PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA"

Transkripsi

1 Seminar Hasil Tugas Akhir Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya 2013 LOGO PERAMALAN BANYAKNYA OBAT PARASETAMOL DAN AMOKSILIN DOSIS 500 MG YANG DIDISTRIBUSIKAN OLEH DINKES SURABAYA Oleh : Renalia Puspita ( ) Dosen Pembimbing: Dr.rer.pol. Heri K., S.Si, M.Si

2 Menurut Ansel (1989), Obat dapat didefinisikan sebagai suatu zat yang dimaksudkan untuk dipakai dalam diagnosis, mengurangi rasa sakit, mengobati atau mencegah penyakit pada manusia atau hewan. Bentuk sediaan obat yang sering ditemukan di pasaran antara lain berupa tablet, kapsul, injeksi, ointment (salep), aerosol, dan lain lain (Ansel, 1989).

3 Proses pembuatan obat cukup rumit. Obat memiliki masa kadaluarsa Persediaan jumlah obat obatan harus TEPAT

4 Termasuk golongan obat analgesik non opioid yang dijual secara bebas. Obat parasetamol yang beredar di pasaran terdiri dari tablet dosis 500 mg, tablet dosis 100 mg, dan sirup dosis 500 mg. Termasuk golongan antibiotik Digunakan untuk mengobati Infeksi saluran pernapasan, infeksi Saluran kemih, sinusitis, bronkitis, Pneumonia, dan infeksi rongga mulut

5 PUSKESMAS 1 PUSKESMAS 2 PUSKESMAS 3 Berapa jumlah kebutuhan parasetamol & amoksilin untuk periode mendatang? PERAMALAN Model ARIMA Box Jenkins

6 1. Elliyana M. (2009) yang memodelkan data produksi minyak bumi dengan menggunakan metode GSTAR dan ARIMA untuk mengatasi dugaan tidak adanya hubungan keterkaitan antar lokasi produksi minyak bumi. 2. Febriana (2012) juga menggunakan model ARIMA tunggal dan kombinasi untuk meramalkan jumlah permintaan darah di UDD PMI Kota Surabaya dimana kesimpulan yang diperoleh adalah model ARIMA kombinasi patut dipertimbangkan karena banyak kemungkinan model yang signifikan dan memenuhi asumsi. 3. Widiarso (2012) menggunakan model ARIMA yaitu untuk meramalkan curah hujan di Kabupaten Ngawi. 4. Pradhani (2012) menggunakan model ARIMA untuk meramalkan kebutuhan air bersih di Kabupaten Bojonegoro.

7 PERMASALAHAN 1. Model ARIMA paling sesuai untuk meramalkan kebutuhan parasetamol & amoksilin. 2. Nilai hasil ramalan kebutuhan parasetamol & amoksilin di periode mendatang. TUJUAN PENELITIAN 1. Menemukan model ARIMA yang paling sesuai. 2. Mendapatkan nilai ramalan kebutuhan parasetamol & amoksilin di periode mendatang. MANFAAT PENELITIAN Hasil dari penelitian ini dapat dimanfaatkan oleh pihak Dinas Kesehatan dan Gudang Farmasi sebagai salah satu solusi untuk mengatasi permasalahan persediaan obat-obatan khususnya obat parasetamol dan amoksilin dosis 500 mg. BATASAN PENELITIAN Jenis obat : Parasetamol & amoksilin, dosis : 500 mg, periode data : tahun

8 Analisis Time series Time series adalah serangkaian pengamatan terhadap suatu variabel yang diambil dari waktu ke waktu dan dicatat secara berurutan menurut urutan waktu kejadiannya dengan interval waktu yang tetap (Wei,2006). Setiap pengamatan dinyatakan sebagai variabel random Z t yang diperoleh berdasarkan indeks waktu tertentu (t i ) dengan i = 1, 2,, n, sehingga penulisan data time Series adalah Z, Z, Z,..., Z t 1 t 2 t 3 t n. Beberapa hal yang perlu diperhatikan di dalam metode time series, yaitu kestasioneran data, fungsi autokorelasi dan fungsi autokorelasi parsial.

9 Stasioneritas Stasioneritas time series adalah suatu keadaan dimana tidak terdapat peningkatan atau penurunan pada data. Dengan kata lain, terjadinya perubahan atau fluktuasi data berada di sekitar nilai rata-rata yang konstan, tidak tergantung waktu dan ragam dari fluktuasi tersebut (Makridakis, dkk, 1999).

10 Fungsi Autukovarians & Autokorelasi

11

12 Prosedur ARIMA Box-Jenkins Prosedur Box-Jenkins digunakan untuk memilih model ARIMA yang sesuai pada data time series. Prosedur ini meliputi empat tahapan yaitu identifikasi, penaksiran dan pengujian parameter, pemeriksaan diagnosis pada residual dan tahap terakhir adalah peramalan (Makridakis, dkk 1999).

13 Prosedur ARIMA Box-Jenkins 1. Identifikasi

14 Prosedur ARIMA Box-Jenkins 2. Estimasi dan Pengujian Signifikansi Parameter

15 Prosedur ARIMA Box-Jenkins 3. Uji Asumsi Residual

16 Prosedur ARIMA Box-Jenkins 4. Peramalan Tahapan terakhir setelah melalui tiga tahapan di atas, adalah peramalan. Dalam praktek, model yang ditemukan bukan model yang sebenarnya, melainkan hanya pendekatannya saja yang selalu mengandung kesalahan, baik dalam langkah identifikasi maupun estimasi. Hasil ramalan dikatakan baik, jika nilai ramalannya dekat data aktual serta memiliki tingkat kesalahan yang paling kecil. Kedekatan antara nilai ramalan dengan nilai aktual dapat digunakan kriteria Mean Square Error (MSE).

