa semakin tinggi suhu pengeringan maka kadar air keseimbangan semakin rendah dan sebaliknya. Berlawanan dengan suhu, semakin tinggi kelembaban nisbi (RH) udara pengering maka kadar air keseimbangan akan semakin tinggi pula dan sebaliknya. Dengan kata lain untuk mendapatkan kadar air keseimbangan yang rendah diperlukan suhu udara pengeringan yang tinggi dan RH udara pengeringan yang rendah. Berdasarkan tabel tersebut juga dapat diketahui bahwa kadar air standar 10% (bb.) dapat dicapai pada semua kondisi percobaan pengeringan kecuali pada kondisi suhu 50 o C dan RH 40%. Tabel Kadar air keseimbangan (% bb.) temu lawak Kondisi pengeringan 20% 30% 40% 70 o C o C o C Model Henderson pada persamaan (2.1) ditentukan dengan menggunakan regresi non-linier berdasarkan data percobaan pada Tabel 2-10 pada setiap suhu. Nilai konstanta c dan n persamaan tersebut untuk setiap level suhu pengeringan dapat dilihat pada Tabel Tabel Nilai konstanta c dan n persamaan Henderson untuk temu lawak Suhu c n R 2 SE 70 o C o C o C Model Pengeringan Lapisan Tipis Temu Lawak Model pengeringan lapisan tipis temu lawak yang digunakan adalah model Lewis, Henderson-Pabis dan Page sebagaimana ditampilkan pada Tabel 2-1. Model-model ini dipakai karena masing-masing dapat mewakli model teoritis, semi teoritis dan empiris. Dalam pemodelan, semua data kadar air percobaan

34 42 digunakan dalam bentuk kadar air basis kering. Data kadar air pada berbagai kondisi pengeringan dikonversi menjadi nilai rasio kadar air (MR) dan dipaskan (fitted) dengan model sehingga mendapatkan kurva nilai MR dugaan model (predicted MR) terhadap waktu pengeringan. Model-model tersebut kemudian dibandingkan secara statistik dengan menggunakan kriteria koefisien korelasi dan standard error. Hasil pemodelan pengeringan lapisan tipis temu lawak berdasarkan model Lewis, Henderson-Pabis dan Page dapat dilihat pada Gambar 2-26, 2-27 dan Dari gambar-gambar tersebut terlihat bahwa model Page adalah model persamaan yang paling mewakili data percobaan pengeringan lapisan tipis temu lawak. Hal ini juga didukung secara statistik dimana model Page memiliki rata-rata koefisien determinasi yang paling tinggi serta standard error yang paling rendah (Tabel 2-12). Model Page adalah model dengan nilai rata-rata R 2 yang paling tinggi dan standard error paling rendah yaitu dan 085 dibandingkan dengan dan 172 untuk model Henderson-Pabis serta dan 217 untuk model Lewis, sehingga model Page adalah persamaan yang paling mewakili karakteristik pengeringan temu lawak. Model Page memiliki nilai R 2 dan SE masing-masing pada kisaran dan , model Henderson-Pabis kisaran nilainya dan sedangkan Model Lewis kisaran nilainya adalah dan Pada model Lewis dan Henderson-Pabis curve fitting terbaik terjadi pada suhu dan RH pengeringan 70 o C dan 30%, sedangkan model Page pada suhu 60 o C dan RH 30%. Nilai-nilai konstanta dari persamaan model Lewis, Henderson-Pabis dan Page pada berbagai kondisi pengeringan dapat dilihat pada Tabel 2-13.

35 43 50 C, 40% 50 C, 30% 50 C, 20% Model Lewis 60 C, 40% 60 C, 30% 60 C, 20% Model Lewis Gambar Kurva MR percobaan dan perhitungan temu lawak dari model Lewis 50 C, 40% 50 C, 30% 50 C, 20% Model H-P 60 C, 40% 60 C, 30% 60 C, 20% Model H-P Gambar Kurva MR percobaan dan perhitungan temu lawak dari model Henderson-Pabis C, 40% 50 C, 30% 50 C, 20% Model Page 60 C, 40% 60 C, 30% 60 C, 20% Model Page Gambar Kurva MR percobaan dan perhitungan temu lawak dari model Page

36 44 Suhu ( o C) Tabel Evaluasi statistik model pengeringan simplisia temu lawak RH Model Lewis Model H&P Model Page (%) R 2 SE R 2 SE R 2 SE Rata-rata Tabel Nilai konstanta model pengeringan simplisia temu lawak Suhu ( o C) Model Model RH Model Page Lewis Henderson-Pabis (%) k k a k n Konstanta Pengeringan Temu Lawak Secara empiris nilai konstanta pengeringan (k) temu lawak dalam satuan 1/menit didapatkan dengan menggunakan persamaan (2.4). Besaran konstanta k dan a masing-masing bervariasi dari /menit, dan Konstanta pengeringan merupakan koefisien yang berkaitan dengan nilai difusivitas bahan sehingga nilai konstanta pengeringan juga merupakan fungsi dari suhu udara pengeringan. Semakin tinggi suhu udara pengeringan maka semakin tinggi nilai konstanta pengeringan. Plot antara nilai k rata-rata temu lawak terhadap suhu pengeringan ditampilkan pada Gambar Berdasarkan

37 gambar tersebut terlihat bahwa konstanta pengeringan meningkat secara eksponensial terhadap suhu pada setiap level RH udara pengeringan. 45 Konstanta k (1/menit) RH 20% RH 30% RH 40% k hitung Suhu ( o C) Gambar Pengaruh suhu pengeringan terhadap konstanta pengeringan Simplisia temu lawak Untuk menyatakan hubungan antara konstanta pengeringan dan suhu pengeringan digunakan persamaan (2.10). Nilai konstanta a dan b diperoleh dengan regresi non-linier dan hasilnya tertera pada Tabel 2-14 bersama-sama nilai koefisien determinasi dan standard error. Nilai R 2 bervariasi antara dan tertinggi pada tingkat RH 40%. Pada Tabel 2-15 dicantumkan nilai konstanta hasil perhitungan berdasarkan Tabel Tabel Konstanta persamaan hubungan k dan suhu pengeringan temu lawak RH a b R2 SE 20% % % Tabel Nilai k (1/menit) temu lawak percobaan dan hasil perhitungan RH 20% RH 30% RH 40% Suhu k k hitung k k hitung k k hitung 50 o C o C o C

38 46 Kesimpulan 1. Pengeringan temu putih dan temu lawak berlangsung pada laju periode menurun dimana difusi merupakan mekanisme pengontrol pergerakan air di dalam bahan. 2. Pada suhu pengeringan 40 o C kadar air akhir temu putih tidak dapat mencapai standar 10% (bb.). Untuk dapat mencapai kadar air tersebut temu putih dan temu lawak harus dikeringkan pada suhu 50 o C dengan RH dibawah 30% atau pada suhu 60 o C dan 70 o C. 3. Model Page adalah model yang paling sesuai untuk mewakili karakteristik pengeringan temu putih dan temu lawak dengan nilai rata-rata koefisien determinasi (R 2 ) dan standard error (SE) masing-masing sebesar dan 079 untuk temu putih serta dan 085 untuk temu lawak. 4. Konstanta pengeringan temu putih dan temu lawak bervariasi menurut suhu pengeringan pada selang 041 dan 353 menit -1 serta 113 dan 292 menit -1. Semakin tinggi suhu pengeringan maka nilai konstanta pengeringan temu putih dan temu lawak semakin tinggi pula.

