Sistem Kendali Navigasi Ar.Drone Quadcopter Dengan Prinsip Natural User Interface Menggunakan Microsoft Kinect

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sistem Kendali Navigasi Ar.Drone Quadcopter Dengan Prinsip Natural User Interface Menggunakan Microsoft Kinect"

Transkripsi

1 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: X Vol. 2, No. 1, Januari 2018, hlm Sistem Kendali Navigasi Ar.Drone Quadcopter Dengan Prinsip Natural User Interface Menggunakan Microsoft Kinect Sabitha Wildani Hadi 1, Gembong Edhi Setyawan 2, Rizal Maulana 3 Program Studi Teknik Informatika, 1 sabitha.swh18@gmail.com, 2 gembong@ub.ac.id, 3 rizal_lana@ub.ac.id Abstrak Quadcopter merupakan salah satu jenis dari Unmanned Aerial Vehicle (UAV), yaitu robot yang dapat terbang dengan empat baling-baling disetiap ujungnya. Untuk menerbangkan quadcopter pada umumnya digunakan remote control atau smartphone. Namun diperlukan keahlian dan pengalaman khusus untuk dapat menerbangkan quadcopter. Berdasarkan permasalahan tersebut maka perlu dikembangkan inovasi dari sistem kendali navigasi pada quadcopter agar lebih mudah digunakan. Sistem yang dibuat pada penelitian ini dibuat menggunakan salah satu bagian dari natural user interface berupa gerakan tubuh dari pengguna yang akan dideteksi menggunakan Kinect. Gerakan dari pengguna akan diubah menjadi sceleton tracking. Data sceleton tracking tersebut akan diolah oleh komputer dengan pemrograman javascript dan akan diteruskan menjadi instruksi untuk menggerakan quadcopter. Quadcopter yang digunakan dalam penelitian ini adalah Parrot AR.Drone 2.0. Dari hasil pengujian yang telah dilakukan didapatkan hasil persentase ketepatan gerakan yang berhasil dilakukan pengguna untuk mengendalikan qudcopter sebesar 100%. Selain itu juga diperoleh hasil dari kecepatan gerakan roll, pitch, dan yaw pada quadcopter berbanding lurus dengan nilai input dari gerakan pengguna yang berarti kecepatan quadcopter dapat diatur sesuai gerakan yang diberikan oleh pengguna. Untuk delay yang dihasilkan sistem ini pada saat pengguna menggerakan tubuh hingga quadcopter mengikuti instruksi adalah sebesar 0,05 detik. Kata kunci: Kinect, Sceleton Tracking. UAV, Quadcopter Abstract Quadcopter is a type of Unmanned Aerial Vehicle (UAV), which is a robot that can fly with four propellers. Quadcopter can controlled with remote control or smartphone, but it takes skill and experience to be able to control quadcopter. Based on that problems, it is necessary to develop new innovation of quadcopter navigation control system which is easier to use. The system built on this research is made using one part of the natural user interface that is user s body gestures detected using Kinect. User s gestures will be converted into sceleton tracking. The sceleton tracking data will be processed by computer with javascript programming and will be forwarded into instructions to control quadcopter. Quadcopter used in this research is Parrot AR.Drone 2.0. After performing test on the system, obtained percentage of accuracy of user s gestures to control quadcopter is 100%. In addition, the results obtained from the speed test of roll, pitch, and yaw on the quadcopter is directly proportional to the input value of the user s gestures which means the speed of the quadcopter can be adjusted automatically according to the user s gestures. For the delay on this system when the user moves the body until the quadcopter follows the instruction is 0.05 seconds. Keywords: Kinect, Sceleton Tracking. UAV, Quadcopter 1. PENDAHULUAN Saat ini quadcopter atau yang biasa dikenal dengan istilah drone, tengah populer di kalangan masyarakat. Banyak penggunaan quadcopter di berbagai bidang. Selain untuk kegiatan fotografi, quadcopter juga dapat digunakan pada berbagai bidang seperti pertanian, medis, keamanan, dan lain sebagainya. Untuk dapat menerbang qudcopter sesuai dengan keinginan pengguna, dapat digunakan remote control yang menggunakan media transmisi gelombang radio atau Wi-fi. Selain itu quadcopter juga dapat dikendalikan menggunakan smartphone maupun joystick. Fakultas Ilmu Komputer Universitas Brawijaya 380

2 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 381 Namun untuk mengendalikan quadcopter menggunakan perangkat tersebut dibutuhkan proses pembelajaran yang relatif lama serta keahlian khusus. Dengan munculnya inovasi berupa Natural User Interface (NUI), cara dalam mengendalikan quadcopter telah berkembang. Menurut Blake (2013) NUI adalah sebuah antarmuka alami yang dirancang untuk dapat digunakan dengan keahlian manusia yang telah ada untuk berinteraksi dengan suatu konten. NUI dapat diimplementasikan dalam bidang apa pun termasuk untuk mengendalikan quadcopter. NUI merupakan sebuah pendekatan baru dalam cara interaksi antara manusia dengan berbagai hal yang memiliki input alami dari manusia seperti suara, gerakan, dan biosignal. Antarmuka ini memiliki perbedaan dengan cara konvensional dalam meminimalkan durasi dan tingkat kesulitan pembelajaran oleh pengguna dalam mengoperasikan quadcopter. Pendekatan ini hanya memerlukan sedikit proses pembelajaran bagi pengguna dalam percobaan yang pertama kali. Pada penelitian ini akan dilakukan implementasi dari sistem kendali navigasi quadcopter atau yang lebih umum dikenal sebagai drone menggunakan NUI. Quadcopter yang digunakan adalah Parrot AR.Drone. Pemilihan Parrot AR.Drone dikarenakan jenis ini merupakan salah satu quadcopter yang bersifat open source dengan harga terjangkau. Untuk NUI yang digunakan adalah gerakan tuuh dari pengguna. Gerakan dari pengguna akan dideteksi menggunakan sensor kamera Kinect. Pemilihan sensor Kinect ini dikarenakan menurut Zeng (2012) Kinect memiliki kamera RGB dan infrared yang bisa digunakan untuk menghasilkan sceleton tracking dengan proses yang sangat cepat. Penelitian mengenai sistem kendali quadcopter menggunakan Kinect juga pernah dilakukan oleh oleh Sanna et al. (2013) yang membahas mengenai pengendalian quadcopter serta perbandingan antara penggunaan NUI dengan sistem kendali konvensional seperti joystick, smartphone dan keyboard. Delay yang dihasilkan pada penelitian ini sebesar 0,3 detik. Selanjutnya penelitian Mashood et al. (2015) juga membahas penggunaan Kinect sebagai sistem kendali quadcopter. Delay yang dihasilkan oleh penelitian tersebut sebesar 0,32 detik. Berbeda penelitian Mashood et al. (2015) dan Sanna et al. (2013) yang masih menggunakan perangkat lunak tambahan berupa FAAST (Flexible Action and Articulated Skeleton Toolkit) sebagai pendeteksi gerakan tubuh, pada penelitian ini digunakan pemrograman javascript dengan mengambil data langsung pada Kinect driver tanpa melalui FAAST. Penelitian ini memfokuskan pada performa dan akurasi dari sistem. 2. PERGERAKAN QUADCOPTER Menurut Kusuma, Effendi, dan Iskandar (2012) quadcopter adalah sebuah konfigurasi empat buat motor pada sebuah kerangka berbentuk menyilang. Pada masing-masing ujung kerangka terdapat motor yang terpasang dengan baling-baling untuk membuat aliran udara yang menghasilkan tekanan ke arah bawah sehingga timbul gaya angkat pada quadcopter. Quadcopter memiliki empat pergerakan yaitu roll (gerakan ke kiri dan kanan searah sumbu y), pitch (gerakan ke depan belakang searah sumbu x), gaz (gerakan ke atas dan bawah searah sumbu z), serta yaw (gerakan berputar ke kiri dan kanan yang berotasi pada sumbu z ) Gambar 1. Koordinat pada quadcopter 3. PERANCANGAN DAN IMPLEMENTASI Tahap perancangan serta implementasi pada penelitian ini dibagi menjadi tiga tahapan secara berurutan yaitu yaitu komunikasi sistem, gerakan tubuh, dan fungsi kecepatan. Gambar 2. Tahapan perancangan dan implementasi sistem