17 Sumber Data Data obat parasetamol dan amoksilin dosis 500 mg yang dikeluarkan Gudang Farmasi Dinkes Surabaya selama Variabel Penelitian 1. Parasetamol 2. Amoksilin Langkah Analisis 1. Membuat plot time series 2. Memeriksa kestasioneran data dalam mean & varians 3. Melakukan differencing jika data belum stasioner dalam mean 4. Membuat plot ACF & PACF 5. Menentukan model ARIMA 6. Melakukan estimasi parameter 7. Melakukan uji asumsi residual 8. Melakukan peramalan

18 Analisis Deskriptif Variabel N Rata - rata Minimum Maksimum Median Standar deviasi Parasetamol Amoksilin Jumlah minimum obat parasetamol yang dikeluarkan dalam satu bulan adalah sebanyak butir pada Desember Jumlah maksimum obat parasetamol yang dikeluarkan sebanyak pada Juli Jumlah minimum amoksilin yang pernah dikeluarkan oleh Gudang Farmasi Kesehatan Surabaya adalah sebanyak butir Januari Jumlah maksimum obat amoksilin yang dikeluarkan dari Gudang Farmasi sebanyak 367,000 butir pada Desember Nilai tengah data parasetamol adalah dan untuk data amoksilin. Standar deviasi data parasetamol adalah sedangkan untuk data amoksilin memiliki standar deviasi

19 Time Series Plot of parasetamol Box-Cox Plot of parasetamol Lower CL Upper CL Lambda (using 95.0% confidence) Jumlah parasetamol StDev Estimate Lower CL Upper CL Rounded Value Bulan Lambda Limit

20 Time Series Plot of transform Time Series Plot of diff transform diff Bulan Bulan

21 Autocorrelation Function for diff1 (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for diff1 (with 5% significance limits for the partial autocorrelations) Autocorrelation Partial Autocorrelation Lag Lag

22 Estimasi dan Uji Signifikansi Parameter ARIMA (1,1,1) Parameter Koefisien Estimasi T p-value φ 1 0,0206 0,13 0,901 θ 1 0,8091 8,40 0,000

23 Estimasi dan Uji Signifikansi Parameter ARIMA (0,1,1) Parameter Koefisien Estimasi T p-value θ 1 0, ,12 0,000

24 Uji Asumsi Residual White Noise ARIMA (0,1,1) Lag Chi Square p-value 12 10,5 0, ,3 0, ,7 0, ,1 0,752

25 Uji Asumsi Residual Berdistribusi Normal ARIMA (0,1,1) Probability Plot of RESI2 Normal Percent Mean E-07 StDev N 59 KS P-Value RESI

26 Estimasi dan Uji Signifikansi Parameter ARIMA (1,1,0) Parameter Koefisien Estimasi T p-value φ 1-0,5773-5,38 0,000

27 Uji Asumsi Residual White Noise ARIMA (1,1,0) Lag Chi Square p-value 12 8,2 0, , ,5 0, ,6 0,490

28 Uji Asumsi Residual Berdistribusi Normal ARIMA (1,1,0) Probability Plot of RESI3 Normal Percent Mean E-08 StDev N 59 KS P-Value > RESI

29 Hasil Peramalan Kebutuhan Parasetamol dengan model ARIMA (1,1,0) Bulan Januari 2012 Februari 2012 Maret 2012 Apr-12 Mei 2012 Juni 2012 Juli 2012 Agustus 2012 Sep-12 Oktober 2012 Nopember 2012 Desember 2012 Parasetamol

30 Time Series Plot of amoksilin Box-Cox Plot of amoksilin Lower CL Upper CL Lambda amoksilin StDev (using 95.0% confidence) Estimate 1.10 Lower CL 0.24 Upper CL 1.94 Rounded Value Bulan Lambda Limit

31 Time Series Plot of Diff Diff Bulan

32 Autocorrelation Function for diff 1 (with 5% significance limits for the autocorrelations) Partial Autocorrelation Function for diff 1 (with 5% significance limits for the partial autocorrelations) Autocorrelation Partial Autocorrelation Lag Lag

33 Estimasi dan Uji Signifikansi Parameter ARIMA (2,1,1) Parameter Koefisien Estimasi T p-value φ 1-0,5682-1,40 0,168 φ 2-0,3715-2,33 0,024 θ 1-0,2244-0,52 0,604

34 Estimasi dan Uji Signifikansi Parameter ARIMA (2,1,0) Parameter Koefisien Estimasi T p-value φ 1-0,3616-2,83 0,006 φ 2-0,3113-2,34 0,023

35 Uji Asumsi Residual White Noise ARIMA (2,1,0) Lag Chi Square p-value 12 7,5 0, ,4 0, , ,6 0,488

36 Uji Asumsi Residual Berdistribusi Normal ARIMA (2,1,0) Probability Plot of RESI Amoksilin Normal Percent Mean 5223 StDev N 59 KS P-Value > RESI Amoksilin

37 Hasil Peramalan Kebutuhan Amoksilin dengan model ARIMA (2,1,0) Bulan Amoksilin Januari Februari Maret Apr Mei Juni Juli Agustus Sep Oktober Nopember Desember

38 Kesimpulan Model ARIMA yang paling sesuai untuk meramalkan kebutuhan obat parasetamol dosis 500 mg di periode mendatang adalah ARIMA (1,1,0). Sedangkan untuk meramalkan kebutuhan obat amoksilin dosis 500 mg di periode mendatang, model ARIMA yang paling sesuai adalah ARIMA (2,1,0). Hasil peramalan kebutuhan parasetamol dosis 500 mg untuk 12 bulan mendatang adalah ; ; ; ; ; ; ; ; ; ; ; Untuk obat amoksilin dosis 500 mg hasil peramalan untuk 12 bulan mendatang adalah ; ; ; ; ; ; ; ; ; ; ;

39 Saran Disarankan pada penelitian selanjutnya untuk melanjutkan analisis dengan membuat sebuah sistem persediaan obat parasetamol dan amoksilin. Sistem persediaan disusun berdasarkan nilai hasil ramalan model ARIMA. Selain itu, disarankan untuk melakukan peramalan dengan menggunakan data obat obatan dari Puskesmas sebagai pihak akhir yang mengeluarkan obat obatan ke masyarakat agar persediaan obat yang tepat dalam jumlah juga bisa diterapkan di Puskesmas.