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. KARAKTERISTIK PENGERINGAN LAPISAN TIPIS Menurut Brooker et al. (1974) terdapat beberapa kombinasi waktu dan suhu udara pengering dimana komoditas hasil pertanian dengan kadar

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SINGKONG 4.1.1. Perubahan Kadar Air Terhadap Waktu Proses pengeringan lapisan tipis irisan singkong dilakukan mulai dari kisaran kadar

Lebih terperinci

BAB 1 PENDAHULUAN Latar belakang

BAB 1 PENDAHULUAN Latar belakang BAB 1 PENDAHULUAN Latar belakang Pengeringan adalah proses pengolahan pascapanen hasil pertanian yang paling kritis. Pengeringan sudah dikenal sejak dulu sebagai salah satu metode pengawetan bahan. Tujuan

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Karakteristik Pengeringan Lapisan Tipis Prinsip pengeringan lapisan tipis pada dasarnya adalah mengeringkan bahan sampai kadar air bahan mencapai kadar air keseimbangannya. Sesuai

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 KENTANG (SOLANUM TUBEROSUM L.) Tumbuhan kentang (Solanum tuberosum L.) merupakan komoditas sayuran yang dapat dikembangkan dan bahkan dipasarkan di dalam negeri maupun di luar

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa

IV. HASIL DAN PEMBAHASAN. A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa IV. HASIL DAN PEMBAHASAN A. Karakteristik Pengeringan Lapisan Tipis Buah Mahkota Dewa 1. Perubahan Kadar Air terhadap Waktu Pengeringan buah mahkota dewa dimulai dari kadar air awal bahan sampai mendekati

Lebih terperinci

Gambar 1. Tanaman Temu Putih (Curcuma zedoaria (Berg.) Roscoe) (Ochse & Van Den Brink, 1977)

Gambar 1. Tanaman Temu Putih (Curcuma zedoaria (Berg.) Roscoe) (Ochse & Van Den Brink, 1977) II. TINJAUAN PUSTAKA A. BOTANI TEMU PUTIH Temu putih (Curcuma zedoaria (Berg.) Roscoe) cukup dikenal di kalangan masyarakat untuk bahan jamu. Kepopuleran tanaman obat ini digunakan untuk mengobati penyakit

Lebih terperinci

HUBUNGAN PENYUSUTAN DENGAN KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMULAWAK (Curcuma xanthorrhiza Roxb.) AMALIA SAGITA

HUBUNGAN PENYUSUTAN DENGAN KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMULAWAK (Curcuma xanthorrhiza Roxb.) AMALIA SAGITA HUBUNGAN PENYUSUTAN DENGAN KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMULAWAK (Curcuma xanthorrhiza Roxb.) AMALIA SAGITA DEPARTEMEN TEKNIK MESIN DAN BIOSISTEM FAKULTAS TEKNOLOGI PERTANIAN INSTITUT

Lebih terperinci

BAB I PENDAHULUAN. Bergesernya selera masyarakat pada jajanan yang enak dan tahan lama

BAB I PENDAHULUAN. Bergesernya selera masyarakat pada jajanan yang enak dan tahan lama BAB I PENDAHULUAN 1.1 Latar Belakang Bergesernya selera masyarakat pada jajanan yang enak dan tahan lama dalam penyimpanannya membuat salah satu produk seperti keripik buah digemari oleh masyarat. Mereka

Lebih terperinci

METODE PENELITIAN. A. Waktu dan Tempat. B. Alat dan Bahan. C. Parameter Pengeringan dan Mutu Irisan Mangga

METODE PENELITIAN. A. Waktu dan Tempat. B. Alat dan Bahan. C. Parameter Pengeringan dan Mutu Irisan Mangga III. METODE PENELITIAN A. Waktu dan Tempat Kegiatan penelitian ini dilaksanakan mulai bulan Mei 2011 sampai dengan Agustus 2011 di Laboratorium Pindah Panas serta Laboratorium Energi dan Elektrifikasi

Lebih terperinci

TINJAUAN PUSTAKA. Gambar 1. Singkong

TINJAUAN PUSTAKA. Gambar 1. Singkong II. TINJAUAN PUSTAKA 2.1. SINGKONG Singkong merupakan umbi akar dari tanaman pangan berupa perdu yang dikenal dengan nama lain ubi kayu, ketela pohon atau cassava. Singkong berasal dari benua Amerika,

Lebih terperinci

BAB IV ANALISA. Gambar 4.1. Fenomena case hardening yang terjadi pada sampel.

BAB IV ANALISA. Gambar 4.1. Fenomena case hardening yang terjadi pada sampel. BAB IV ANALISA 4.1 FENOMENA DAN PENYEBAB KERUSAKAN KUALITAS PRODUK 4.1.1 Fenomena dan penyebab terjadinya case hardening Pada proses pengeringan yang dilakukan oleh penulis khususnya pada pengambilan data

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Termal Kayu Meranti (Shorea Leprosula Miq.) Karakteristik termal menunjukkan pengaruh perlakuan suhu pada bahan (Welty,1950). Dengan mengetahui karakteristik termal

Lebih terperinci

Temu Putih. Penyortiran Basah. Pencucian. Pengupasan. Timbang, ± 200 g. Pengeringan sesuai perlakuan

Temu Putih. Penyortiran Basah. Pencucian. Pengupasan. Timbang, ± 200 g. Pengeringan sesuai perlakuan Lampiran 1. Diagram Alir Penelitian Temu Putih Penyortiran Basah Pencucian Pengupasan Tiriskan Simpan dalam lemari pendingin (5-10 o C) hingga digunakan Pengirisan, 3-5 mm Timbang, ± 200 g Pengukuran Kadar

Lebih terperinci

Pengeringan. Shinta Rosalia Dewi

Pengeringan. Shinta Rosalia Dewi Pengeringan Shinta Rosalia Dewi SILABUS Evaporasi Pengeringan Pendinginan Kristalisasi Presentasi (Tugas Kelompok) UAS Aplikasi Pengeringan merupakan proses pemindahan uap air karena transfer panas dan