3 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Komunikasi Sistem Alur komunikasi pada sistem ini diperlihatkan pada gambar 3. Awalnya pengguna akan memberi instruksi pada sistem dengan menggerakkan badan pada Kinect. Data gerakan badan pengguna yang telah diakusisi oleh Kinect akan dikirim melalui USB menuju komputer dan diubah menjadi data sceleton tracking oleh driver kinect. Gambar 3. Alur komunikasi pada sistem Setelah itu dibuat suatu program untuk mengubah data sceleton tracking yang telah diperoleh hingga dapat menghasilkan suatu instruksi yang digunakan sebagai para untuk menggerakan quadcopter. Selain itu program yang telah dibuat juga akan menampilkan info data navigasi dari quadcopter seperti ketinggian, baterai, kecepatan, dan lain sebagainya. Pada quadcopter, data dikirim dan diterima melalui jaringan Wi-Fi yang dipancarkan oleh quadcopter. Data yang dikirim berupa AT command dengan protokol jaringan UDP. tubuh bagian atas khususnya bagian tangan. Total ada sebelas instruksi yang dapat pengguna gunakan untuk mengendalikan quadcopter. Gerakan tersebut seperti pada tabel 1. Tabel 1. Daftar instruksi quadcopter berdasarkan gerakan tubuh Gerakan Tubuh Tangan kanan menunjuk Kinect (lasso hand) Kedua tangan menggenggam Kedua tangan direntangkan ke samping Kedua tangan dinaikkan Kedua tangan diturunkan Tangan kanan dinaikkan dan tangan kiri diturunkan Tangan kiri dinaikkan dan tangan kanan diturunkan Kedua tangan diarahkan ke depan Kedua tangan diarahkan ke belakang Tangan kanan diarahkan kedepan dan tangan kiri diarahkan ke belakang Tangan kiri diarahkan kedepan dan tangan kanan diarahkan ke belakang Command Takeoff Landing Hover Gaz atas Gaz bawah Roll kiri Roll kanan Pitch depan Pitch belakang Yaw kiri Yaw kanan 3.3 Fungsi Kecepatan Tujuan dari fungsi ini adalah menghasilkan kecepatan yang berbeda dari setiap gerakan yang dilakukan oleh pengguna. Dengan demikian pengguna dapat mengendalikan quadcopter dengan mudah. Hal ini dikarenakan jika pengguna dapat mengatur kecepatan dari quadcopter, maka pengguna tidak perlu takut dan ragu untuk menggerakkan Gambar 4. Implementasi komunikasi sistem 3.2 Gerakan Tubuh Agar gerakan tubuh dapat digunakan sebagai input dari sistem ini, diperlukan data joint dari sceleton tracking. Namun tidak keseluruhan data dipergunakan pada sistem ini. Data yang dipakai pada sistem berfokus pada Gambar 5. Implementasi gerakan tubuh quadcopter. Berbeda halnya jika kecepatan diberi nilai konstan. Pengguna akan kesulitan saat mengendalikan quadcopter. Untuk bisa menghasilkan fungsi tersebut maka diperlukan

4 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 383 sebuah perhitungan berdasarkan nilai dari beberapa joint pada sceleton tracking yang diperlukan. Persamaan yang digunakan untuk perhitungan kecepatan ini didapatkan dari percobaan dan pengamatan secara berulang kali terhadap nilai dari beberapa joint tubuh yang diperoleh dari Kinect. Untuk perhitungan nilai kecepatan pada masing-masing gerakan akan dijelaskan sebagai berikut. a. Pitch Para yang dipakai adalah nilai koordinat z pada joint tangan kiri, tangan kanan dan bahu bagian tengah. Rumus dari perhitungan kecepatan diperlihatkan pada persamaan 1. Mean KananZ + KiriZ = 2 ( 1 ) Vxx = [BahuZ Mean] Mula-mula nilai tangan kanan (KananZ) dan tangan kiri (KiriZ) dirata-rata dahulu. Hal ini dikarenakan pada saat menggerakkan tangan ke depan atau belakang, nilai antara tangan kanan dan kiri belum tentu sama. Setelah itu hasil ratarata (Mean) tersebut di masukan pada perhitungan kecepatan (Vxx) dan digunakan untuk mengurangi nilai dari bahu bagian tengah (BahuZ). Nilai dari Vxx diabsolutkan untuk menghindari adanya nilai negatif. b. Roll Para yang dipakai adalah nilai koordinat y pada joint tangan kiri, tangan kanan, kepala, dan dada. Rumus dari perhitungan kecepatan diperlihatkan pada persamaan 2. Mula-mula dihitung selisih dari kepala (KepalaY) dengan tangan yang posisinya berada di atas kepala (T 1 ). Jika posisi roll ke kiri maka nilai tangan kanan yang akan dihitung, begitu juga sebaliknya. Setelah itu dilakukan perhitungan terhadap selisih antara dada (DadaY) dengan tangan yang posisinya berada di bawah dada (T 2 ). Nilai dari T 1 dan T 2 diabsolutkan untuk menghindari adanya nilai negatif dalam perhitungan. Setelah mendapat nilai selisih antara kepala dan tangan di atasnya (Y 1 ) serta dada dengan tangan di bawahnya (Y 2 ), selanjutnya kedua nilai tersebut dikurangkan dan selanjutnya dibagi 2 sehingga akan menghasilkan kecepatan gerakan roll (Vyy). Nilai dari (Vyy) diabsolutkan untuk menghindari adanya nilai negatif. Y 1 = [T 1 ] KepalaY Y 2 = DadaY [T 2 ] Vyy = [(Y 1 Y 2 )/2] (2) c. Gaz Untuk para yang dipakai adalah nilai koordinat y pada joint tangan kiri, tangan kanan, kepala, dan dada. Rumus dari perhitungan kecepatan diperlihatkan pada persamaan 3. Mula-mula dihitung rata-rata dari nilai tangan kiri (kiriy) dan tangan kanan (kanany). Setelah Mean = [KananY + kiriy] 2 Vzz = [Mean K] itu nilai tersebut dikurangkan dengan nilai dari acuan (K). Nilai ini akan menyesuaikan kondisi gerakan. Saat gerakan naik maka nilai (K) akan diisi dengan nilai dari kepala sedangkan saat turun akan diisi dengan nilai dada. d. Yaw Untuk para joint yang dipakai adalah nilai koordinat z pada tangan kiri dan kanan. Rumus dari perhitungan kecepatan diperlihatkan pada persamaan 4. Nilai dari tangan yang berada V rot" = [T 1 T 2 ] (4) 2 dekat dengan Kinect (T 1 ) dikurangkan dengan tangan yang berada jauh dengan Kinect (T 2 ). Lalu nilai tersebut diabsolutkan untuk menghilangkan nilai negatif. Setelah itu nilai tersebut dibagi PENGUJIAN DAN HASIL Untuk menguji performa dan akurasi dari sistem ini, maka akan dilakukan dua jenis pengujian yaitu pengujian waktu sistem (delay) dan pengujian ketepatan. Untuk pengujian waktu sistem akan digunakan untuk mengetahui seberapa baik performa dari sistem ini. Sedangkan untuk pengujian ketepatan dibagi menjadi dua pengujian lagi yaitu pengujian ketepatan gerakan dan kecepatan. 4.1 Hasil Pengujian Ketepatan Gerakan Pengujian ini dilakukan untuk mengetahui apakah sistem sudah berjalan sesuai dengan perancangan yang diharapkan serta mampu memberikan output yang tepat. Untuk setiap gerakan akan diuji sebanyak sepuluh kali. Pada pengujian gerakan pitch, dihasilkan grafik seperti pada 6. Gerakan pitch ke depan dan belakang berhasil dilakukan, diperlihatkan dengan berubahnya sudut dari quadcopter pada koordinat sumbu y yang berarti arah gerakan quadcopter telah benar. (3)