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

BAB IV ANALISIS DAN PEMBAHASAN

BAB IV ANALISIS DAN PEMBAHASAN C BAB IV ANALISIS DAN PEMBAHASAN Penelitian ini mencoba meramalkan jumlah penumpang kereta api untuk masa yang akan datang berdasarkan data volume penumpang kereta api periode Januari 994-Februari 203

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

99.9. Percent maka H 0 diterima, berarti residual normal

99.9. Percent maka H 0 diterima, berarti residual normal Uji residual white noise 2 Lag Q P value 6 3.5 9.49 0.5330 2 6.6 8.3 0.803 8 9.8 26.30 0.9059 24 9.3 33.92 0.6374 K p q Uji residual berdistribusi normal Percent 99.9 99 95 90 80 70 60 50 40 30 20 0 5

Lebih terperinci

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input

Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R-1 Dengan Metode Fungsi Transfer single input Oleh : Defi Rachmawati 1311 105 007 Dosen Pembimbing :

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS PERAMALAN INDEKS HARGA KONSUMEN DAN INFLASI INDONESIA DENGAN METODE ARIMA BOX-JENKINS Oleh : Agustini Tripena ABSTRACT In this paper, forecasting the consumer price index data and inflation. The method

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode

Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode Analisis Peramalan Banyaknya Permintaan Darah di Surabaya Menggunakan Metode ARIMA Box Jenkins Oleh : Winda Eka Febriana 1307 030 002 Pembimbing : Dra. Wiwiek Setya Winahju, MS Latar Belakang PMI Merupakan

Lebih terperinci

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan

Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan SEMINAR PROPOSAL TUGAS AKHIR Analisys Time Series Terhadap Penjualan Ban Luar Sepeda Motor di Toko Putra Jaya Motor Bangkalan OLEH: NAMA : MULAZIMATUS SYAFA AH NRP : 13.11.030.021 DOSEN PEmbimbing: Dr.

Lebih terperinci

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si

Oleh : Dwi Listya Nurina Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Oleh : Dwi Listya Nurina 1311105022 Dosen Pembimbing : Dr. Irhamah, S.Si, M.Si Air Bersih BUMN Penyediaan air bersih untuk masyarakat mempunyai peranan yang sangat penting dalam meningkatkan kesehatan

Lebih terperinci

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran

OUTLINE. Pendahuluan. Tinjauan Pustaka. Metodologi Penelitian. Analisis dan Pembahasan. Kesimpulan dan Saran OUTLINE Pendahuluan Tinjauan Pustaka Metodologi Penelitian Analisis dan Pembahasan Kesimpulan dan Saran LATAR BELAKANG Listrik elemen terpenting dalam kehidupan manusia Penelitian Sebelumnya Masyarakat

Lebih terperinci

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015

METODE PENELITIAN. Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian ini dilakukan pada semester genap tahun akademik 2014/2015 bertempat di Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes.

Meytaliana F Dosen Pembimbing: Prof. Dr. Basuki Widodo, M.Sc. Dra. Nuri Wahyuningsih, M.Kes. ESTIMASI PARAMETER AUTOREGRESSIVE INTEGRATED MOVING AVERAGE (ARIMA) MENGGUNAKAN ALGORITMA PARTICLE SWARM OPTIMIZATION (PSO) (STUDI KASUS PERAMALAN CURAH HUJAN DAS BRANGKAL MOJOKERTO) Meytaliana F. 1210100014

Lebih terperinci

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA

ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA ANALISIS POLA HUBUNGAN PEMODELAN ARIMA CURAH HUJAN DENGAN CURAH HUJAN MAKSIMUM, LAMA WAKTU HUJAN, DAN CURAH HUJAN RATA-RATA FATHIN FAHIMAH 226133 DOSEN PEMBIMBING Prof. Ir. Gamantyo Hendrantoro, M.Eng.

Lebih terperinci

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Model Penjualan Plywood PT. Linggarjati Mahardika Mulia Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai Islami) Vol., No., Juli 7, Hal. 52-57 p-issn: 25-4596; e-issn: 25-4X Halaman 52 Model Penjualan Plywood PT. Linggarjati Mahardika Mulia

Lebih terperinci

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer

Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer Model Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 225 dengan Pendekatan Fungsi Transfer OLEH : DWI LISTYA NURINI 1311 105 021 DOSEN PEMBIMBING : DR. BRODJOL SUTIJO SU, M.SI Bursa saham atau Pasar

Lebih terperinci

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO

PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Perbandingan Model ARIMA... (Alia Lestari) PERBANDINGAN MODEL ARIMA DAN MODEL REGRESI DENGAN RESIDUAL ARIMA DALAM MENERANGKAN PERILAKU PELANGGAN LISTRIK DI KOTA PALOPO Alia Lestari Fakultas Teknik Universitas

Lebih terperinci

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI

PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI. Oleh: IRLIZANTY YULYANTIKA RAHADI PERAMALAN INDEKS HARGA SAHAM MENGGUNAKAN METODE INTERVENSI Oleh: IRLIZANTY YULYANTIKA RAHADI 6 4 Dosen Pembimbing : Dra. Nuri Wahyuningsih, MKes Abstrak Indeks harga saham merupakan suatu indikator yang

Lebih terperinci

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer

Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer TUGAS AKHIR Pemodelan Space Pemasangan Iklan di Surat Kabar Harian X dengan Metode ARIMAX dan Fungsi Transfer Oleh : Fani Felani Farid (1306 100 047) Pembimbing : Drs. Kresnayana Yahya M.Sc Latar Belakang

Lebih terperinci

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan :

BAB SIMULASI PERHITUNGAN HARGA BARANG. Bab 4 Simulasi Perhitungan Harga barang berisikan : BAB SIMULASI PERHITUNGAN HARGA BARANG Bab Simulasi Perhitungan Harga barang berisikan :.. Simulasi peramalan nilai Indeks Harga Konsumen (IHK) melalui metode ARIMA.. Prediksi nilai inflasi tahun 0.3. Prediksi

Lebih terperinci

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010

PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI 2010 Statistika, Vol., No., Mei PERAMALAN SAHAM JAKARTA ISLAMIC INDEX MENGGUNAKAN METODE ARIMA BULAN MEI-JULI Reksa Nila Anityaloka, Atika Nurani Ambarwati Program Studi S Statistika Universitas Muhammadiyah

Lebih terperinci

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut :

4 BAB IV HASIL PEMBAHASAN DAN EVALUASI. lebih dikenal dengan metode Box-Jenkins adalah sebagai berikut : 4 BAB IV HASIL PEMBAHASAN DAN EVALUASI Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtut waktu. Data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data harga

Lebih terperinci

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada

Peramalan merupakan alat bantu yang penting dalam penyusunan rencana yang efektif dan efisien. Pada Estimasi Parameter Autoregressive Integrated Moving Average (ARIMA) Menggunakan Algoritma Particle Swarm Optimization (PSO) (Studi Kasus: Peramalan Curah Hujan DAS Brangkal, Mojokerto) Meytaliana Factmawati,

Lebih terperinci

PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA

PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA PENDEKATAN MODEL EKONOMETRIKA UNTUK MEMPREDIKSI INDEKS SAHAM SYARIAH INDONESIA Nuri Wahyuningsih 1), Daryono Budi U. 2), R.A. Diva Zatadini 3) 1)2))3) Departemen Matematika FMIPA ITS Kampus ITS Keputih,

Lebih terperinci

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING

ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING ESTIMASI PARAMETER MODEL ARMA UNTUK PERAMALAN DEBIT AIR SUNGAI MENGGUNAKAN GOAL PROGRAMMING Nama : Zahroh Atiqoh NRP : 1205 100 021 Dosen Pembimbing : 1. Dra. Nuri Wahyuningsih, MKes 2. Drs. Sulistiyo,

Lebih terperinci

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC),

BAB III PEMBAHASAN. Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), BAB III PEMBAHASAN Pada bab ini, dibahas mengenai model Vector Error Correction (VEC), prosedur pembentukan model Vector Error Correction (VEC), dan aplikasi model Vector Error Correction (VEC) pada penutupan

Lebih terperinci

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman

Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun Tahun Bulan Wisman Lampiran 1. Data Tingkat Hunian Hotel di Propinsi DIY Tahun 1991-2003 48 49 Lampiran 1 Data Tingkat Hunian Hotel Rata-Rata di Propinsi DIY Tahun 1991-2003, Tahun Bulan Wisman 1991 1 27,00 1991 2 30,60

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peramalan Peramalan digunakanan sebagai acuan pencegah yang mendasari suatu keputusan untuk yang akan datang dalam upaya meminimalis kendala atau memaksimalkan pengembangan baik

Lebih terperinci

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer

Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer Peramalan Aset dengan Memperhatikan Dana Pihak Ketiga (DPK) dan Pembiayaan Perbankan Syariah di Indonesia dengan Metode Fungsi Transfer 1 Faridah Yuliani dan 2 Dr. rer pol Heri Kuswanto 1,2 Jurusan Statistika

Lebih terperinci

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER

PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER PEMODELAN DAN PERAMALAN JUMLAH PENUMPANG DAN PESAWAT DI TERMINAL KEDATANGAN INTERNASIONAL BANDARA JUANDA SURABAYA DENGAN METODE VARIANSI KALENDER M. Insanil Kamil 0 0 0 m.insanil_kml@yahoo.com Dosen pembimbing:

Lebih terperinci

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP.

PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL. Oleh: Niswatul Maghfiroh NRP. PERAMALAN JUMLAH WISATAWAN DI AGROWISATA KUSUMA BATU MENGGUNAKAN METODE ANALISIS SPEKTRAL Oleh: Niswatul Maghfiroh NRP. 1208100065 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman Online di: ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 5, Nomor 4, Tahun 2016, Halaman 737-745 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PERAMALAN DAYA LISTRIK BERDASARKAN JUMLAH PELANGGAN PLN MENGGUNAKAN

Lebih terperinci

Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins

Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins Peramalan Volume Distribusi Air di PDAM Kabupaten Bojonegoro dengan Metode ARIMA Box- Jenkins Fastha Aulia P / 1309030018 Pembimbing: Ir.Dwiatmono Agus M.Ikomp Latar Belakang Air sebagai sumber kehidupan

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA

PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA PEMODELAN DAN PERAMALAN DATA PEMBUKAAN IHSG MENGGUNAKAN MODEL ARIMA OLEH : 1. Triyono ( M0107086 ) 2. Nariswari S ( M0108022 ) 3. Ayunita C ( M0180034 ) 4. Ibnuhardi F.Ihsan ( M0108045 ) 5. Marvina P (

Lebih terperinci

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya)

Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika. Baristand Industri Surabaya) Peramalan Permintaan Pengujian di Lab. Kimia dan Fisika (Aneke Rintiasti, Erna Hartati, Nunun Hilyatul M.) Peramalan Permintaan Pengujian Sampel Di Laboratorium Kimia Dan Fisika Baristand Industri Surabaya

Lebih terperinci

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series

Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series JURNAL SAINS DAN SENI ITS Vol. 6, No. 1, (2017) ISSN: 2337-3520 (2301-928X Print) D-157 Peramalan Volume Pemakaian Air di PDAM Kota Surabaya dengan Menggunakan Metode Time Series Moh Ali Asfihani dan Irhamah

Lebih terperinci

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS

Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2012 Dengan Metode ARIMA BOX-JENKINS Jurnal EKSPONENSIAL Volume 3, Nomor, Mei 2 ISSN 8-7829 Peramalam Jumlah Penumpang Yang Berangkat Melalui Bandar Udara Temindung Samarinda Tahun 2 Dengan Metode ARIMA BOX-JENKINS Forecasting The Number