Lebih terperinci

KONDISI PROSES PENGERINGAN UNTUK MENGHASILKAN SIMPLISIA TEMUPUTIH STANDAR

KONDISI PROSES PENGERINGAN UNTUK MENGHASILKAN SIMPLISIA TEMUPUTIH STANDAR Kondisi Proses Pengeringan Untuk Menghasilkan Simplisia Temuputih Standar (Lamhot P. Manalu dan Himawan Adinegoro) KONDISI PROSES PENGERINGAN UNTUK MENGHASILKAN SIMPLISIA TEMUPUTIH STANDAR Drying Process

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 4 BAB II TINJAUAN PUSTAKA 2.1. Pengeringan Pengeringan merupakan proses pengurangan kadar air bahan sampai mencapai kadar air tertentu sehingga menghambat laju kerusakan bahan akibat aktivitas biologis

Lebih terperinci

Pengeringan Untuk Pengawetan

Pengeringan Untuk Pengawetan TBM ke-6 Pengeringan Untuk Pengawetan Pengeringan adalah suatu cara untuk mengeluarkan atau mengilangkan sebagian air dari suatu bahan dengan menguapkan sebagian besar air yang di kandung melalui penggunaan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Pengaruh Perlakuan Terhadap Sifat Fisik Buah Pala Di Indonesia buah pala pada umumnya diolah menjadi manisan dan minyak pala. Dalam perkembangannya, penanganan pascapanen diarahkan

Lebih terperinci

EKSPERIMEN PENGARUH UKURAN PARTIKEL PADA LAJU PENGERINGAN PUPUK ZA DALAM TRAY DRYER

EKSPERIMEN PENGARUH UKURAN PARTIKEL PADA LAJU PENGERINGAN PUPUK ZA DALAM TRAY DRYER EKSPERIMEN PENGARUH UKURAN PARTIKEL PADA LAJU PENGERINGAN PUPUK ZA DALAM TRAY DRYER Disusun oleh : Kristina Dwi yanti Nia Maulia 2308 100 537 2308 100 542 Dosen Pembimbing : Dr. Ir. Susianto, DEA Prof.

Lebih terperinci

PENYIMPANAN DAN PENGGUDANGAN PENDAHULUAN

PENYIMPANAN DAN PENGGUDANGAN PENDAHULUAN PENYIMPANAN DAN PENGGUDANGAN PENDAHULUAN Kegunaan Penyimpangan Persediaan Gangguan Masa kritis / peceklik Panen melimpah Daya tahan Benih Pengendali Masalah Teknologi Susut Kerusakan Kondisi Tindakan Fasilitas

Lebih terperinci

4. HASIL DAN PEMBAHASAN. Hasil dari penelitian ini adalah merancang suatu instrumen pendeteksi kadar

4. HASIL DAN PEMBAHASAN. Hasil dari penelitian ini adalah merancang suatu instrumen pendeteksi kadar 44 4. HASIL DAN PEMBAHASAN 4.1. Hasil penelitian Hasil dari penelitian ini adalah merancang suatu instrumen pendeteksi kadar air rumput laut berbasis mikrokontroler, dengan penampil data informasi sistem

Lebih terperinci

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban

TINJAUAN PUSTAKA. Df adalah driving force (kg/kg udara kering), Y s adalah kelembaban TINJAUAN PUSTAKA Mekanisme Pengeringan Udara panas dihembuskan pada permukaan bahan yang basah, panas akan berpindah ke permukaan bahan, dan panas laten penguapan akan menyebabkan kandungan air bahan teruapkan.

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 1. Pohon mahkota dewa.

II. TINJAUAN PUSTAKA. Gambar 1. Pohon mahkota dewa. II. TINJAUAN PUSTAKA A. Buah Mahkota Dewa Mahkota dewa (Phaleria macrocarpa [Scheff.] Boerl.) bisa ditemukan di pekarangan sebagai tanaman hias atau di kebun-kebun sebagai tanaman peneduh. Asal tanaman

Lebih terperinci

BAB 4. HASIL DAN PEMBAHASAN

BAB 4. HASIL DAN PEMBAHASAN BAB 4. HASIL DAN PEMBAHASAN 4.1 Hardware Sistem Kendali Pada ISD Pada penelitian ini dibuat sistem pengendalian berbasis PC seperti skema yang terdapat pada Gambar 7 di atas. Pada sistem pengendalian ini

Lebih terperinci

Model Pengeringan Lapisan Tipis Cengkeh (Syzygium aromaticum) 1) ISHAK (G ) 2) JUNAEDI MUHIDONG dan I.S. TULLIZA 3) ABSTRAK

Model Pengeringan Lapisan Tipis Cengkeh (Syzygium aromaticum) 1) ISHAK (G ) 2) JUNAEDI MUHIDONG dan I.S. TULLIZA 3) ABSTRAK Model Pengeringan Lapisan Tipis Cengkeh (Syzygium aromaticum) ) ISHAK (G4 9 274) 2) JUNAEDI MUHIDONG dan I.S. TULLIZA 3) ABSTRAK Perbedaan pola penurunan kadar air pada pengeringan lapis tipis cengkeh

Lebih terperinci

MODEL MATEMATIS PENGERINGAN LAPISAN TIPIS BIJI KOPI ARABIKA (Coffeae arabica) DAN BIJI KOPI ROBUSTA (Coffeae cannephora) ABSTRAK

MODEL MATEMATIS PENGERINGAN LAPISAN TIPIS BIJI KOPI ARABIKA (Coffeae arabica) DAN BIJI KOPI ROBUSTA (Coffeae cannephora) ABSTRAK MODEL MATEMATIS PENGERINGAN LAPISAN TIPIS BIJI KOPI ARABIKA (Coffeae arabica) DAN BIJI KOPI ROBUSTA (Coffeae cannephora) Dwi Santoso 1, Djunaedi Muhidong 2, dan Mursalim 2 1 Program Studi Agroteknologi,

Lebih terperinci

II. TINJAUAN PUSTAKA. Gambar 1 Bagian buah dan biji jarak pagar.

II. TINJAUAN PUSTAKA. Gambar 1 Bagian buah dan biji jarak pagar. II. TINJAUAN PUSTAKA A. Spesifikasi Biji Jarak Pagar Tanaman jarak (Jatropha curcas L.) dikenal sebagai jarak pagar. Menurut Hambali et al. (2007), tanaman jarak pagar dapat hidup dan berkembang dari dataran

Lebih terperinci

Pada proses pengeringan terjadi pula proses transfer panas. Panas di transfer dari

Pada proses pengeringan terjadi pula proses transfer panas. Panas di transfer dari \ Menentukan koefisien transfer massa optimum aweiica BAB II LANDASAN TEORI 2.1. TINJAUAN PUSTAKA Proses pengeringan adalah perpindahan masa dari suatu bahan yang terjadi karena perbedaan konsentrasi.