5 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 384 Pada pengujian gerakan roll, dihasilkan grafik seperti pada 7. Gerakan roll ke kiri dan kanan berhasil dilakukan, diperlihatkan dengan berubahnya sudut dari quadcopter pada koordinat sumbu x yang berarti arah gerakan quadcopter telah benar. berurutan dalam sekali percobaan gerakan karea para yang akan diamati sama yaitu ketinggian. Untuk gambar pada gerakan ini ada pada gambar 10. Saat takeoff dilakukan didapatkan ketinggian semakin bertambah pada detik ke 0,05 sampai 1,07. Selanjutnya pada detik ke 1,08 sampai 3,31 nilai dari ketinggian relatif stabil dikarenakan quadcopter berada pada kondisi hover. Lalu pada detik ke 3,32 sampai 4,43 ketinggian semakin berkurang saat quadcopter mendarat. Gambar 6. Grafik sudut gerakan pitch Gambar 7. Grafik sudut gerakan roll Pada pengujian gerakan gaz, dihasilkan grafik seperti pada gambar 8. Gerakan gaz ke atas dan bawah berhasil dilakukan, diperlihatkan dengan berubahnya ketinggian dari quadcopter yang berarti arah gerakan quadcopter telah benar. Gambar 8. Grafik sudut gerakan gaz Pada pengujian gerakan yaw, dihasilkan grafik seperti pada gambar 9. Gerakan yaw ke kiri dan kanan berhasil dilakukan, diperlihatkan dengan berubahnya sudut dari quadcopter pada koordinat sumbu z yang berarti arah gerakan quadcopter telah benar. Gambar 9. Grafik sudut gerakan yaw Untuk pengujian gerakan takeoff, hover, dan landing dilakukan sekaligus secara Gambar 10. Grafik sudut gerakan takeoff, hover, dan landing Dari pengujian yang dilakukan didapatkan hasil berupa keseluruhan pengguna dapat mengendalikan quadcopter dengan sukses dari sepuluh kali percobaan pada jarak 1,5 dan 3,8 seperti diperlihatkan pada tabel. Sehingga persentase ketepatan pada sistem ini sebesar 100%. Tabel 2 Hasil pengujian ketepatan gerakan Pengguna A Pengguna B Command 1,5 3,8 1,5 3,8 Takeoff 100% 100% 100% 100% Landing 100% 100% 100% 100% Gaz atas 100% 100% 100% 100% Gaz bawah 100% 100% 100% 100% Roll kiri 100% 100% 100% 100% Roll kanan 100% 100% 100% 100% Pitch depan 100% 100% 100% 100% Pitch belakang 100% 100% 100% 100% Yaw kiri 100% 100% 100% 100% Yaw kanan 100% 100% 100% 100% Hover 100% 100% 100% 100% 4.2 Hasil Pengujian Kecepatan Pengujian ini dilakukan untuk mengetahui apakah input yang diberikan pengguna telah dapat mempengaruhi kecepatan dari quadcopter. Setelah dilakukan pengujian, didapatkan hasil seperti pada gambar 11, 12, 13, dan 14. Pada grafik-grafik tersebut diperlihatkan bahwa nilai dari kecepatan yang diberikan oleh pengguna dapat mempengaruhi kecepatan dari quadcopter.

6 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 385 Saat nilai dari input kecepatan pengguna bertambah besar, secara otomatis kecepatan dari quadcopter juga akan bertambah. Hal ini menandakan bahwa fungsi kecepatan otomatis dari sistem ini telah benar. Saat pengguna memberikan kecepatan tinggi maka quadcopter secara otomatis juga akan bergerak dengan cepat, begitu pula sebaliknya saat diberikan kecepatan rendah maka quadcopter akan bergerak dengan pelan. Gambar 11. Grafik pengaruh input kecepatan pengguna pada kecepatan pitch quadcopter Gambar 12. Grafik pengaruh input kecepatan pengguna pada kecepatan roll quadcopter Gambar 13. Grafik pengaruh input kecepatan pengguna pada kecepatan gaz quadcopter Gambar 14. Grafik pengaruh input kecepatan pengguna pada kecepatan yaw quadcopter 4.3 Hasil Pengujian Waktu Sistem Pengujian ini dilakukan untuk mengetahui seberapa baik performa dari sistem kendali yang telah dibuat dengan melihat seberapa besar delay yang terjadi saat pengguna memberikan instruksi sampai quadcopter merespon. Untuk mengetahui waktu delay tersebut dengan akurat, maka akan dilakukan perekaman video pada saat pengguna mengendalikan quadcopter. Hasil dari video tersebut akan dianalisis dengan menghitung selisih waktu dari frame gambar antara gerakan pengguna dengan gerakan quadcopter. Setelah dilakukan percobaan untuk setiap gerakan sebanyak lma kali, didapatkan hasil berupa delay pada sistem ini sebesar 0,05 detik. Command Tabel 3. Hasil pengujian delay sistem Percobaan ke Ratarata (detik) Gaz atas 0,04 0,06 0,05 0,05 0,06 0,05 Gaz bawah 0,04 0,05 0,05 0,06 0,05 0,05 Roll kiri 0,03 0,05 0,05 0,06 0,05 0,04 Roll kanan 0,05 0,05 0,04 0,05 0,06 0,05 Pitch depan 0,05 0,06 0,06 0,04 0,05 0,05 Pitch belakang 0,05 0,05 0,05 0,06 0,05 0,05 Yaw kiri 0,05 0,04 0,05 0,05 0,04 0,04 Yaw kanan 0,04 0,05 0,06 0,05 0,05 0,05 Total delay sistem 0,05 5. KESIMPULAN Dari pengujian yang telah dilakukan terhadap sistem ini, maka dapat diambil kesimpulan sebagai berikut. a. Setelah melakukan pengujian ketepatan gerakan dan kecepatan, dihasilkan persentase ketepatan gerakan sebesar 100%. Sedangkan untuk kecepatan yang dihasilkan oleh quadcopter dapat

7 Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer 386 berbanding lurus dengan nilai yang diperoleh dari gerakan pengguna, hal ini menandakan saat input dari pengguna semakin besar, maka quadcopter akan bertambah cepat dan begitu pula sebaliknya. Sehingga dapat diambil kesimpulan bahwa sistem yang telah dibuat telah sesuai dengan harapan dan memiliki nilai akurasi yang tinggi. b. Dari pengujian delay sistem, didapat delay sebesar 0,05 detik. Dari hasil tersebut maka dapat diambil kesimpulan bahwa sistem ini memiliki performa yang sangat baik. 6. DAFTAR PUSTAKA Camci, E., & Kayacan, E. (2016). Waitress quadcopter explores how to serve drinks by reinforcement learning. Region 10 Conference (TENCON), 2016 IEEE. Singapore: IEEE. Kusuma, W., AK, R. E., & Iskandar, E. (2012). Perancangan dan Implementasi Kontrol Fuzzy-PID pada Pengendalian Auto Take-Off Quadcopter UAV. JURNAL TEKNIK POMITS, 1(1), 1-6. Mashood, A., Noura, H., Jawhar, I., & Mohamed, N. (2015). A Gesture Based Kinect for Quadrotor Control. Abu Dhabi: IEEE. NUI Group Community. (2009). Dipetik December 6, 2016, dari Pahonie, R.-C., Mihai, R.-V., & Barbu, C. (2015). Biomechanics of flexible wing drones usable for emergency medical transport operations. E-Health and Bioengineering Conference (EHB), Romania: IEEE. Sanna, A., Lamberti, F., Paravati, G., & Manuri, F. (2013). A Kinect-based natural interface for quadrotor control. Elsevier, Zeng, W. (2012). Microsoft Kinect Sensor and Its Effect. IEEE MultiMedia, 19(2), 4-10.