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut :

Sedangkan model fungsi transfer bentuk kedua adalah sebagai berikut : 1 Metode Peramalan Indeks Harga Saham Gabungan (IHSG) Nikkei 255 dengan Pendekatan Fungsi Transfer Dwi Listya Nurini, Brodjol Sutijo SU Jurusan Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

Perencanaan Pengendalian Persediaan Bahan Baku Pupuk NPK dengan Menggunakan Model Economic Order Quantity (Studi kasus: PT. Petrokimia Gresik)

Perencanaan Pengendalian Persediaan Bahan Baku Pupuk NPK dengan Menggunakan Model Economic Order Quantity (Studi kasus: PT. Petrokimia Gresik) JURNAL SAINS DAN SENI POMITS Vol. 3, No. 2, (4) ISSN: 2337-39 (230-927 Print) A-3 Perencanaan Pengendalian Persediaan Bahan Baku Pupuk NPK dengan Menggunakan Model Economic Order Quantity (Studi kasus:

Lebih terperinci

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang

TINJAUAN PUSTAKA. perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang II.. TINJAUAN PUSTAKA Indeks Harga Konsumen (IHK Menurut Monga (977 indeks harga konsumen adalah ukuran statistika dari perubahan harga yang dibayar konsumen atau masyarakat dari gaji atau upah yang didapatkan.

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-249 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) 2337-3520 (2301-928X Print) D-249 Analisis Fungsi Transfer pada Harga Cabai Merah yang Dipengaruhi oleh Curah Hujan Di Surabaya Putri Rintan Aryasita,

Lebih terperinci

IV. HASIL DAN PEMBAHASAN

IV. HASIL DAN PEMBAHASAN 9 menguji kelayakan model sehingga model sementara tersebut cukup memadai. Salah satu caranya adalah dengan menganalisis galat (residual). Galat merupakan selisih antara data observasi dengan data hasil

Lebih terperinci

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER

PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER PKMT-2-13-1 PEMODELAN ARIMA DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) IX JEMBER Umi Rosyiidah, Diah Taukhida K, Dwi Sitharini Jurusan Matematika, Universitas Jember, Jember ABSTRAK

Lebih terperinci

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M

PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M PENGGUNAAN METODE VaR(Value at Risk) DALAM ANALISIS RESIKO INVESTASI SAHAM PT.TELKOM DENGAN PENDEKATAN MODEL GARCH-M Oleh: NURKHOIRIYAH 1205100050 Dosen Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. 1 Latar

Lebih terperinci

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA

(S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA (S.4) PENDEKATAN METODE ALGORITMA GENETIK UNTUK IDENTIFIKASI MODEL ARIMA Jimmy Ludin Mahasiswa Program Magister Jurusan Statistika Fakultas Matematika Dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh

Lebih terperinci

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION

PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION PEMODELAN JUMLAH PENDERITA HIV/AIDS TERKAIT KUNJUNGAN WISATAWAN DI KABUPATEN BADUNG DAN KOTA MADYA DENPASAR DENGAN METODE TRANSFER FUNCTION Oleh NYOMAN PANDU WIRADARMA (1308 100 052) Dosen Pembimbing 1

Lebih terperinci

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH

PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH PENDEKATAN MODEL TIME SERIES UNTUK PEMODELAN INFLASI BEBERAPA KOTA DI JAWA TENGAH Tri Mulyaningsih ), Budi Nurani R ), Soemartini 3) ) Mahasiswa Program Magister Statistika Terapan Universitas Padjadjaran

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Peramalan 2.1.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang (Sofjan Assauri,1984). Setiap kebijakan ekonomi

Lebih terperinci

PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK)

PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK) PENGENDALIAN KUALITAS DENGAN MENGGUNAKAN DIAGRAM KONTROL EWMA RESIDUAL (STUDI KASUS: PT. PJB UNIT PEMBANGKITAN GRESIK) FITROH AMALIA (1306100073) Dosen Pembimbing: Drs. Haryono, MSIE PENGENDALIAN KUALITAS

Lebih terperinci

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA

PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA KEMENTERIAN PEKERJAAN UMUM BADAN PENELITIAN DAN PENGEMBANGAN PUSAT PENELITIAN DAN PENGEMBANGAN SUMBER DAYA AIR PENDUGAAN DATA RUNTUT WAKTU MENGGUNAKAN METODE ARIMA PENDAHULUAN Prediksi data runtut waktu.

Lebih terperinci

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria)

PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN STOKASTIK PADA DATA JUMLAH PENUMPANG KERETA API (Studi Kasus : KA Argo Muria) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 6, Nomor 1, Tahun 2017, Halaman 131-140 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENGGUNAAN METODE PERAMALAN KOMBINASI TREND DETERMINISTIK DAN

Lebih terperinci

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT

PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT PERAMALAN JUMLAH PENUMPANG PESAWAT TERBANG LOGO DOMESTIK DI BANDAR UDARA JUANDA DENGAN MENGGUNAKAN METODE FUNGSI TRANSFER MULTI INPUT Oleh : Ary Miftakhul Huda (1309 100 061) Dosen Pembimbing : Dr.rer.pol.

Lebih terperinci

PEMODELAN INFLASI DI KOTA SEMARANG, YOGYAKARTA, DAN SURAKARTA DENGAN PENDEKATAN GSTAR. Oleh : Laily Awliatul Faizah ( )

PEMODELAN INFLASI DI KOTA SEMARANG, YOGYAKARTA, DAN SURAKARTA DENGAN PENDEKATAN GSTAR. Oleh : Laily Awliatul Faizah ( ) Seminar Hasil Tugas Akhir PEMODELAN INFLASI DI KOTA SEMARANG, YOGYAKARTA, DAN SURAKARTA DENGAN PENDEKATAN GSTAR Oleh : Laily Awliatul Faizah (357) Dosen Pembimbing : Dr. Ir. Setiawan, MS. Jurusan Statistika

Lebih terperinci

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA

Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA Seminar Nasional Statistika IX Institut Teknologi Sepuluh Nopember, 7 November 2009 Pemodelan Nilai Tukar Rupiah terhadap Dollar Amerika Serikat Menggunakan ARFIMA 1 Harnum Annisa Prafitia dan 2 Irhamah

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian...