Lebih terperinci

4.1 FENOMENA DAN PENYEBAB KERUSAKAN KUALITAS PADA PRODUK PENGERINGAN

4.1 FENOMENA DAN PENYEBAB KERUSAKAN KUALITAS PADA PRODUK PENGERINGAN BAB IV ANALISA 4.1 FENOMENA DAN PENYEBAB KERUSAKAN KUALITAS PADA PRODUK PENGERINGAN 4.1.1 Fenomena dan Penyebab Terjadinya Water Front Fenomena lain yang terjadi pada saat penulis mengeringkan tapel parem

Lebih terperinci

Studi Karakteristik Pengeringan Pupuk NPK (15:15:15) Menggunakan Tray Dryer

Studi Karakteristik Pengeringan Pupuk NPK (15:15:15) Menggunakan Tray Dryer Seminar Skripsi Studi Karakteristik Pengeringan Pupuk NPK (15:15:15) Menggunakan Tray Dryer LABORATORIUM PERPINDAHAN ` PANAS DAN MASSA Jurusan Teknik Kimia FTI - ITS Disusun oleh : Argatha Febriansyah

Lebih terperinci

Gambar 8. Profil suhu lingkungan, ruang pengering, dan outlet pada percobaan I.

Gambar 8. Profil suhu lingkungan, ruang pengering, dan outlet pada percobaan I. IV. HASIL DAN PEMBAHASAN A. Suhu Ruang Pengering dan Sebarannya A.1. Suhu Lingkungan, Suhu Ruang, dan Suhu Outlet Udara pengering berasal dari udara lingkungan yang dihisap oleh kipas pembuang, kemudian

Lebih terperinci

DINAMIKA PINDAH MASSA DAN WARNA SINGKONG (Manihot Esculenta) SELAMA PROSES PENGERINGAN MENGGUNAKAN OVEN

DINAMIKA PINDAH MASSA DAN WARNA SINGKONG (Manihot Esculenta) SELAMA PROSES PENGERINGAN MENGGUNAKAN OVEN DINAMIKA PINDAH MASSA DAN WARNA SINGKONG (Manihot Esculenta) SELAMA PROSES PENGERINGAN MENGGUNAKAN OVEN SKRIPSI diajukan guna melengkapi tugas akhir dan memenuhi salah satu syarat untuk menyelesaikan Program

Lebih terperinci

PERPINDAHAN MASSA PADA PENGERINGAN JAHE MENGGUNAKAN EFEK RUMAH KACA *

PERPINDAHAN MASSA PADA PENGERINGAN JAHE MENGGUNAKAN EFEK RUMAH KACA * ISBN 978-62-97387--4 PROSIDING Seminar Nasional Perteta 21 PERPINDAHAN MASSA PADA PENGERINGAN JAHE MENGGUNAKAN EFEK RUMAH KACA * Hanim Z. Amanah 1), Ana Andriani 2), Sri Rahayoe 1) 1) Staf Pengajar Jurusan

Lebih terperinci

BAB 3 PENGARUH PENGERINGAN TERHADAP PENYUSUTAN DAN MUTU SIMPLISIA. Pendahuluan

BAB 3 PENGARUH PENGERINGAN TERHADAP PENYUSUTAN DAN MUTU SIMPLISIA. Pendahuluan BAB 3 PENGARUH PENGERINGAN TERHADAP PENYUSUTAN DAN MUTU SIMPLISIA Pendahuluan Pengeringan merupakan cara yang paling umum digunakan untuk meningkatkan stabilitas bahan dengan mengurangi kandungan air bahan

Lebih terperinci

PENINGKATAN KUALITAS PRODUK DAN EFISIENSI ENERGI PADA ALAT PENGERINGAN DAUN SELEDRI BERBASIS KONTROL SUHU DAN HUMIDITY UDARA

PENINGKATAN KUALITAS PRODUK DAN EFISIENSI ENERGI PADA ALAT PENGERINGAN DAUN SELEDRI BERBASIS KONTROL SUHU DAN HUMIDITY UDARA PENINGKATAN KUALITAS PRODUK DAN EFISIENSI ENERGI PADA ALAT PENGERINGAN DAUN SELEDRI BERBASIS KONTROL SUHU DAN HUMIDITY UDARA Jurusan Teknik Elektro, Fakultas. Teknik, Universitas Negeri Semarang Email:ulfaharief@yahoo.com,

Lebih terperinci

Pada waktu panen peralatan dan tempat yang digunakan harus bersih dan bebas dari cemaran dan dalam keadaan kering. Alat yang digunakan dipilih dengan

Pada waktu panen peralatan dan tempat yang digunakan harus bersih dan bebas dari cemaran dan dalam keadaan kering. Alat yang digunakan dipilih dengan Pada waktu panen peralatan dan tempat yang digunakan harus bersih dan bebas dari cemaran dan dalam keadaan kering. Alat yang digunakan dipilih dengan tepat untuk mengurangi terbawanya bahan atau tanah

Lebih terperinci

5/30/2014 PSIKROMETRI. Ahmad Zaki M. Teknologi Hasil Pertanian UB. Komposisi dan Sifat Termal Udara Lembab

5/30/2014 PSIKROMETRI. Ahmad Zaki M. Teknologi Hasil Pertanian UB. Komposisi dan Sifat Termal Udara Lembab PSIKROMETRI Ahmad Zaki M. Teknologi Hasil Pertanian UB Komposisi dan Sifat Termal Udara Lembab 1 1. Atmospheric air Udara yang ada di atmosfir merupakan campuran dari udara kering dan uap air. Psikrometri

Lebih terperinci

BAB 4 ANALISIS ENERGI & EKSERGI PENGERINGAN SIMPLISIA. Pendahuluan

BAB 4 ANALISIS ENERGI & EKSERGI PENGERINGAN SIMPLISIA. Pendahuluan BAB 4 ANALISIS ENERGI & EKSERGI PENGERINGAN SIMPLISIA Pendahuluan Pengeringan adalah proses pengolahan hasil pertanian yang paling kritis, kegiatan ini diketahui sebagai proses yang memerlukan banyak energi

Lebih terperinci

dengan optimal. Selama ini mereka hanya menjalankan proses pembudidayaan bawang merah pada musim kemarau saja. Jika musim tidak menentu maka hasil

dengan optimal. Selama ini mereka hanya menjalankan proses pembudidayaan bawang merah pada musim kemarau saja. Jika musim tidak menentu maka hasil BAB I PENDAHULUAN 1.1. Latar Belakang Era Globalisasi perdagangan internasional memberi peluang dan tantangan bagi perekonomian nasional, termasuk didalamnya agribisnis. Kesepakatankesepakatan GATT, WTO,

