DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM"

Transkripsi

1 DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM Charles Edison Chandra; Herland Jufry; Sofyan Tan Computer Engineering Department, Faculty of Engineering, Binus University Jl. K.H. Syahdan No. 9, Palmerah, Jakarta Barat ABSTRACT This research creates algorithms to detect road lane markings and estimate the position and angle of the camera to the road markings captured. The implementation uses a camera to take a sample image and then will be processed using the Multiresolution Hough Transform as one of the main methods in road lane marking detection. Computional Cost results obtained in algorithms are slow which takes an average of seconds, however, the algorithm has its own advantages which are able to detect road lane marking as well as estimate the position and angle of the camera towards the road markings with an average positional error of cm and the average angular error of Keywords: algorithm, road lane detection, multiresolution hough transform ABSTRAK Penelitian ini membuat suatu algoritma untuk mendeteksi marka jalan serta mengestimasi posisi dan sudut dari kamera terhadap marka jalan yang ditemukan. Implementasinya menggunakan sebuah kamera untuk mengambil sample citra yang kemudian diproses menggunakan Multiresolution Hough Transform sebagai salah satu metode utama dalam pendeteksian marka jalan. Hasil Computional Cost yang didapatkan pada algoritma ini cukup lambat yaitu dengan waktu rata-rata yang dibutuhkan sebesar detik. Namun, algoritma ini memiliki kelebihan tersendiri yaitu tidak hanya bisa mendeteksi marka jalan tapi juga dapat mengestimasi posisi dan sudut kamera terhadap marka jalan dengan baik, dengan eror posisi rata-rata sebesar cm dan eror sudut rata-rata sebesar Kata kunci: algoritma, pendeteksian, marka jalan, multiresolution hough transform 66 Jurnal Teknik Komputer Vol. 21 No.1 Februari 2013: 66-73

2 PENDAHULUAN Lane detection merupakan suatu metode untuk mengetahui lokasi dari marka jalan tanpa diketahui terlebih dahulu noise yang terdapat pada lingkungan sekitarnya. Lane detection ini telah menjadi penelitian yang sering dilakukan oleh banyak orang agar bisa menjadi salah satu pendukung driver assistant maupun untuk autonomous navigation yang termasuk bagian dari inteligent transportation system. Namun, penelitian ini masih berlanjut sampai sekarang ini karena masih terdapat banyak masalah-masalah yang belum bisa diselesaikan dalam lane detection ini. Contohnya adalah sulitnya menentukan marka jalannya pada berbagai kondisi, terutama terhadap noise yang ada di lingkungan sekitarnya, seperti bayangan, garis-garis lain yang terdapat pada jalan, dan juga marka jalan yang sudah tidak utuh lagi atau sudah terputus-putus. Dalam lane detection ini terdapat beberapa metode yang bisa digunakan seperti yang digunakan oleh M. Caner Kurtul (2010) yaitu multiresolution hough transform. B.Yu and A.K. Jain (1996) juga mengunakan multiresolution hough transform tetapi dengan parameter tiga dimensi. Selain meteode tersebut, randomized hough transform digunakan oleh Azali Saudi (2008) dan Qing Li (2004). Pada umumnya penelitian-penelitian lane detection sebelumnya hanya sampai tahap mendeteksi marka jalan saja. Pada penelitian tak hanya sampai pada tahap tersebut, melainkan dilanjutkan hingga mencari tahu posisi dan sudut dari kendaraan terhadap marka jalan yang ada. METODE Pada penelitian ini, kami melakukan simulasi road lane detection pada jalanan yang kosong. Informasi input yang diberikan berupa sample image jalan yang diambil menggunakan kamera. Metode yang digunakan yaitu multiresolution hough transform. Output yang dihasilkan berupa posisi kendaraan terhadap marka jalan, yang nantinya akan menampilkan hasil deteksi garis jalan dan juga untuk mengetahui posisi dari kamera. Implementasi yang dilakukan ditujukan untuk menguji sistem yang telah dirancang, Sistem dikatakan stabil apabila output system dapat mendeteksi marka jalan yang ada serta dapat mengestimasikan posisi dan sudut dari kamera. Sistem ini diuji dengan membandingkan posisi dan sudut yang asli dengan estimasi posisi dan sudut yang didapatkan serta melihat hasil marka jalan yang ditemukan. Penelitian ini melakukan percobaan sebanyak 30 kali dengan posisi dan sudut yang berbeda-beda: (1) posisi 0 cm sudut 0 0 ; (2) posisi 0 cm sudut 20 0 ; (3) posisi 24 cm sudut 0 0 ; (4) posisi 24 cm sudut 10 0 ; (5) posisi 24 cm sudut ; (6) posisi 30 cm sudut 0 0 ; (7) posisi 30 cm sudut 10 0 ; (8) posisi 30 cm sudut ; (9) posisi 48 cm sudut 0 0 ; (10) posisi 48 cm sudut Untuk lebih jelasnya tentang posisi dan sudut dapat dilihat pada contoh Gambar 1 di bawah ini: Deteksi Marka Jalan (Charles Edison Chandra; dkk) 67