DAFTAR ISI. BAB I PENDAHULUAN Latar Belakang Masalah Rumusan Masalah Batasan Masalah Tujuan Penelitian... DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN... iii NASKAH SOAL TUGAS AKHIR... iv HALAMAN PERSEMBAHAN... v INTISARI... vi KATA PENGANTAR... vii UCAPAN TERIMA KASIH... viii

Lebih terperinci

PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT

PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT PENDEKATAN RANTAI MARKOV WAKTU DISKRIT DALAM PERENCANAAN KEBUTUHAN TEMPAT TIDUR RUMAH SAKIT Nama Mahasiswa : Enjela Puspadewi NRP : 1207 100 026 Jurusan : Matematika FMIPA Dosen Pembimbing : Dra. Laksmi

Lebih terperinci

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL...

HALAMAN PERSETUJUAN PEMBIMBING...iii. HALAMAN PENGESAHAN...iv. HALAMAN PERSEMBAHAN... vi. KATA PENGANTAR... viii. DAFTAR ISI... x. DAFTAR TABEL... HALAMAN PERSETUJUAN PEMBIMBING...iii HALAMAN PENGESAHAN...iv MOTTO... v HALAMAN PERSEMBAHAN... vi KATA PENGANTAR... viii DAFTAR ISI... x DAFTAR TABEL... xi DAFTAR GAMBAR... xii DAFTAR LAMPIRAN... xiv PERNYATAAN...

Lebih terperinci

Bab IV. Pembahasan dan Hasil Penelitian

Bab IV. Pembahasan dan Hasil Penelitian Bab IV Pembahasan dan Hasil Penelitian IV.1 Statistika Deskriptif Pada bab ini akan dibahas mengenai statistik deskriptif dari variabel yang digunakan yaitu IHSG di BEI selama periode 1 April 2011 sampai

Lebih terperinci

2/6/2011. Data deret waktu. Metode : ARIMA. Tahapan : (1) identifikasi model, (2) estimasi model dan (3) validasi model.

2/6/2011. Data deret waktu. Metode : ARIMA. Tahapan : (1) identifikasi model, (2) estimasi model dan (3) validasi model. Data deret waktu Metode : ARIMA Tahapan : () identifikasi model, (2) estimasi model dan (3) validasi model. Jimmy Ludin 30920725 DOSEN PEMBIMBING : Prof. Dra. Susanti Linuwih, M.Stat., Ph.D Dr. Drs. Brodjol

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala

BAB 2 LANDASAN TEORI Pengertian Data Deret Berkala BAB 2 LANDASAN TEORI 2.1. Pengertian Data Deret Berkala Suatu deret berkala adalah himpunan observasi yang terkumpul atau hasil observasi yang mengalami peningkatan waktu. Data deret berkala adalah serangkaian

Lebih terperinci

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran.

BAB III METODE PENELITIAN. merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. BAB III METODE PENELITIAN 3.1 Jenis / Pendekatan Penelitian Penelitian dan ilmu pengetahuan mempunyai kaitan yang erat keduanya merupakan suatu proses, mencari kebenaran dan menghasilkan kebenaran. Penelitian

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. 1.1 Pendahuluan. Universitas Sumatera Utara BAB 1 PENDAHULUAN 1.1 Pendahuluan Peramalan merupakan upaya memperkirakan apa yang terjadi pada masa mendatang berdasarkan data pada masa lalu, berbasis pada metode ilmiah dan kualitatif yang dilakukan

Lebih terperinci

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL

PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL E-Jurnal Matematika Vol. 5 (4), November 2016, pp. 183-193 ISSN: 2303-1751 PERAMALAN CURAH HUJAN MENGGUNAKAN METODE ANALISIS SPEKTRAL Ni Putu Mirah Sri Wahyuni 1, I Wayan Sumarjaya 2, I Gusti Ayu Made

Lebih terperinci

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR Seminar Nasional Matematika dan Aplikasinya, 21 Oktober 27 PENGGUNAAN MODEL GENERALIZED AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY (P,Q) UNTUK PERAMALAN HARGA DAGING AYAM BROILER DI PROVINSI JAWA TIMUR

Lebih terperinci

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya

II. TINJAUAN PUSTAKA. Analisis ARIMA (Autoregressive Integrated Moving Average) umumnya II. TINJAUAN PUSTAKA 2.1 Stasioner Analisis ARIMA Autoregressive Integrated Moving Average umumnya mengasumsikan bahwa proses umum dari time series adalah stasioner. Tujuan proses stasioner adalah rata-rata,

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Mulai Studi Pendahuluan Studi Pustaka Identifikasi Masalah Perumusan Masalah Tujuan Pengumpulan Data 1. Profil Perusahaan PT. Mensa Binasukses cabang kota Padang 2. Data forecasting

Lebih terperinci

Peramalan Harga Minyak Mentah Standar West Texas Intermediate dengan Pendekatan Metode ARIMA

Peramalan Harga Minyak Mentah Standar West Texas Intermediate dengan Pendekatan Metode ARIMA Seminar Nasional Pendidikan, Sains dan Teknologi ISBN : 9786026159960 Peramalan Harga Minyak Mentah Standar West Texas Intermediate dengan Pendekatan Metode ARIMA Syahril Faozi 1), Wellie Sulistijanti

Lebih terperinci

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA

BAB IV HASIL PENELITIAN DAN PEMBAHASAN. Adapun langkah-langkah pada analisis runtun waktu dengan model ARIMA BAB IV HASIL PENELITIAN DAN PEMBAHASAN Pada bab ini, akan dilakukan analisis dan pembahasan terhadap data runtun waktu. Adapun data yang digunakan dalam penelitian ini merupakan data sekunder, yaitu data