Lebih terperinci

BAB III METODOLOGI. 1.1 Lokasi dan Waktu. 1.2 Alat dan Bahan Alat Bahan

BAB III METODOLOGI. 1.1 Lokasi dan Waktu. 1.2 Alat dan Bahan Alat Bahan BAB III METODOLOGI 1.1 Lokasi dan Waktu Penelitian dilakukan pada bulan April Juni 2011 di laboratorium Pindah Panas dan Massa dan laboratorium Surya, Departemen Teknik Mesin dan Biosistem Fakultas Teknologi

Lebih terperinci

PENGERINGAN BAHAN PANGAN (KER)

PENGERINGAN BAHAN PANGAN (KER) MODUL PRAKTIKUM LABORATORIUM INSTRUKSIONAL TEKNIK KIMIA PENGERINGAN BAHAN PANGAN (KER) Disusun oleh: Siti Nuraisyah Suwanda Dr. Dianika Lestari Dr. Ardiyan Harimawan PROGRAM STUDI TEKNIK KIMIA FAKULTAS

Lebih terperinci

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK

MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH. Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK 112 MENENTUKAN JUMLAH KALOR YANG DIPERLUKAN PADA PROSES PENGERINGAN KACANG TANAH Oleh S. Wahyu Nugroho Universitas Soerjo Ngawi ABSTRAK Dalam bidang pertanian dan perkebunan selain persiapan lahan dan

Lebih terperinci

METODE PENELITIAN. A. Waktu dan Tempat

METODE PENELITIAN. A. Waktu dan Tempat III. MEODE PENELIIAN A. Waktu dan empat Penelitian dilakukan di Laboratorium Energi Surya Leuwikopo, serta Laboratorium Energi dan Elektrifikasi Pertanian, Departemen eknik Pertanian, Fakultas eknologi

Lebih terperinci

HUBUNGAN PENYUSUTAN LUAS PERMUKAAN TERHADAP KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SINGKONG (Manihot esculenta Crantz) SKRIPSI

HUBUNGAN PENYUSUTAN LUAS PERMUKAAN TERHADAP KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SINGKONG (Manihot esculenta Crantz) SKRIPSI HUBUNGAN PENYUSUTAN LUAS PERMUKAAN TERHADAP KARAKTERISTIK PENGERINGAN LAPISAN TIPIS SINGKONG (Manihot esculenta Crantz) SKRIPSI DHEA SELLY A. HUTABARAT F14080009 FAKULTAS TEKNOLOGI PERTANIAN INSTITUT PERTANIAN

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam SNI (2002), pengolahan karet berawal daripengumpulan lateks kebun yang

II. TINJAUAN PUSTAKA. Dalam SNI (2002), pengolahan karet berawal daripengumpulan lateks kebun yang II. TINJAUAN PUSTAKA 2.1 Penanganan Pasca Panen Lateks Dalam SNI (2002), pengolahan karet berawal daripengumpulan lateks kebun yang masih segar 35 jam setelah penyadapan. Getah yang dihasilkan dari proses

Lebih terperinci

PENENTUAN KONDISI PROSES PENGERINGAN TEMU LAWAK UNTUK MENGHASILKAN SIMPLISIA STANDAR

PENENTUAN KONDISI PROSES PENGERINGAN TEMU LAWAK UNTUK MENGHASILKAN SIMPLISIA STANDAR Lamhot P. Manalu Armansyah H. Tambunan Leopold O. Nelwan Penggunaan Bahan Pengisi Nanokomposit PENENTUAN KONDISI PROSES PENGERINGAN TEMU LAWAK UNTUK MENGHASILKAN SIMPLISIA STANDAR THE DETERMINATION FOR

Lebih terperinci

Pengeringan (drying)/ Dehidrasi (dehydration)

Pengeringan (drying)/ Dehidrasi (dehydration) Pengeringan (drying)/ Dehidrasi (dehydration) Departemen Ilmu dan Teknologi Pangan, Fateta, IPB Director of Southeast Asian Food & Agricultural Science & Technology (SEAFAST) Center, Bogor Agricultural

Lebih terperinci

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING

PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING PENINGKATAN KUALITAS PENGERINGAN IKAN DENGAN SISTEM TRAY DRYING Bambang Setyoko, Seno Darmanto, Rahmat Program Studi Diploma III Teknik Mesin Fakultas Teknik UNDIP Jl. Prof H. Sudharto, SH, Tembalang,

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN 22 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan Juli 2013 sampai September 2013 di Laboratorium Daya dan Alat Mesin Pertanian dan di Laboratorium Rekayasa

Lebih terperinci

I PENDAHULUAN 1.1 Latar Belakang

I PENDAHULUAN 1.1 Latar Belakang I PENDAHULUAN 1.1 Latar Belakang Salah satu permasalahan utama dalam pascapanen komoditi biji-bijian adalah susut panen dan turunnya kualitas, sehingga perlu diupayakan metode pengeringan dan penyimpanan

Lebih terperinci

PENENTUAN KONSTANTA PENGERINGAN PATHILO DENGAN MENGGUNAKAN SINAR MATAHARI

PENENTUAN KONSTANTA PENGERINGAN PATHILO DENGAN MENGGUNAKAN SINAR MATAHARI Teknologi dan Pangan ISBN : 979-498-467-1 PENENTUAN KONSTANTA PENGERINGAN PATHILO DENGAN MENGGUNAKAN SINAR MATAHARI Asep Nurhikmat & Yuniar Khasanah UPT Balai Pengembangan Proses dan Teknologi Kimia -

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Perubahan Parameter Fisik dan Organoleptik Pada Perlakuan Blansir 1. Susut Bobot Hasil pengukuran menunjukkan bahwa selama penyimpanan 8 hari, bobot rajangan selada mengalami

Lebih terperinci

SKRIPSI F DEPARTEMEN TEKNIK PERTANIAN PERTANIAN INSTITUT PERTANIAN BOGOR

SKRIPSI F DEPARTEMEN TEKNIK PERTANIAN PERTANIAN INSTITUT PERTANIAN BOGOR SKRIPSI PENENTUAN MODEL KADAR AIR KESEIMBANGAN DAN KONSTANTAA PENGERINGANN KAPULAGA (Amomum m cardamomum Willd) DENGANN METODE DINAMIS RINALDI ARI PRABOWO F14052949 2009 DEPARTEMEN TEKNIK PERTANIAN FAKULTAS

Lebih terperinci

Pengaruh Penyusutan Temu Putih (Curcuma zedoaria (Berg) Roscoe) Terhadap Karakteristik Pengeringan Lapisan Tipis

Pengaruh Penyusutan Temu Putih (Curcuma zedoaria (Berg) Roscoe) Terhadap Karakteristik Pengeringan Lapisan Tipis Technical Paper Pengaruh Penyusutan Temu Putih (Curcuma zedoaria (Berg) Roscoe) Terhadap Karakteristik Pengeringan Lapisan Tipis The Effects of Shrinkage to Thin Layer Drying Characteristics of Temu Putih

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN 17 METODOLOGI PENELITIAN Tempat dan Waktu Penelitian Penelitian ini dilaksanakan di Laboratorium Teknik Pengolahan Pangan dan Hasil Pertanian (TPPHP) Departemen Teknik Mesin dan Biosistem, Fateta-IPB.