Sistem Ar Drone Pengikut Garis Menggunakan Algoritma Progressive Probabilistic Hough Transform

Sistem Ar Drone Pengikut Garis Menggunakan Algoritma Progressive Probabilistic Hough Transform Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 9, September 2018, hlm. 2965-2971 http://j-ptiik.ub.ac.id Sistem Ar Drone Pengikut Garis enggunakan Algoritma Progressive

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang 1.1. Latar Belakang BAB I PENDAHULUAN Perkembangan perangkat human-robot interaction (HRI) dalam waktu ke waktu semaking pesat. Seperti seorang peneliti nyatakan dalam sebuah makalah, yaitu Sanna dkk.

Lebih terperinci

Sistem Deteksi Warna pada Quadcopter Ar.Drone Menggunakan Metode Color Filtering Hue Saturation and Value (HSV)

Sistem Deteksi Warna pada Quadcopter Ar.Drone Menggunakan Metode Color Filtering Hue Saturation and Value (HSV) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 9, September 2018, hlm. 3202-3207 http://j-ptiik.ub.ac.id Sistem Deteksi Warna pada Quadcopter Ar.Drone Menggunakan

Lebih terperinci

Sistem Kendali Navigasi Quadcopter Menggunakan Suara Melalui Smartphone dan Arduino dengan Metode Text Processing

Sistem Kendali Navigasi Quadcopter Menggunakan Suara Melalui Smartphone dan Arduino dengan Metode Text Processing Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 2, Februari 2018, hlm. 732-738 http://j-ptiik.ub.ac.id Sistem Kendali Navigasi Quadcopter Menggunakan Suara Melalui

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Parrot AR. Drone

BAB I PENDAHULUAN 1.1 Latar Belakang Parrot AR. Drone BAB I PENDAHULUAN 1.1 Latar Belakang Quadrotor merupakan salah satu jenis Unmanned Aerial Vehicle (UAV) atau pesawat tanpa awak yang memiliki empat buah baling-baling (rotor) yang biasa juga disebut quadcopter.

Lebih terperinci

PENDAHULUAN Latar Belakang Parrot AR.Drone

PENDAHULUAN Latar Belakang Parrot AR.Drone PENDAHULUAN Latar Belakang UAV (Unmanned Aerial Vehicle) atau pesawat tanpa awak atau drone adalah sebuah mesin yang mampu terbang dan dikendalikan oleh pilot dari jarak jauh. Pergerakan UAV sendiri dipengaruhi

Lebih terperinci

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P2700213428 PROGRAM PASCASARJANA PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS HASANUDDIN MAKASSAR 2014 ii DRAFT PROPOSAL JUDUL Sistem

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam melakukan pengambilan gambar di udara, banyak media yang bisa digunakan dan dengan semakin berkembangnya teknologi saat ini terutama dalam ilmu pengetahuan, membuat

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Internasional Batam

BAB I PENDAHULUAN. 1 Universitas Internasional Batam BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat terbang model UAV (Unmanned Aerial Vehicle) telah berkembang dengan sangat pesat dan menjadi salah satu area penelitian yang diprioritaskan. Beberapa jenis

Lebih terperinci

RIZKAR FEBRIAN. 1, SUWANDI 2, REZA FAUZI I. 3. Abstrak

RIZKAR FEBRIAN. 1, SUWANDI 2, REZA FAUZI I. 3. Abstrak PERANCANGAN DAN IMPLEMENTASI SISTEM KENDALI PID PADA AUTONOMOUS MOVING FORWARD QUADCOPTER DESIGN AND IMPLEMENTATION OF PID CONTROL SYSTEM IN AUTONOMOUS MOVING FORWARD QUADCOPTER RIZKAR FEBRIAN. 1, SUWANDI

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang UAV (Unmanned Aerial Vehicle) atau biasa disebut pesawat tanpa awak saat ini sedang mengalami perkembangan yang sangat pesat di dunia. Penggunaan UAV dikategorikan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang 1.1 Latar Belakang BAB I PENDAHULUAN UAV yang merupakan kepanjangan dari Unmanned Aerial Vehicles, atau dalam kata lain DRONE adalah tipe pesawat terbang yang beroperasi dengan sendirinya tanpa seorang

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN BAB 1. 1.1 Latar Belakang Gerak terbang pada pesawat tanpa awak atau yang sering disebut Unmanned Aerial Vehicle (UAV) ada berbagais macam, seperti melayang (hovering), gerak terbang

Lebih terperinci

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah

Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271 F-50 Rancang Bangun Sistem Takeoff Unmanned Aerial Vehicle Quadrotor Berbasis Sensor Jarak Inframerah Bardo Wenang, Rudy Dikairono, ST., MT.,

Lebih terperinci

BAB I PENDAHULUAN Tujuan. Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat. baling-baling penggerak.

BAB I PENDAHULUAN Tujuan. Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat. baling-baling penggerak. BAB I PENDAHULUAN 1.1. Tujuan Merancang dan merealisasikan pesawat terbang mandiri tanpa awak dengan empat baling-baling penggerak. 1.2. Latar Belakang Pesawat terbang tanpa awak atau UAV (Unmanned Aerial

Lebih terperinci

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA 1022: Ahmad Ashari dkk. TI-59 SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA Ahmad Ashari, Danang Lelono, Ilona Usuman, Andi Dharmawan, dan Tri Wahyu Supardi Jurusan Ilmu

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh oleh pilot

Lebih terperinci

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015)

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015) Estimasi Parameter Model Height-Roll-Pitch-Yaw AR Drone dengan Least Square Method Steven Tanto Teknik Elektro / Fakultas Teknik steventanto@gmail.com Agung Prayitno Teknik Elektro / Fakultas Teknik prayitno_agung@staff.ubaya.ac.id

Lebih terperinci

I. PENDAHULUAN. UAV (Unnmaned Aerial Vehicle) secara umum dapat diartikan sebuah wahana udara

I. PENDAHULUAN. UAV (Unnmaned Aerial Vehicle) secara umum dapat diartikan sebuah wahana udara I. PENDAHULUAN A. Latar Belakang UAV (Unnmaned Aerial Vehicle) secara umum dapat diartikan sebuah wahana udara jenis fixed-wing, rotary-wing, ataupun pesawat yang mampu mengudara pada jalur yang ditentukan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Perkembangan sistem ilmu pengetahuan dan teknologi semakin pesat di abad ke- 21 ini, khususnya dalam bidang penerbangan. Pada dekade terakhir dunia penerbangan mengalami

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Ilmu pengetahuan dan teknologi dalam bidang robotika pada saat ini berkembang dengan sangat cepat. Teknologi robotika pada dasarnya dikembangkan dengan tujuan untuk

Lebih terperinci

JURUSAN TEKNIK KOMPUTER POLITEKNIK NEGERI SRIWIJAYA 2014

JURUSAN TEKNIK KOMPUTER POLITEKNIK NEGERI SRIWIJAYA 2014 IMPLEMENTASI PID KONTROL UNTUK MENGONTROL KESTABILAN POSISI QUADCOPTER GUNA MENGIDENTIFIKASI OBJEK DARI KETINGGIAN MAKSIMAL 6 METER Laporan Akhir Laporan Akhir ini disusun sebagai salah satu syarat menyelesaikan

Lebih terperinci

BAB 1 PENDAHULUAN. wahana terbang tanpa awak, teknologi tersebut disebut Unmanned Aerial Vehicle

BAB 1 PENDAHULUAN. wahana terbang tanpa awak, teknologi tersebut disebut Unmanned Aerial Vehicle 1.1. Latar Belakang Masalah BAB 1 PENDAHULUAN Seiring perkembangan teknologi telekomunikasi dan dirgantara menghasilkan suatu teknologi yang menggabungkan antara informasi suatu keadaan lokasi tertentu

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat udara tanpa awak atau Unmanned Aerial Vehicle (UAV) adalah sebuah pesawat terbang yang dapat dikendalikan secara jarak jauh oleh pilot atau dengan mengendalikan

Lebih terperinci

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar BAB I PENDAHULUAN 1.1 Latar Belakang Quadrotor adalah sebuah pesawat tanpa awak atau UAV (Unmanned Aerial Vehicle) yang memiliki kemampuan lepas landas secara vertikal atau VTOL (Vertical Take off Landing).