3 Gambar 1 Posisi dan sudut pengambilan data Dengan keterangan sbb: (1) posisi kiri dari hasil yang didapatkan merupakan posisi real yang digunakan; (2) garis merah merupakan marka jalan yang ditemukan sedangkan garis hijau merupakan semua garis yang ditemukan oleh Multiresolution Hough Transform; (3) masingmasing posisi memiliki tiga sampel yang diambil rata-rata error-nya; (4) fix error posisi maksimum = 10 cm; (5) fix error sudut maksimum = 5 o ; (6) fix error sudut kemiringan antara dua garis = 0.02 o ; (7) fix jarak antara dua garis = 48 cm. Pada penelitian road lane detection ini dibuat suatu algoritma untuk menyampaikan informasi marka jalan pada pengguna mobil. Di sini terdapat beberapa tahapan yang harus dikerjakan oleh algoritma tersebut (Gambar 2). Pertama dilakukan preproccesing pada citra yaitu grayscale dan edge detection agar citra dapat diproses oleh multiresolution hough transform. Pada multiresolution hough transform ini akan dicari garis-garis yang terdapat pada citra yang diproses. Selanjutnya dilakukan image cropping untuk memperkecil kemungkinan terdeteksinya garis yang bukan merupakan marka jalan. Pada garis-garis yang sudah ditemukan akan dicari line segment, yaitu titik awal dan titik akhir pada masing-masing garis serta panjang garis tersebut. Setelah itu dilakukan proses inverse perspective mapping yang bertujuan untuk memproyeksikan citra dari bidang citra ke bidang jalan. Pada citra yang sudah diproyeksikan ke bidang jalan tersebut akan dicari dua garis paralel di mana jika jarak antar garis sesuai dengan jarak yang sudah ditentukan, kedua garis yang ditemukan tersebut dianggap sebagai marka jalan. Setelah marka jalan berhasil terdeteksi, selanjutnya akan dilakukan perhitungan posisi marka jalan terhadap kamera. 68 Jurnal Teknik Komputer Vol. 21 No.1 Februari 2013: 66-73

4 Gambar 2 Diagram alir perancangan sistem secara umum HASIL DAN PEMBAHASAN Analisis Deteksi Marka Jalan Tabel 1 di bawah ini menampilkan data persentase sample yang terdeteksi sebagai marka jalan berdasarkan berbagai posisi dan sudut kamera. Tabel 1 Hasil Deteksi Marka Jalan No Posisi dan sudut Persentase sample yang terdeteksi sebagai marka jalan 1 Posisi 0 cm, Sudut 0 O 0% 2 Posisi 0 cm, Sudut 20 O 100% Deteksi Marka Jalan (Charles Edison Chandra; dkk) 69