Lebih terperinci

BAB I PENDAHULUAN. Proses pengolahan simplisia di Klaster Biofarmaka Kabupaten Karanganyar I-1

BAB I PENDAHULUAN. Proses pengolahan simplisia di Klaster Biofarmaka Kabupaten Karanganyar I-1 BAB I PENDAHULUAN Pada bab ini menguraikan beberapa hal pokok mengenai penelitian ini, yaitu latar belakang penelitian, perumusan masalah, tujuan penelitian, manfaat penelitian, batasan masalah, asumsi,

Lebih terperinci

Prinsip proses pengawetan dengan penurunan kadar air pada bahan pangan hasil ternak. Firman Jaya

Prinsip proses pengawetan dengan penurunan kadar air pada bahan pangan hasil ternak. Firman Jaya Prinsip proses pengawetan dengan penurunan kadar air pada bahan pangan hasil ternak Firman Jaya OUTLINE PENGERINGAN PENGASAPAN PENGGARAMAN/ CURING PENGERINGAN PENGERINGAN PENDAHULUAN PRINSIP DAN TUJUAN

Lebih terperinci

OPTIMASI PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMU PUTIH DAN TEMU LAWAK BERDASARKAN ANALISIS EKSERGI LAMHOT PARULIAN MANALU

OPTIMASI PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMU PUTIH DAN TEMU LAWAK BERDASARKAN ANALISIS EKSERGI LAMHOT PARULIAN MANALU OPTIMASI PENGERINGAN LAPISAN TIPIS SIMPLISIA TEMU PUTIH DAN TEMU LAWAK BERDASARKAN ANALISIS EKSERGI LAMHOT PARULIAN MANALU SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2011 PERNYATAAN MENGENAI DISERTASI

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. Setelah melakukan penelitian pengeringan ikan dengan rata rata suhu

BAB IV HASIL DAN PEMBAHASAN. Setelah melakukan penelitian pengeringan ikan dengan rata rata suhu 31 BAB IV HASIL DAN PEMBAHASAN 4.1. Penurunan Kadar Air Setelah melakukan penelitian pengeringan ikan dengan rata rata suhu ruang pengeringan sekitar 32,30 o C, suhu ruang hasil pembakaran 51,21 0 C dan

Lebih terperinci

KADAR AIR KESETIMBANGAN (Equilibrium Moisture Content) BUBUK KOPI ROBUSTA PADA PROSES ADSORPSI DAN DESORPSI

KADAR AIR KESETIMBANGAN (Equilibrium Moisture Content) BUBUK KOPI ROBUSTA PADA PROSES ADSORPSI DAN DESORPSI KADAR AIR KESETIMBANGAN (Equilibrium Moisture Content) BUBUK KOPI ROBUSTA PADA PROSES ADSORPSI DAN DESORPSI SKRIPSI oleh Rakhma Daniar NIM 061710201042 JURUSAN TEKNIK PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN

Lebih terperinci

PERNYATAAN MENGENAI THESIS DAN SUMBER INFORMASI

PERNYATAAN MENGENAI THESIS DAN SUMBER INFORMASI PERNYATAAN MENGENAI THESIS DAN SUMBER INFORMASI Dengan ini saya menyatakan bahwa tesis Pengaruh Penyusutan Terhadap Karakteristik Pengeringan Lapisan Tipis Temu Putih (Curcuma zedoaria (Berg) Roscoe) adalah

Lebih terperinci

perubahan baik fisik maupun kimiawi yang dikehendaki ataupun yang tidak dikehendaki. Di samping itu, setelah melalui proses pengolahan, makanan tadi

perubahan baik fisik maupun kimiawi yang dikehendaki ataupun yang tidak dikehendaki. Di samping itu, setelah melalui proses pengolahan, makanan tadi i Tinjauan Mata Kuliah P roses pengolahan pangan merupakan bagian yang tidak dapat dipisahkan dari kehidupan manusia. Sejak zaman dahulu kala, manusia mengenal makanan dan mengolahnya menjadi suatu bentuk

Lebih terperinci

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan

MEKANISME PENGERINGAN By : Dewi Maya Maharani. Prinsip Dasar Pengeringan. Mekanisme Pengeringan : 12/17/2012. Pengeringan MEKANISME By : Dewi Maya Maharani Pengeringan Prinsip Dasar Pengeringan Proses pemakaian panas dan pemindahan air dari bahan yang dikeringkan yang berlangsung secara serentak bersamaan Konduksi media Steam

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengeringan Pengeringan adalah proses mengurangi kadar air dari suatu bahan [1]. Dasar dari proses pengeringan adalah terjadinya penguapan air ke udara karena perbedaan kandungan

Lebih terperinci

Analisis Distribusi Suhu, Aliran Udara, Kadar Air pada Pengeringan Daun Tembakau Rajangan Madura

Analisis Distribusi Suhu, Aliran Udara, Kadar Air pada Pengeringan Daun Tembakau Rajangan Madura Analisis Distribusi Suhu, Aliran Udara, Kadar Air pada Pengeringan Daun Tembakau Rajangan Madura HUMAIDILLAH KURNIADI WARDANA 1) Program Studi Teknik Elektro Universitas Hasyim Asy Ari. Jl. Irian Jaya

Lebih terperinci

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah...

DAFTAR ISI. KATA PENGANTAR... i. ABSTRAK... iii. DAFTAR GAMBAR... viii. DAFTAR TABEL... x. DAFTAR NOTASI... xi Rumusan Masalah... DAFTAR ISI KATA PENGANTAR... i ABSTRAK... iii ABSTRACT... iv DAFTAR ISI... v DAFTAR GAMBAR... viii DAFTAR TABEL... x DAFTAR NOTASI... xi BAB I PENDAHULUAN... 1 1.1. Latar Belakang... 1 1.2. Rumusan Masalah...