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sebuah Unmanned Aerial Vehicle (UAV) merupakan pesawat tanpa awak yang dikendalikan dari jarak jauh atau diterbangkan secara mandiri yang dilakukan pemrograman terlebih

Lebih terperinci

Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode Linear Quadratic Regulator (LQR)

Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode Linear Quadratic Regulator (LQR) Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 2548-964X Vol. 1, No. 10, Oktober 2017, hlm. 1028-1035 http://j-ptiik.ub.ac.id Pendaratan Otomatis Quadcopter AR Drone Menggunakan Metode

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Jalan raya adalah prasarana transportasi darat yang meliputi segala bagian jalan, termasuk bangunan pelengkap dan perlengkapannya yang diperuntukkan bagi lalu lintas,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Teknologi UAV (Unmanned Aerial Vehicle) atau UAS (Unmanned Aircraft System) merupakan salah satu teknologi kedirgantaraan yang saat ini sedang berkembang dengan pesat.

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Pesawat tanpa awak atau Unmanned Aerial Vehicle (UAV) kini menjadi suatu kebutuhan di dalam kehidupan untuk berbagai tujuan dan fungsi. Desain dari

Lebih terperinci

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor JURNAL TEKNIK POMITS Vol, No 1, (1) ISSN: 7-59 (1-971 Print) B-47 Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor Darmawan Rasyid Hadi Saputra dan Bambang Pramujati Jurusan Teknik

Lebih terperinci

Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu

Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu Jurnal Teknik Elektro, Vol. 9, No. 2, September 26, 49-55 ISSN 4-87X Pembuatan Model Quadcopter yang Dapat Mempertahankan Ketinggian Tertentu DOI:.9744/jte.9.2.49-55 Wili Kumara Juang, Lauw Lim Un Tung

Lebih terperinci

PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER

PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER Rosalia H. Subrata, Raymond Tarumasely & Calvin Dwianto S. Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Trisakti

Lebih terperinci

2 TINJAUAN PUSTAKA. Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV)

2 TINJAUAN PUSTAKA. Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV) 2 TINJAUAN PUSTAKA 2.1 Unmanned Surface Vehicle (USV) Unmanned Surface Vehicle (USV) atau Autonomous Surface Vehicle (ASV) merupakan sebuah wahana tanpa awak yang dapat dioperasikan pada permukaan air.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Unmanned aerial vehicles (UAVs) atau wahana tanpa awak merupakan wahana terbang tanpa ada yang mengendalikan penerbangan wahana tersebut. Sebuah UAV dapat berupa pesawat

Lebih terperinci

BAB 1 PENDAHULUAN. Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia

BAB 1 PENDAHULUAN. Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia BAB 1 PENDAHULUAN 1.1. Latar Belakang Dewasa ini perkembangan teknologi mengubah setiap sendi kehidupan manusia dan lingkungannya. Banyak dari teknologi itu yang berakibat buruk, digunakan untuk perang

Lebih terperinci

Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM

Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM IJEIS, Vol.5, No.2, October 2015, pp. 145~154 ISSN: 2088-3714 145 Penerapan Sistem Kendali PID untuk KestabilanTwin- Tiltrotor dengan Metode DCM Andi Dharmawan 1, Sani Pramudita* 2 1 Jurusan Ilmu Komputer

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang UAV (Unmanned Aireal Vehicle) adalah pesawat tanpa awak yang dapat berotasi secara mandiri atau dikendalikan dari jarak jauh oleh seorang pilot (Bone, 2003). Pada

Lebih terperinci

INOVASI SISTEM PROMOSI MELALUI FOTO UDARA QUADCOPTER DENGAN MODIFIKASI DAN JEJARING SOSIAL

INOVASI SISTEM PROMOSI MELALUI FOTO UDARA QUADCOPTER DENGAN MODIFIKASI DAN JEJARING SOSIAL INOVASI SISTEM PROMOSI MELALUI FOTO UDARA QUADCOPTER DENGAN MODIFIKASI DAN JEJARING SOSIAL Wahyu Sulistiyo, Ari Sriyanto,Budi Suyanto, Parsumo Raharjo, Sukamto Jurusan Teknik Elektro, Politeknik Negeri

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada skripsi ini dilakukan beberapa pengujian dan percobaan untuk mendapatkan hasil rancang bangun Quadcopter yang stabil dan mampu bergerak mandiri (autonomous). Pengujian

Lebih terperinci

Implementasi Skeletal Tarcking dalam Sistem Navigasi Mobile Robot Menggunakan Sensor Kinect

Implementasi Skeletal Tarcking dalam Sistem Navigasi Mobile Robot Menggunakan Sensor Kinect Seminar Nasional eknologi Informasi dan Komunikasi erapan (SEMANIK) 2015 169 Implementasi Skeletal arcking dalam Sistem Navigasi Mobile Menggunakan Sensor Kinect Mifthahul Rahmi *), Andrizal **), Rahmi

Lebih terperinci

PLATFORM UNMANNED AERIAL VEHICLE UNTUK AERIAL PHOTOGRAPHY AEROMODELLING AND PAYLOAD TELEMETRY RESEARCH GROUP (APTRG)

PLATFORM UNMANNED AERIAL VEHICLE UNTUK AERIAL PHOTOGRAPHY AEROMODELLING AND PAYLOAD TELEMETRY RESEARCH GROUP (APTRG) PLATFORM UNMANNED AERIAL VEHICLE UNTUK AERIAL PHOTOGRAPHY AEROMODELLING AND PAYLOAD TELEMETRY RESEARCH GROUP (APTRG) Nurmajid Setyasaputra *), Fajar Septian **), Riyadhi Fernanda **), Suharmin Bahri **),

Lebih terperinci

TUGAS AKHIR - TE

TUGAS AKHIR - TE TUGAS AKHIR - TE 091399 PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK PENGATURAN ARAH DAN PENGATURAN HEADING PADA FIXED-WING UAV (UNMANNED AERIAL VEHICLE) Hery Setyo Widodo NRP. 2208100176 Laboratorium

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Seiring perkembangan teknologi telekomunikasi dan dirgantara dapat menghasilkan suatu teknologi yang menggabungkan antara informasi suatu keadaan lokal tertentu dengan

Lebih terperinci

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir dilaksanakan mulai Agustus 2015

III. METODE PENELITIAN. Penelitian dan perancangan tugas akhir dilaksanakan mulai Agustus 2015 III. METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian dan perancangan tugas akhir dilaksanakan mulai Agustus 2015 sampai Desember 2015 (jadwal dan aktifitas penelitian terlampir), bertempat di Laboratorium

Lebih terperinci

Gambar 1.1 Skema kontrol helikopter (Sumber: Stepniewski dan Keys (1909: 36))

Gambar 1.1 Skema kontrol helikopter (Sumber: Stepniewski dan Keys (1909: 36)) BAB I PENDAHULUAN 1.1 Latar Belakang Umunya pesawat diklasifikasikan menjadi dua kategori yaitu sayap tetap (fix wing) dan sayap putar (rotary wing). Pada sayap putar pesawat tersebut dirancang memiliki

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1 Uji coba dan Analisa Tujuan dari pengujian tugas akhir ini adalah untuk mengetahui sampai sejauh mana kinerja sistem yang telah dibuat dan untuk mengetahui penyebab

Lebih terperinci

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Prin B-234 Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter Tri

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah (Austin, 2010).