Lebih terperinci

ANALISIS INTERVENSI KENAIKAN HARGA BAHAN BAKAR MINYAK TERHADAP INFLASI DI INDONESIA ANNISA KARIMA

ANALISIS INTERVENSI KENAIKAN HARGA BAHAN BAKAR MINYAK TERHADAP INFLASI DI INDONESIA ANNISA KARIMA i ANALISIS INTERVENSI KENAIKAN HARGA BAHAN BAKAR MINYAK TERHADAP INFLASI DI INDONESIA ANNISA KARIMA DEPARTEMEN ILMU EKONOMI FAKULTAS EKONOMI DAN MANAJEMEN INSTITUT PERTANIAN BOGOR BOGOR 2014 ii iii PERNYATAAN

Lebih terperinci

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP

PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP PERAMALAN INDEKS HARGA KONSUMEN MENGGUNAKAN MODEL INTERVENSI FUNGSI STEP SKRIPSI Disusun oleh : DITA RULIANA SARI NIM. 24010211140084 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins

LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU. Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins LAPORAN PRAKTIKUM ANALISIS RUNTUN WAKTU Kelas A Laporan VI ARIMA Analisis Runtun Waktu Model Box Jenkins No Nama Praktikan Nomor Mahasiswa Tanggal Pengumpulan 1 29 Desember 2010 Tanda Tangan Praktikan

Lebih terperinci

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER

VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER VI PERAMALAN PENJUALAN AYAM BROILER DAN PERAMALAN HARGA AYAM BROILER 6.1. Analisis Pola Data Penjualan Ayam Broiler Data penjualan ayam broiler adalah data bulanan yang diperoleh dari bulan Januari 2006

Lebih terperinci

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA

PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA JURNAL TEKNIK POMITS Vol. 1, No. 1, (212) 1-6 1 PERAMALAN TRAFIK SMS AREA JABOTABEK DENGAN METODE ARIMA Lusi Alvina Tofani, Achmad Mauludiyanto Jurusan Teknik Elektro-FTI, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PERAMALAN JUMLAH TAMU HOTEL MEGA BINTANG SWEET KABUPATEN BLORA DENGAN PENDEKATAN ARIMA

PERAMALAN JUMLAH TAMU HOTEL MEGA BINTANG SWEET KABUPATEN BLORA DENGAN PENDEKATAN ARIMA THE TH URECOL PROCEEDING 8 February 7 UD, Yogyakarta PERMLN JUMLH TMU HOTEL MEG BINTNG SWEET KBUPTEN BLOR DENGN PENDEKTN RIM Irfana Maulana Ismail ), Wellie Sulistijanti 2) Statistika, kademi Statistika

Lebih terperinci

PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH

PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH PEMODELAN DAN PERAMALAN DATA NILAI TUKAR MATA UANG DOLLAR AMERIKA TERHADAP YEN JEPANG DAN EURO TERHADAP DOLLAR AMERIKA DALAM ARCH, GARCH DAN TARCH Nama : Yulia Sukma Hardyanti NRP : 1303.109.001 Jurusan

Lebih terperinci

Penerapan Model ARIMA

Penerapan Model ARIMA Penerapan Model ARIMA (Bagian I) Dr. Kusman Sadik, M.Si Departemen Statistika IPB, 016 1 Ada tiga tahapan iterasi dalam pemodelan data deret waktu, yaitu: 1. Penentuan model tentatif (spesifikasi model)

Lebih terperinci

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan

ABSTRAK. Kata kunci : Data Runtun Waktu, Indeks Harga Konsumen, ARIMA, Analisis Intervensi, Fungsi Step, Peramalan. I Pendahuluan Analisis Model Intervensi Fungsi Step Terhadap Indeks Harga Konsumen (IHK) Zuhairini Azzahra A 1, Suyono 2, Ria Arafiyah 3 Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas

Lebih terperinci

PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION

PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION PERAMALAN KECEPATAN ANGIN RATA-RATA HARIAN DI SURABAYA MENGGUNAKAN METODE BAYESIAN MODEL AVERAGING DENGAN PENDEKATAN EXPECTATION MAXIMIZATION Nama : Diah Kusumawati NRP : 137 1 49 Jurusan : Statistika

Lebih terperinci

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus

Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia. Oleh : Pomi Kartin Yunus Analisis Time Series Pada Penjualan Shampoo Zwitsal daerah Jakarta dan Jawa Barat di PT. Sara Lee Indonesia Oleh : Pomi Kartin Yunus 1306030040 Latar Belakang Industri manufaktur yang berkembang pesat

Lebih terperinci

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN

Jurnal EKSPONENSIAL Volume 8, Nomor 1, Mei 2017 ISSN Jurnal EKSPONENSIAL Volume 8, Nomor, Mei 07 ISSN 085-789 Peramalan dengan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) di Bidang Ekonomi (Studi Kasus: Inflasi Indonesia) Forecasting

Lebih terperinci

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins

Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins Statistika, Vol. 16 No. 2, 95 102 November 2016 Prediksi Laju Inflasi di Kota Ambon Menggunakan Metode ARIMA Box Jenkins FERRY KONDO LEMBANG Jurusan Matematika Fakultas MIPA Universitas Pattimura Ambon

Lebih terperinci

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN

PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN TUGAS AKHIR SS 145561 PERAMALAN PEMAKAIAN AIR BERSIH DI PDAM SUMBER POCONG KABUPATEN BANGKALAN MOH. ZAINUR ROFIK NRP 1314 030 050 Dosen Pembimbing Dr. Wahyu Wibowo, S.Si., M.Si Iis Dewi Ratih, S.Si., M.Si