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Pengujian Tanpa Beban Untuk mengetahui profil sebaran suhu dalam mesin pengering ERK hibrid tipe bak yang diuji dilakukan dua kali percobaan tanpa beban yang dilakukan pada

Lebih terperinci

KAJI EKSPERIMENTAL SISTEM PENGERING HIBRID ENERGI SURYA-BIOMASSA UNTUK PENGERING IKAN

KAJI EKSPERIMENTAL SISTEM PENGERING HIBRID ENERGI SURYA-BIOMASSA UNTUK PENGERING IKAN ISSN 2302-0245 pp. 1-7 KAJI EKSPERIMENTAL SISTEM PENGERING HIBRID ENERGI SURYA-BIOMASSA UNTUK PENGERING IKAN Muhammad Zulfri 1, Ahmad Syuhada 2, Hamdani 3 1) Magister Teknik Mesin Pascasarjana Universyitas

Lebih terperinci

DAFTAR LAMPIRAN. No. Judul Halaman. 1. Pelaksanaan dan Hasil Percobaan Pendahuluan a. Ekstraksi pati ganyong... 66

DAFTAR LAMPIRAN. No. Judul Halaman. 1. Pelaksanaan dan Hasil Percobaan Pendahuluan a. Ekstraksi pati ganyong... 66 DAFTAR LAMPIRAN No. Judul Halaman 1. Pelaksanaan dan Hasil Percobaan Pendahuluan... 66 a. Ekstraksi pati ganyong... 66 b. Penentuan kisaran konsentrasi sorbitol untuk membuat edible film 68 c. Penentuan

Lebih terperinci

PENGERINGAN. Teti Estiasih - PS ITP - THP - FTP - UB

PENGERINGAN. Teti Estiasih - PS ITP - THP - FTP - UB PENGERINGAN 1 DEFINISI Pengeringan merupakan metode pengawetan dengan cara pengurangan kadar air dari bahan sehingga daya simpan dapat diperpanjang Perpanjangan daya simpan terjadi karena aktivitas m.o.

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. RADIASI MATAHARI DAN SH DARA DI DALAM RMAH TANAMAN Radiasi matahari mempunyai nilai fluktuatif setiap waktu, tetapi akan meningkat dan mencapai nilai maksimumnya pada siang

Lebih terperinci

ANALISIS ENERGI DAN EKSERGI PENGERINGAN LAPISAN TIPIS TEMU PUTIH

ANALISIS ENERGI DAN EKSERGI PENGERINGAN LAPISAN TIPIS TEMU PUTIH ANALISIS ENERGI DAN EKSERGI PENGERINGAN LAPISAN TIPIS TEMU PUTIH Lamhot P. Manalu 1, Armansyah H. Tambunan 2, Leopold O. Nelwan 2 & Agus R. Hoetman 3 1) Pusat Teknologi Agroindustri BPPT & Sekolah Pascasarjana

Lebih terperinci

BAB II TINJAUAN PUSTAKA, LANDASAN TEORI, KERANGKA PEMIKIRAN, DAN HIPOTESIS PENELITIAN

BAB II TINJAUAN PUSTAKA, LANDASAN TEORI, KERANGKA PEMIKIRAN, DAN HIPOTESIS PENELITIAN BAB II TINJAUAN PUSTAKA, LANDASAN TEORI, KERANGKA PEMIKIRAN, DAN HIPOTESIS PENELITIAN A. Tinjauan Pustaka Ikan merupakan sumber protein hewani dan juga memiliki kandungan gizi yang tinggi di antaranya

Lebih terperinci

PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI

PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI PENGARUH KONSENTRASI LARUTAN, KECEPATAN ALIRAN DAN TEMPERATUR ALIRAN TERHADAP LAJU PENGUAPAN TETESAN (DROPLET) LARUTAN AGAR AGAR SKRIPSI Oleh IRFAN DJUNAEDI 04 04 02 040 1 PROGRAM STUDI TEKNIK MESIN DEPARTEMEN

Lebih terperinci

Konstanta Laju Pengeringan Pada Proses Pemasakan Singkong Menggunakan Tekanan Kejut

Konstanta Laju Pengeringan Pada Proses Pemasakan Singkong Menggunakan Tekanan Kejut Konstanta Laju Pengeringan Pada Proses Pemasakan Singkong Menggunakan Tekanan Kejut 1) Dewi Maya Maharani, 2) Budi Rahardjo, 2) Sri Rahayoe 1) Jurusan Keteknikan Pertanian, FTP - Universitas Brawijaya,

Lebih terperinci

III. METODE PENELITIAN. dan di Ruang Gudang Jurusan Teknik Pertanian Fakultas Pertanian Universitas

III. METODE PENELITIAN. dan di Ruang Gudang Jurusan Teknik Pertanian Fakultas Pertanian Universitas III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan di Laboratorium Rekayasa Bioproses dan Pasca Panen dan di Ruang Gudang Jurusan Teknik Pertanian Fakultas Pertanian Universitas

Lebih terperinci

II. TINJAUAN PUSTAKA. Karet alam dihasilkan dari tanaman karet (Hevea brasiliensis). Tanaman karet

II. TINJAUAN PUSTAKA. Karet alam dihasilkan dari tanaman karet (Hevea brasiliensis). Tanaman karet II. TINJAUAN PUSTAKA 2.1 Karet Alam Karet alam dihasilkan dari tanaman karet (Hevea brasiliensis). Tanaman karet termasuk tanaman tahunan yang tergolong dalam famili Euphorbiaceae, tumbuh baik di dataran

Lebih terperinci

ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR

ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR ANALISIS PERFORMANSI MODEL PENGERING GABAH POMPA KALOR Budi Kristiawan 1, Wibowo 1, Rendy AR 1 Abstract : The aim of this research is to analyze of rice heat pump dryer model performance by determining

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Pisang Pisang dapat diolah dan diawetkan menjadi berbagai bentuk hasil olahan diantaranya saus pisang, sale pisang, sari buah pisang, anggur pisang, dodol pisang, keripik pisang,

Lebih terperinci

BAB I PENDAHULUAN. Kopi merupakan komoditas sektor perkebunan yang cukup strategis di. Indonesia. Komoditas kopi memberikan kontribusi untuk menopang

BAB I PENDAHULUAN. Kopi merupakan komoditas sektor perkebunan yang cukup strategis di. Indonesia. Komoditas kopi memberikan kontribusi untuk menopang BAB I PENDAHULUAN 1.1. Latar Belakang Kopi merupakan komoditas sektor perkebunan yang cukup strategis di Indonesia. Komoditas kopi memberikan kontribusi untuk menopang perekonomian nasional dan menjadi

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. Karakteristik Cabai Merah (Capsicum annuum L.) Karakteristik awal cabai merah (Capsicum annuum L.) diketahui dengan melakukan analisis proksimat, yaitu kadar air, kadar vitamin

Lebih terperinci

4. HASIL DAN PEMBAHASAN. kaca, dan air. Suhu merupakan faktor eksternal yang akan mempengaruhi

4. HASIL DAN PEMBAHASAN. kaca, dan air. Suhu merupakan faktor eksternal yang akan mempengaruhi 4. HASIL DAN PEMBAHASAN 4.1 Hasil Uji Coba Lapang Paremeter suhu yang diukur pada penelitian ini meliputi suhu lingkungan, kaca, dan air. Suhu merupakan faktor eksternal yang akan mempengaruhi produktivitas