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah (Austin, 2010). BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Saat ini, beberapa negara maju sedang mencoba untuk mengembangkan teknologi pesawat tanpa awak atau sering disebut dengan Unmanned Aerial Vehicle (UAV). UAV

Lebih terperinci

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID)

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) Adnan Rafi Al Tahtawi Program Studi Teknik Komputer, Politeknik Sukabumi adnanrafi@polteksmi.ac.id

Lebih terperinci

SYAHIDAL WAHID

SYAHIDAL WAHID PEMANFAATAN GPS TERHADAP KENDALI OTOMATIS PADA DRONE PEMANTAU KEADAAN LALU LINTAS LAPORAN AKHIR Disusun Sebagai Salah Satu Syarat Menyelesaikan Pendidikan Diploma III Pada Jurusan Teknik Elektro Program

Lebih terperinci

UJI EKSPERIMETAL TRAJECTORY TRACKING PADA QUADCOPTER

UJI EKSPERIMETAL TRAJECTORY TRACKING PADA QUADCOPTER UJI EKSPERIMETAL TRAJECTORY TRACKING PADA QUADCOPTER Randis 1), Syaiful Akbar 2) 1,2) Teknik Mesin Alat Berat, Politeknik Negeri Balikpapan E-mail: randis@poltekba.ac.id ABSTRAK Penelitian ini bertujuan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah

BAB I PENDAHULUAN 1.1. Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah UAV (Unmanned Aerial Vehicle) adalah sebuah sistem pesawat udara yang tidak memiliki awak yang berada di dalam pesawat (onboard). Keberadaan awak pesawat digantikan

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS SISTEM

BAB IV PENGUJIAN DAN ANALISIS SISTEM BAB IV PENGUJIAN DAN ANALISIS SISTEM 4.1 Analisis dan Pengujian Analisis merupakan hal penting yang harus dilakukan untuk mengetahui bagaimana hasil dari sistem yang telah dibuat dapat berjalan sesuai

Lebih terperinci

BAB III PERANCANGAN ALAT. berasal dari motor. Selain kuat rangka juga harus ringan. Rangka terdiri dari beberapa bagian yaitu:

BAB III PERANCANGAN ALAT. berasal dari motor. Selain kuat rangka juga harus ringan. Rangka terdiri dari beberapa bagian yaitu: BAB III PERANCANGAN ALAT 3.1. Rangka Drone Rangka atau frame merupakan struktur yang menjadi tempat dudukan untuk semua komponen. Rangka harus kaku dan dapat meminimalkan getaran yang berasal dari motor.

Lebih terperinci

PERANCANGAN DAN REALISASI PERANGKAT PENDETEKSI WARNA CAT NIRKABEL

PERANCANGAN DAN REALISASI PERANGKAT PENDETEKSI WARNA CAT NIRKABEL PERANCANGAN DAN REALISASI PERANGKAT PENDETEKSI WARNA CAT NIRKABEL Disusun Oleh: Nama : Robert Anthony Koroa NRP : 0722016 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof. Drg. Suria Sumantri, MPH no.

Lebih terperinci

PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN

PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN PENERAPAN GRABBERPADA OPTICAL FLOWUNTUK MENGGERAKKAN CURSORMOUSEMENGGUNAKAN BOLPOIN PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN Anton Setiawan Honggowibowo,

Lebih terperinci

BAB III ANALISIS DAN PERANCANGAN SISTEM. sasaran. Punch termasuk gerakan pertahanan yang digunakan untuk memberi

BAB III ANALISIS DAN PERANCANGAN SISTEM. sasaran. Punch termasuk gerakan pertahanan yang digunakan untuk memberi 17 BAB III ANALISIS DAN PERANCANGAN SISTEM 3.1 Analisis Punch training merupakan bentuk latihan fisik dimana dilakukan gerakan memukul dengan cara mengepalkan tangan lalu menghantamkannya ke sebuah sasaran.

Lebih terperinci

PEMANFAATAN SENSOR ACCELEROMETER PADA SMARTPHONE ANDROID UNTUK MENGENDALIKAN ROBOT BERODA

PEMANFAATAN SENSOR ACCELEROMETER PADA SMARTPHONE ANDROID UNTUK MENGENDALIKAN ROBOT BERODA PEMANFAATAN SENSOR ACCELEROMETER PADA SMARTPHONE ANDROID UNTUK MENGENDALIKAN ROBOT BERODA Hendri Kurniawan 1, Slamet Winardi 2 1,2 Program Studi Sistem Komputer, Universitas Narotama Surabaya email: 1

Lebih terperinci

Sistem Kendali Penerbangan Quadrotor Pada Keadaan Melayang dengan Metode LQR dan Kalman Filter

Sistem Kendali Penerbangan Quadrotor Pada Keadaan Melayang dengan Metode LQR dan Kalman Filter IJEIS, Vol.7, No., April 207, pp. 49~60 ISSN: 2088-374 49 Sistem Kendali Penerbangan Quadrotor Pada Keadaan Melayang dengan Metode LQR dan Kalman Filter Andi Dharmawan*, Ivan Fajar Arismawan 2 Department

Lebih terperinci

BAB I PENDAHULUAN. lumrah. Hal ini disebabkan karena pada hakikatnya teknologi adalah pengetahuan

BAB I PENDAHULUAN. lumrah. Hal ini disebabkan karena pada hakikatnya teknologi adalah pengetahuan BAB I PENDAHULUAN I.1 Latar Belakang Keterlibatan teknologi dalam kehidupan manusia merupakan suatu hal yang lumrah. Hal ini disebabkan karena pada hakikatnya teknologi adalah pengetahuan terhadap penggunaan

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROL PID UNTUK KESEIMBANGAN SEPEDA. Design and Implementation of PID Control for Bicycle s Stability

PERANCANGAN DAN IMPLEMENTASI KONTROL PID UNTUK KESEIMBANGAN SEPEDA. Design and Implementation of PID Control for Bicycle s Stability PERANCANGAN DAN IMPLEMENTASI KONTROL PID UNTUK KESEIMBANGAN SEPEDA Design and Implementation of PID Control for Bicycle s Stability Bayu Satya Adhitama 1, Erwin Susanto 2, Ramdhan Nugraha 3 1,2,3 Prodi

Lebih terperinci

PENGONTROLAN MOTOR BRUSHLESS PADA QUADCOPTER MENGGUNAKAN ELECTRONIC SPEED CONTROL (ESC) LAPORAN AKHIR

PENGONTROLAN MOTOR BRUSHLESS PADA QUADCOPTER MENGGUNAKAN ELECTRONIC SPEED CONTROL (ESC) LAPORAN AKHIR PENGONTROLAN MOTOR BRUSHLESS PADA QUADCOPTER MENGGUNAKAN ELECTRONIC SPEED CONTROL (ESC) LAPORAN AKHIR Disusun Untuk Menyelesaikan Pendidikan Program Diploma III Pada Jurusan Teknik Elektro Program Studi

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 2 BAB I PENDAHULUAN 1.1 Latar Belakang Saat ini teknologi di bidang penerbangan sudah sangat maju. Pesawat terbang sudah dapat dikendalikan secara jarak jauh sehingga memungkinkan adanya suatu pesawat