5 3 Posisi 24 cm, Sudut 0 O 100% 4 Posisi 24 cm, Sudut 10 O 100% 5 Posisi 24 cm, Sudut -10 O 100% 6 Posisi 30 cm, Sudut 0 O 100% 7 Posisi 30 cm, Sudut 10 O 100% 8 Posisi 30 cm, Sudut -10 O 100% 9 Posisi 48 cm, Sudut 0 O 100% 10 Posisi 48 cm, Sudut -20 O 33.33% Pada Tabel 1 di atas terlihat rata-rata disemua posisi dapat terdeteksi marka jalan dengan 100% atau dapat dibilang semua marka jalan yang ada dapat terdeteksi dengan baik. Namun, ada satu posisi yang hanya terdeteksi 33,33% saja atau dapat dibilang hanya terdeteksi 1 dari total 3 sampel yang ada. Ada juga satu posisi yang tidak terdeteksi sama sekali karena pada kedua posisi ini kamera tidak dapat menangkap dengan jelas garis marka jalan aslinya (Gambar 3). Gambar 3 Kedua posisi yang tidak terdeteksi marka jalannya Analisis Estimasi Posisi dan Sudut Tabel 2 di bawah ini menampilkan data error posisi dan sudut. Tabel 2 Hasil Estimasi Posisi dan Sudut No Posisi dan Sudut Absolut Rata-Rata Absolut Rata-Rata Error Posisi Error Sudut 1 Posisi 0 cm, Sudut 0 O cm Posisi 0 cm, Sudut 20 O cm Posisi 24 cm, Sudut 0 O cm Posisi 24 cm, Sudut 10 O cm Posisi 24 cm, Sudut -10 O cm Jurnal Teknik Komputer Vol. 21 No.1 Februari 2013: 66-73

6 6 Posisi 30 cm, Sudut 0 O cm Posisi 30 cm, Sudut 10 O cm Posisi 30 cm, Sudut -10 O cm Posisi 48 cm, Sudut 0 O cm Posisi 48 cm, Sudut -20 O cm Rata-Rata cm Dilihat pada tabel 2 di atas posisi dan sudut yang mendapatkan error yang besar kebanyakan pada saat sudut kameranya tidak pada 0 0 melainkan sudah berubah dari 0 0 ke 20 0 maupun dari 0 0 ke ±10 0. Maka dari itu, perubahan sudut pada kamera dapat menyebabkan kenaikan error posisi pada hasil yang didapatkan dan sebaliknya apabila sudut kamera pada 0 0 maka error posisi dan sudut yang didapatkan akan semakin kecil. Kemudian dilihat secara keseluruhan dari rata-rata error posisi dan sudut didapatkan error rata-rata posisi sebesar 2,0520cm dan error rata-rata sudut sebesar 1, Hasil estimasi posisi dan sudut disini sudah termasuk sangat akurat karena error yang didapatkan sangat kecil sekitar 1-2cm atau derajat saja sehingga tidak berpengaruh besar pada hasilnya, dan ditambah lagi sebagian besar error yang terjadi dari pengambilan data di atas dikarenakan pada saat melakukan pengambilan data memang sulit untuk mendapatkan posisi dan sudut yang benar-benar tepat dengan hanya menggunakan pengaris dan busur. Sisanya rata-rata dapat mendeteksi marka jalan yang ada dengan baik, dan apabila dilihat dari error rata-rata yang didapatkan sebenarnya sudah sangat kecil. Sehingga tidak berpengaruh terhadap hasil yang didapatkan atau dapat dibilang sudah berhasil menemukan marka jalan dan mengestimasikan posisi dengan baik. Analisis Waktu Proses yang Dibutuhkan Tabel 3 di bawah ini menampilkan hasil perhitungan waktu yang dibutuhkan dalam pemrosesan. Tabel 3 Hasil Perhitungan Waktu yang Dibutuhkan dalam Pemrosesan Posisi dan Sudut Posisi 0 cm, Sudut 0 O Posisi 0 cm, Sudut 20 O Posisi 24 cm, Sudut 0 O Posisi 24 cm, Sudut 10 O Posisi 24 cm, Sudut -10 O Posisi 30 cm, Sudut 0 O Posisi 30 cm, Sudut 10 O Posisi 30 cm, Sudut -10 O Posisi 48 cm, Sudut 0 O Posisi 48 cm, Sudut -20 O Rata-Rata Rata-rata Waktu Proses s s s s s s s s s s s Deteksi Marka Jalan (Charles Edison Chandra; dkk) 71