Lebih terperinci

METODOLOGI PENELITIAN

METODOLOGI PENELITIAN III. METODOLOGI PENELITIAN A. WAKTU DAN LOKASI PENELITIAN Penelitian dilakukan pada bulan Juli 2011 hingga Agustus 2011 di Laboratorium Energi dan Listrik Pertanian serta Laboratorium Pindah Panas dan

Lebih terperinci

Waktu yang dibutuhkan untuk menggoreng makanan tergantung pada:

Waktu yang dibutuhkan untuk menggoreng makanan tergantung pada: Baking and roasting Pembakaran dan memanggang pada dasarnya operasi dua unit yang sama: keduanya menggunakan udara yang dipanaskan untuk mengubah kualitas makanan. pembakaran biasanya diaplikasikan pada

Lebih terperinci

MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL

MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL Puguh Setyopratomo : Model Matematik Pengeringan Lapis Tipis Wortel 54 MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL Puguh Setyopratomo Jurusan Teknik Kimia, Fakultas Teknik - Universitas Surabaya Jalan

Lebih terperinci

MANISAN KERING JAHE 1. PENDAHULUAN 2. BAHAN

MANISAN KERING JAHE 1. PENDAHULUAN 2. BAHAN MANISAN KERING JAHE 1. PENDAHULUAN Manisan biasanya dibuat dari buah. Produk ini merupakan bahan setengah kering dengan kadar air sekitar 30 %, dan kadar gula tinggi (>60%). Kondisi ini memungkinkan manisan

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan April 2011 sampai bulan Mei 2011 bertempat

III. METODE PENELITIAN. Penelitian ini dilaksanakan pada bulan April 2011 sampai bulan Mei 2011 bertempat 20 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilaksanakan pada bulan April 2011 sampai bulan Mei 2011 bertempat di Laboratorium Rekayasa Bioproses dan Pasca Panen, Jurusan Teknik

Lebih terperinci

Meningkatkan Nilai Tambah Bawang Merah Oleh: Farid R. Abadi

Meningkatkan Nilai Tambah Bawang Merah Oleh: Farid R. Abadi Meningkatkan Nilai Tambah Bawang Merah Oleh: Farid R. Abadi Bawang merah merupakan komoditas hortikultura yang memiliki permintaan yang cukup tinggi dalam bentuk segar. Meskipun demikian, bawang merah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN 4.1. Suhu Udara Hasil pengukuran suhu udara di dalam rumah tanaman pada beberapa titik dapat dilihat pada Gambar 6. Grafik suhu udara di dalam rumah tanaman menyerupai bentuk parabola

Lebih terperinci

KONSEP DASAR PENGE G RIN I GA G N

KONSEP DASAR PENGE G RIN I GA G N KONSEP DASAR PENGERINGAN Tujuan Instruksional Khusus (TIK) Setelah mengikuti kuliah ini mahasiswa akan dapat menjelaskan konsep dasar pengeringan dan proses Sub Pokok Bahasan Konsep dasar pengeringan Proses

Lebih terperinci

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian

METODOLOGI PENELITIAN. Waktu dan Tempat Penelitian. Alat dan Bahan Penelitian. Prosedur Penelitian METODOLOGI PENELITIAN Waktu dan Tempat Penelitian Penelitian ini telah dilaksanakan dari bulan Januari hingga November 2011, yang bertempat di Laboratorium Sumber Daya Air, Departemen Teknik Sipil dan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Hasil Dalam penelitian pengeringan kerupuk dengan menggunakan alat pengering tipe tray dengan media udara panas. Udara panas berasal dari air keluaran ketel uap yang sudah

Lebih terperinci

IV. HASIL DAN PEMBAHASAN. Gambar 9. Pola penyusunan acak

IV. HASIL DAN PEMBAHASAN. Gambar 9. Pola penyusunan acak IV. HASIL DAN PEMBAHASAN A. Pengaruh Penyusunan Buah Dalam Kemasan Terhadap Perubahan Suhu Penelitian ini menggunakan dua pola penyusunan buah tomat, yaitu pola susunan acak dan pola susunan teratur. Pola

Lebih terperinci

BAB I PENDAHULUAN. berbeda dibandingkan sesaat setelah panen. Salah satu tahapan proses pascapanen

BAB I PENDAHULUAN. berbeda dibandingkan sesaat setelah panen. Salah satu tahapan proses pascapanen BAB I PENDAHULUAN 1.1. Latar Belakang Penanganan pascapanen komoditas pertanian mejadi hal yang tidak kalah pentingnya dengan penanganan sebelum panen. Dengan penanganan yang tepat, bahan hasil pertanian

Lebih terperinci

1. PENDAHULUAN 1.1. Latar Belakang

1. PENDAHULUAN 1.1. Latar Belakang 1. PENDAHULUAN 1.1. Latar Belakang Negara Indonesia banyak sekali ditumbuhi oleh tanaman rimpang karena Indonesia merupakan negara tropis. Rimpang-rimpang tersebut dapat digunakan sebagai pemberi cita

Lebih terperinci

MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL

MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL Berkala Ilmiah Teknik Kimia Vol 1, No 1, April 01 MODEL MATEMATIK PENGERINGAN LAPIS TIPIS WORTEL Puguh Setyopratomo Jurusan Teknik Kimia, Fakultas Teknik - Universitas Surabaya Jalan Raya Kalirungkut,

Lebih terperinci

2016 ACARA I. BLANCHING A. Pendahuluan Proses thermal merupakan proses pengawetan bahan pangan dengan menggunakan energi panas. Proses thermal digunak

2016 ACARA I. BLANCHING A. Pendahuluan Proses thermal merupakan proses pengawetan bahan pangan dengan menggunakan energi panas. Proses thermal digunak PETUNJUK PRAKTIKUM TEKNOLOGI PENGOLAHAN PANGAN II Disusun oleh : Nur Aini Condro Wibowo Rumpoko Wicaksono UNIVERSITAS JENDERAL SOEDIRMAN FAKULTAS PERTANIAN PURWOKERTO 2016 ACARA I. BLANCHING A. Pendahuluan

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN IV. HASIL DAN PEMBAHASAN A. PENGERINGAN BEKATUL Proses pengeringan bekatul dilakukan dengan pengering rak karena cocok untuk bahan padat, suhu udara dapat dikontrol, dan terdapat sirkulator udara. Kipas

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Suhu dan Kelembaban Ruang Penyimpanan Penyimpanan adalah salah satu tindakan pengamanan yang bertujuan untuk mempertahankan dan menjaga kualitas produk. Penyimpanan pakan dalam industri

Lebih terperinci