Lebih terperinci

PENGENDALIAN AR DRONE 2.0 DAN PENGAMBILAN DATA CITRA BERDASARKAN KOORDINAT GPS

PENGENDALIAN AR DRONE 2.0 DAN PENGAMBILAN DATA CITRA BERDASARKAN KOORDINAT GPS PENGENDALIAN AR DRONE 2.0 DAN PENGAMBILAN DATA CITRA BERDASARKAN KOORDINAT GPS Lathif Ritya Dwi Putra 1 Giva Andriana Mutiara 2 Gita Indah Hapsari 3 1,2,3 Fakultas Ilmu Terapan - Universitas Telkom 1 lathifrdp@gmail.com

Lebih terperinci

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Prosiding ANNUAL RESEARCH SEMINAR Desember, Vol No. ISBN : 979-587-- UNSRI Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Huda Ubaya,

Lebih terperinci

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun

BAB 4 IMPLEMENTASI DAN EVALUASI. Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun BAB 4 IMPLEMENTASI DAN EVALUASI Pada Bab IV ini menjelaskan tentang spesifikasi sistem, rancang bangun keseluruhan sistem, prosedur pengoperasian sistem, implementasi dari sistem dan evaluasi hasil pengujian

Lebih terperinci

DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM

DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM Charles Edison Chandra; Herland Jufry; Sofyan Tan Computer Engineering Department, Faculty of Engineering, Binus University

Lebih terperinci

BAB IV PENGUJIAN ALAT DAN PEMBAHASAN

BAB IV PENGUJIAN ALAT DAN PEMBAHASAN BAB IV PENGUJIAN ALAT DAN PEMBAHASAN 4.1 Uji Coba Alat Dalam bab ini akan dibahas mengenai pengujian alat yang telah dibuat. Dimulai dengan pengujian setiap bagian-bagian dari hardware dan software yang

Lebih terperinci

Kendaraan Otonom Berbasis Kendali Teaching And Playback Dengan Kemampuan Menghindari Halangan

Kendaraan Otonom Berbasis Kendali Teaching And Playback Dengan Kemampuan Menghindari Halangan Kendaraan Otonom Berbasis Kendali Teaching And Playback Dengan Kemampuan Menghindari Halangan Aldilla Rizki Nurfitriyani 1, Noor Cholis Basjaruddin 2, Supriyadi 3 1 Jurusan Teknik Elektro,Politeknik Negeri

Lebih terperinci

KONTROL KESTABILAN QUADCOPTER DENGAN MENGGUNAKAN SENSOR GYROSCOPE ITG 3205 LAPORAN AKHIR. oleh : NURMANSYAH

KONTROL KESTABILAN QUADCOPTER DENGAN MENGGUNAKAN SENSOR GYROSCOPE ITG 3205 LAPORAN AKHIR. oleh : NURMANSYAH KONTROL KESTABILAN QUADCOPTER DENGAN MENGGUNAKAN SENSOR GYROSCOPE ITG 3205 LAPORAN AKHIR Disusun Untuk Memenuhi Syarat Menyelesaikan Pendidikan Diploma III Pada Jurusan Teknik Elektro Program Studi Teknik

Lebih terperinci

Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter

Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter IJEIS, Vol.2, No.1, April 2012, pp. 87~96 ISSN: 2088-3714 87 Purwarupa Sistem Otomasi Terbang Landas dan Mendarat Quadcopter Andi Dharmawan* 1, Irfan Nurudin Firdaus 2 1 Jurusan Ilmu Komputer dan Elektronika,

Lebih terperinci

Tedy Zulkarnain 1, Erwin Susanto, S.T., M.T., PhD 2, Agung Surya Wibowo, S.T., M.T. 3

Tedy Zulkarnain 1, Erwin Susanto, S.T., M.T., PhD 2, Agung Surya Wibowo, S.T., M.T. 3 PERANCANGAN DAN IMPLEMENTASI AUTONOMOUS QUADCOPTER DENGAN KEMAMPUAN FOLLOW ME YANG TERINTEGRASI PADA ANDROID DESIGN AND IMPLEMENTATION OF ANDROID - BASED FOLLOW ME APPLICATION ON AN AUTONOMOUS QUADCOPTER

Lebih terperinci

Sistem Pendeteksi dan Pelacakan Bola dengan Metode Hough Circle Transform, Blob Detection, dan Camshift Menggunakan AR.Drone

Sistem Pendeteksi dan Pelacakan Bola dengan Metode Hough Circle Transform, Blob Detection, dan Camshift Menggunakan AR.Drone IJEIS, Vol.7, No.1, April 2017, pp. 1~12 ISSN: 2088-3714 1 Sistem Pendeteksi dan Pelacakan Bola dengan Metode Hough Circle Transform, Blob Detection, dan Camshift Menggunakan AR.Drone Elki Muhamad Pamungkas*

Lebih terperinci

Kata kunci:sensor rotary encoder, IC L 298, Sensor ultrasonik. i Universitas Kristen Maranatha

Kata kunci:sensor rotary encoder, IC L 298, Sensor ultrasonik. i Universitas Kristen Maranatha Perancangan dan Realisasi Auto Parking Pada Robot Mobil Menggunakan Modul Mikrokontroler Arduino Uno Disusun oleh : Heryanto Joyosono 0822021 Jurusan Teknik Elektro, Fakultas Teknik,, Jl.Prof.Drg.Suria

Lebih terperinci

ABSTRAK Robovision merupakan robot yang memiliki sensor berupa indera penglihatan seperti manusia. Untuk dapat menghasilkan suatu robovision, maka

ABSTRAK Robovision merupakan robot yang memiliki sensor berupa indera penglihatan seperti manusia. Untuk dapat menghasilkan suatu robovision, maka ABSTRACT Robovision is a robot that has a sensor in the form of the human senses such as vision. To be able to produce a robovision, it is necessary to merge the technologies of robotics and computer vision

Lebih terperinci

OPTIMASI PENCAPAIAN TARGET PADA SIMULASI PERENCANAAN JALUR ROBOT BERGERAK DI LINGKUNGAN DINAMIS

OPTIMASI PENCAPAIAN TARGET PADA SIMULASI PERENCANAAN JALUR ROBOT BERGERAK DI LINGKUNGAN DINAMIS OPTIMASI PENCAPAIAN TARGET PADA SIMULASI PERENCANAAN JALUR ROBOT BERGERAK DI LINGKUNGAN DINAMIS Yisti Vita Via Jurusan Teknik Informatika, Fakultas Teknologi Informasi, Institut Teknologi Sepuluh Nopember

Lebih terperinci

PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS

PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS E-Jurnal Prodi Teknik Elektronika Edisi Proyek Akhir D3 PROTOTYPE SISTEM KONTROL PINTU GARASI MENGGUNAKAN SMS Oleh : Fauzia Hulqiarin Al Chusni (13507134014), Universitas Negeri Yogyakarta smartfauzia@gmail.com

Lebih terperinci

PERANCANGAN STRUKTUR FRAME QUADROTOR

PERANCANGAN STRUKTUR FRAME QUADROTOR Available online at Website http://ejournal.undip.ac.id/index.php/rotasi PERANCANGAN STRUKTUR FRAME QUADROTOR *Joga Dharma Setiawan, Wahyu Caesarendra, Mochammad Ariyanto Jurusan Teknik Mesin, Fakultas

Lebih terperinci

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL Presentasi Tesis PERANCANGAN KONTROL NON-LNER UNTUK KESTABLAN HOVER PADA UAV TRCOPTER DENGAN SLDNG MODE CONTROL RUDY KURNAWAN 2211202009 Dosen Pembimbing: DR. r. Mochammad Rameli r. Rusdhianto Effendie

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Seiring dengan pesatnya teknologi sekarang ini, keamanan ruangan menjadi kebutuhan utama masyarakat. Tersedianya kemudahan disegala bidang baik kemudahan dalam penggunaan