7 Dilihat pada tabel 3 di atas rata-rata waktu yang dibutuhkan sebesar 4-5 detik, kecuali pada posisi 48 cm sudut 0 0 karena jumlah garis yang terdeteksi pada posisi ini sangat sedikit yaitu hanya sembilan garis. Sedangkan pada posisi lain rata-rata garis yang terdeteksi di atas 20 garis sehingga waktu yang dibutuhkan untuk posisi iniuntuk menyelesaikan algoritma ini dua kali lipat lebih cepat dibandingkan dengan posisi lainnya. Keseluruhannya waktu rata-rata pemrosesan yang dibutuhkan pada percobaan pengambilan data adalah s. Ini dinilai cukup lambat dibandingkan dengan pemrosesan MHT yang sudah pernah ada karena di sini ditambahkan algoritma untuk mengestimasikan posisi dari kamera terhadap marka jalan sehingga tentunya computational cost jadi lebih besar. Analisis Perbandingan HT Dengan MHT Berikut adalah data hasil pendeteksian marka jalan dan waktu yang dibutuhkan menggunakan HT (Tabel 4). Tabel 4 Hasil Pendeteksian Marka Jalan dan Waktu yang Dibutuhkan Menggunakan HT Threshold Posisi & Sudut waktu cm & 0 Tidak terdeteksi Tidak terdeteksi Tidak terdeteksi - 0cm & 20 Tidak terdeteksi Tidak terdeteksi Tidak terdeteksi - 24cm & 0 Tidak terdeteksi Terdeteksi Tidak terdeteksi 1.7s 24cm & 10 Tidak terdeteksi Tidak terdeteksi Tidak terdeteksi - 24cm & -10 Tidak terdeteksi Terdeteksi Tidak terdeteksi 1.8s 30cm & 0 Tidak terdeteksi Terdeteksi Tidak terdeteksi 1.6s 30cm & 10 Tidak terdeteksi Terdeteksi Tidak terdeteksi 2s 30cm & -10 Tidak terdeteksi Terdeteksi Tidak terdeteksi 1.8s 48cm & 0 Tidak terdeteksi Tidak terdeteksi Tidak terdeteksi - 48cm & -20 Tidak terdeteksi Tidak terdeteksi Tidak terdeteksi - Dilihat pada Tabel 4 di atas dapat disimpulkan MHT tidak hanya lebih cepat computional cost nya melainkan juga ketelitian pendeteksiannya. HT hanya dapat mendeteksi saat threshold sebesar 150 di mana lebih cepat dalam waktu tapi hanya mampu mendeteksi setengah dari seluruh sample. Selain itu, ketika diturunkan threshold-nya untuk menambah ketelitian, waktunya yang dibutuhkan sudah terlalu lama sampai matlab saja tidak sanggup untuk memprosesnya lagi. SIMPULAN Pada hasil percobaan skripsi ini didapatkan tingkat keberhasilan pendeteksian marka jalan hampir rata-rata 100%, kecuali 2 posisi yang tidak dapat terdeteksi marka jalannya. Tingkat akurasi dalam estimasi posisi juga sudah sangat bagus dengan rata-rata error posisi sebesar cm dan rata-rata error sudut sebesar Namun, waktu rata-rata yang dibutuhkan untuk pendeteksian marka jalan dan estimasi posisi termasuk lama yaitu detik. 72 Jurnal Teknik Komputer Vol. 21 No.1 Februari 2013: 66-73