Lebih terperinci

Peramalan Harga Beras di Perum BULOG Divre Jatim

Peramalan Harga Beras di Perum BULOG Divre Jatim Peramalan Harga Beras di Perum BULOG Divre Jatim Disusun oleh : Woro Morphi H (1309030010) Dosen Pembimbing : Dr. Suhartono, S.Si, M.Sc Pendahuluan Latar Belakang, Perumusan Masalah,Tujuan Penelitian,

Lebih terperinci

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300

JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (2013) ( X Print) D-300 JURNAL SAINS DAN SENI POMITS Vol. 2, No.2, (203) 233-20 (230-9X Print) D-300 Pemodelan Konsumsi Listrik Berdasarkan Jumlah Pelanggan PLN Jawa Timur untuk Kategori Rumah Tangga R- dengan Metode Fungsi Transfer

Lebih terperinci

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average)

PREDIKSI HARGA SAHAM PT. BRI, Tbk. MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) PREDIKSI HARGA SAHAM PT. BRI, MENGGUNAKAN METODE ARIMA (Autoregressive Integrated Moving Average) Greis S. Lilipaly ), Djoni Hatidja ), John S. Kekenusa ) ) Program Studi Matematika FMIPA UNSRAT Manado

Lebih terperinci

Pemodelan Data Curah Hujan Di Kabupaten Banyuwangi dengan Metode ARIMA dan Radial Basis Function Neural Network

Pemodelan Data Curah Hujan Di Kabupaten Banyuwangi dengan Metode ARIMA dan Radial Basis Function Neural Network JURNAL SAINS DAN SENI ITS Vol. 5 No. (6) 337-35 (3-98X Print) D-339 Pemodelan Data Curah Hujan Di Kabupaten Banyuwangi dengan Metode ARIMA dan Radial Basis Function Neural Network Novelina Purba dan Brodjol

Lebih terperinci

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q)

KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) UJIAN TUGAS AKHIR KAJIAN METODE JACKKNIFE DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN PARAMETER ARMA(p,q) Disusun oleh : Novan Eko Sudarsono NRP 1206.100.052 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON

PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON PEMODELAN ARIMA UNTUK PREDIKSI KENAIKAN MUKA AIR LAUT DAN DAMPAKNYA TERHADAP LUAS SEBARAN ROB DI KOTA AMBON (MODELS OF ARIMA TO PREDICT RISING SEA AND ITS IMPACT FOR THE WIDESPREAD DISTRIBUTION OF ROB

Lebih terperinci

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n

SBAB III MODEL VARMAX. Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n SBAB III MODEL VARMAX 3.1. Metode Analisis VARMAX Pengamatan time series membentuk suatu deret data pada saat t 1, t 2,..., t n dengan variabel random Z n yang dapat dipandang sebagai variabel random berdistribusi

Lebih terperinci

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO

PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO PEMODELAN SARIMAX DALAM PERAMALAN PENUMPANG KERETA API PADA DAERAH OPERASI (DAOP) V PURWOKERTO Skripsi Diajukan Untuk Memenuhi Sebagian Syarat Mencapai Gelar Sarjana Strata Satu (S-1) Oleh : ROSIANA NOVITA

Lebih terperinci

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara

BAB I PENDAHULUAN. berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Time Series atau runtun waktu adalah serangkaian data pengamatan yang berasal dari sumber tetap yang terjadinya berdasarkan indeks waktu t secara berurutan

Lebih terperinci

APLIKASI CHANGE POINT ANALYSIS (CPA) PADA DATA CURAH HUJAN HARIAN MARCO BONA TUA

APLIKASI CHANGE POINT ANALYSIS (CPA) PADA DATA CURAH HUJAN HARIAN MARCO BONA TUA APLIKASI CHANGE POINT ANALYSIS (CPA) PADA DATA CURAH HUJAN HARIAN MARCO BONA TUA DEPARTEMEN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2014 PERNYATAAN MENGENAI

Lebih terperinci

OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING. Oleh: Rossy Susanti ( )

OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING. Oleh: Rossy Susanti ( ) OPTIMASI PRODUKSI UNTUK PRODUK PESANAN PADA PERUSAHAAN PESTISIDA MENGGUNAKAN METODE GOAL PROGRAMMING Oleh: Rossy Susanti (1207 100 007) Dosen Pembimbing: Drs. Suharmadi S., DiplSc.,MPhil JURUSAN MATEMATIKA

Lebih terperinci

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs.

Artikel Ilmiah. Peneliti : Auditya Gianina Bernadine Amaheka ( ) Michael Bezaleel Wenas, S.Kom., M.Cs. Analisis Peramalan Penerimaan Pajak Kendaraan Bermotor dengan Metode Autoregressive Integrated Moving Average (ARIMA) (Studi Kasus : Dinas Pendapatan dan Pengelolaan Aset Daerah Provinsi Jawa Tengah) Artikel

Lebih terperinci

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD

Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Pemodelan ARIMA Jumlah Pencapaian Peserta KB Baru IUD Charisma Arianti, Arief Wibowo Departemen Biostatistika dan Kependudukan Fakultas Kesehatan Masyarakat Universitas Airlangga Surabaya Alamat Korespondensi:

Lebih terperinci

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA

PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA Saintia Matematika ISSN: 2337-9197 Vol. 2, No. 1 (2014), pp. 55 69. PERAMALAN PEMAKAIAN ENERGI LISTRIK DI MEDAN DENGAN METODE ARIMA John Putra S Tampubolon, Normalina Napitupulu, Asima Manurung Abstrak.

Lebih terperinci

PERAMALAN PRODUKSI TEH HIJAU DENGAN PENDEKATAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE

PERAMALAN PRODUKSI TEH HIJAU DENGAN PENDEKATAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE PERAMALAN PRODUKSI TEH HIJAU DENGAN PENDEKATAN AUTOREGRESSIVE INTEGRATED MOVING AVERAGE Satrio Wijaksono 1, Wellie Sulistijanti 2 Akademi Statistika Muhammadiyah Semarang Satriowijaksono15@gmail.com Abstract

Lebih terperinci