Lebih terperinci

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter JRNAL TEKNIK POMITS Vol., No., (22) -5 Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada AV Quadcopter Ardy Seto Priambodo, Katjuk Astrowulan, Joko Susila Teknik Elektro,

Lebih terperinci

Sistem Kendali Take-Off Quadcopter Ar.Drone Menggunakan Logika Fuzzy

Sistem Kendali Take-Off Quadcopter Ar.Drone Menggunakan Logika Fuzzy Jurnal Pengembg Teknologi Informasi d Ilmu Komputer e-issn: 2548-964X Vol. 2, No. 9, September 2018, hlm. 3060-3066 http://j-ptiik.ub.ac.id Sistem Kendali Take-Off Quadcopter Ar.Drone Menggunak Logika

Lebih terperinci

PERENCANAAN JALUR TERBANG TANPA PILOT PADA PROSES PENGUMPULAN DATA UNTUK PEMETAAN DENGAN PENERBANGAN TANPA AWAK

PERENCANAAN JALUR TERBANG TANPA PILOT PADA PROSES PENGUMPULAN DATA UNTUK PEMETAAN DENGAN PENERBANGAN TANPA AWAK ISSN 1858-4667 JURNAL LINK VOL. 27/No. 1/Februari 2018 PERENCANAAN JALUR TERBANG TANPA PILOT PADA PROSES PENGUMPULAN DATA UNTUK PEMETAAN DENGAN PENERBANGAN TANPA AWAK Maulana Rizqi Fakultas Ilmu Komputer

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE)

PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE) PERANCANGAN DAN IMPLEMENTASI KONTROLER FUZZY PREDIKTIF UNTUK TRACKING KETINGGIAN AKTUAL PADA UAV (UNMANNED AERIAL VEHICLE) THORIKUL HUDA 2209106030 Dosen Pembimbing Ir. Rusdhianto Effendie A.K, M.T. 1

Lebih terperinci

Perhitungan Kapasitas Baterai dan Arus Komponen pada Ar.Drone Quadcopter untuk Estimasi Waktu dan Jarak Terbang

Perhitungan Kapasitas Baterai dan Arus Komponen pada Ar.Drone Quadcopter untuk Estimasi Waktu dan Jarak Terbang Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer e-issn: 248-964X Vol. 2, No. 9, September 2018, hlm. 3146-312 http://j-ptiik.ub.ac.id Perhitungan Kapasitas Baterai dan Arus Komponen pada Ar.Drone

Lebih terperinci

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle)

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Rahmat Fauzi 2209106077 Pembimbing : Surabaya, 26 Januari 2012 Ir. Rusdhianto

Lebih terperinci

SISTEM TELEMETRI DATA PADA MOBIL RC (RADIO CONTROLLED)

SISTEM TELEMETRI DATA PADA MOBIL RC (RADIO CONTROLLED) SISTEM TELEMETRI DATA PADA MOBIL RC Nicolas Alfonso B. Oetama, Lukas B. Setyawan, F. Dalu Setiaji SISTEM TELEMETRI DATA PADA MOBIL RC Nicolas Alfonso B. Oetama 1, Lukas B. Setyawan 2, F. Dalu Setiaji 3

Lebih terperinci

Perancangan dan Implementasi Gerakan Hover pada Tricopter

Perancangan dan Implementasi Gerakan Hover pada Tricopter Jurnal ELEMENTER. Vol. 1, No. 1, Mei 2015 33 Jurnal Politeknik Caltex Riau http://jurnal.pcr.ac.id Perancangan dan Implementasi Gerakan Hover pada Tricopter Safagianjar 1, Jupri Yanda Zaira 2 dan Made

Lebih terperinci

SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA

SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA SISTEM PENJEJAK POSISI OBYEK BERBASIS UMPAN BALIK CITRA Syahrul 1, Andi Kurniawan 2 1,2 Jurusan Teknik Komputer, Fakultas Teknik dan Ilmu Komputer, Universitas Komputer Indonesia Jl. Dipati Ukur No.116,

Lebih terperinci

Sistem Kendali dan Pemantauan Kursi Roda Elektrik

Sistem Kendali dan Pemantauan Kursi Roda Elektrik Jurnal Teknik Elektro, Vol. 9, No. 2, September 2016, 43-48 ISSN 1411-870X DOI: 10.9744/jte.9.2.43-48 Sistem Kendali dan Pemantauan Kursi Roda Elektrik Daniel Christian Yunanto, Handry Khoswanto, Petrus

Lebih terperinci

Implementation of Wi-Fi Communication Systems for Multi Quadrotor Formation

Implementation of Wi-Fi Communication Systems for Multi Quadrotor Formation IJCCS, Vol.x, No.x, July xxxx, pp. 1~5 ISSN: 1978-1520 1 Implementation of Wi-Fi Communication Systems for Multi Quadrotor Formation Muhamad Rausyan Fikri* 1, Andi Dharmawan 2, Bakhtiar Alldino Ardi Sumbodo

Lebih terperinci

Grafik hubungan antara Jarak (cm) terhadap Data pengukuran (cm) y = 0.950x Data pengukuran (cm) Gambar 9 Grafik fungsi persamaan gradien

Grafik hubungan antara Jarak (cm) terhadap Data pengukuran (cm) y = 0.950x Data pengukuran (cm) Gambar 9 Grafik fungsi persamaan gradien dapat bekerja tetapi tidak sempurna. Oleh karena itu, agar USART bekerja dengan baik dan sempurna, maka error harus diperkecil sekaligus dihilangkan. Cara menghilangkan error tersebut digunakan frekuensi

Lebih terperinci

IDENTIFIKASI MODEL PADA QUADROTOR DENGAN METODE ESTIMASI PARAMETER RELS

IDENTIFIKASI MODEL PADA QUADROTOR DENGAN METODE ESTIMASI PARAMETER RELS IDENTIFIKASI MODEL PADA QUADROTOR DENGAN METODE ESTIMASI PARAMETER RELS Bayu Gigih Prasetyo *), Aris Triwiyatno, and Budi Setiyono Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan teknologi pesawat tanpa awak (english : Unmanned Aerial Vehicle disingkat UAV) sangat pesat. Diperkirakan UAV akan berkembang secara signifikan pada

Lebih terperinci

SISTEM KAMERA DENGAN PAN-TILT TRIPOD OTOMATIS UNTUK APLIKASI FOTOGRAFI

SISTEM KAMERA DENGAN PAN-TILT TRIPOD OTOMATIS UNTUK APLIKASI FOTOGRAFI SISTEM KAMERA DENGAN PAN-TILT TRIPOD OTOMATIS UNTUK APLIKASI FOTOGRAFI Jourdan Septiansyah Efflan NRP. 2209100084 Dosen Pembimbing Ronny Mardiyanto, ST.,MT.,Ph.D. Ir. Djoko Purwanto,M.Eng.,Ph.D. JURUSAN

Lebih terperinci

PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID

PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID Mikrotiga, Vol 1, No. 2 Mei 2014 ISSN : 2355-0457 19 PENGENDALI LAJU KECEPATAN DAN SUDUT STEERING PADA MOBILE ROBOT DENGAN MENGGUNAKAN ACCELEROMETER PADA SMARTPHONE ANDROID Muhammad Ariansyah Putra 1*,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia merupakan Negara kepulauan dengan panjang pantai 81.000 Km dimana ± 2/3 wilayah kedaulatannya berupa perairan. Dengan memanfaatkan potensi wilayah ini banyak

Lebih terperinci

BAB III IMPLEMENTASI ALAT

BAB III IMPLEMENTASI ALAT BAB III IMPLEMENTASI ALAT Hal-hal yang perlu dipersiapkan yaitu pengetahuan mengenai sistem yang direncanakan dan peralatan pendukung sistem yang akan digunakan. Perancangan sistem meliputi perancangan

Lebih terperinci