8 Diharapkan kedepannya dapat ditambahkan algoritma lagi untuk menambah ketelitian pendeteksiannya. Tentunya dengan ditambahkan algoritma lagi, waktu yang dibutuhkan akan semakin lama sehingga diharapkan juga bisa dioptimasikan lagi algoritma untuk mempersingkat waktu perhitungan dengan cara mengimplementasikan secara real-time, karena apabila secara real-time thresholdnya bisa dinaikkan lagi agar garis yang terdeteksi semakin sedikit dan waktu prosesnya juga akan semakin cepat. DAFTAR PUSTAKA Jain, B. Y. (1996). A robust and fast skew detection algorithm. Pattern Recognition, Kurtul, M. C. (2000). Road Lane and Traffic Sign Detection and Tracking. Istanbul: Bogazici University. Qing Li, N. Z. (2004). Lane boundary detection using an adaptive. Intelligent Control and Automation, WCICA Fifth World Congress, Shanghai, Saudi, J. T Azali. (2008). Fast lane detection with randomized hough transform. ITSim 2008: International Symposium, Kinabalu, 1 5. Yu, B., & Jain, A. K. (1997). Lane boundary detection using a multiresolution hough transform. Image Processing, Proceedings International Conference, Michigan, Deteksi Marka Jalan (Charles Edison Chandra; dkk) 73

DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM

DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM DETEKSI MARKA JALAN DAN ESTIMASI POSISI MENGGUNAKAN MULTIRESOLUTION HOUGH TRANSFORM Charles Edison Chandra; Herland Jufry; Sofyan Tan Jurusan Sistem Komputer, Fakultas Ilmu Komputer, Universitas Bina Nusantara,

Lebih terperinci

BAB IV IMPLEMENTASI & EVALUASI

BAB IV IMPLEMENTASI & EVALUASI BAB IV IMPLEMENTASI & EVALUASI Pada bab ini membahas tentang bagaimana cara mengimplementasikan dan pengambilan data serta melakukan evaluasi terhadap data-data yang sudah didapatkan. Pertama disini digunakan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengenalan Marka Jalan Marka jalan merupakan suatu penanda bagi para pengguna jalan untuk membantu kelancaran jalan dan menghindari adanya kecelakaan. Pada umumnya marka jalan

Lebih terperinci

PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI

PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI PERANCANGAN PENDETEKSI WAJAH DENGAN ALGORITMA LBP (LOCAL BINARY PATTERN) BERBASIS RASPBERRY PI Nadia R.W (0822084) Email: neko882neko@yahoo.co.id Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof. Drg.

Lebih terperinci

PEMODELAN DINAMIKA KENDARAAN DENGAN JARINGAN SYARAF TIRUAN

PEMODELAN DINAMIKA KENDARAAN DENGAN JARINGAN SYARAF TIRUAN PEMODELAN DINAMIKA KENDARAAN DENGAN JARINGAN SYARAF TIRUAN Satrio Dewanto Computer Engineering Department, Faculty of Engineering, BINUS University Jln. K.H. Syahdan No. 9, Palmerah, Jakarta Barat 11480

Lebih terperinci

DETEKSI PERSIMPANGAN DAN BELOKAN PADA LINTASAN DI DEPAN ROBOT LINE FOLLOWER DENGAN KAMERA

DETEKSI PERSIMPANGAN DAN BELOKAN PADA LINTASAN DI DEPAN ROBOT LINE FOLLOWER DENGAN KAMERA DETEKSI PERSIMPANGAN DAN BELOKAN PADA LINTASAN DI DEPAN ROBOT LINE FOLLOWER DENGAN KAMERA Angga Setiawan Universitas Bina Nusantara, Jalan Syahdan No. 9, Jakarta, 11480, 021-534 5830 rezabudan@yahoo.com,

Lebih terperinci

MENGHITUNG KECEPATAN MENGGUNAKAN COMPUTER VISION

MENGHITUNG KECEPATAN MENGGUNAKAN COMPUTER VISION MENGHITUNG KECEPATAN MENGGUNAKAN COMPUTER VISION Danny Agus Wahyudi; Iman H. Kartowisastro Computer Engineering Department, Faculty of Engineering, Binus University Jln. K.H. Syahdan No. 9, Palmerah, Jakarta

Lebih terperinci

DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL

DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL DETEKSI KEBAKARAN BERBASIS WEBCAM SECARA REALTIME DENGAN PENGOLAHAN CITRA DIGITAL Ari Sutrisna Permana 1, Koredianto Usman 2, M. Ary Murti 3 Jurusan Teknik Elektro - Institut Teknologi Telkom - Bandung

Lebih terperinci

Implementasi OpenCV pada Robot Humanoid Pemain Bola Berbasis Single Board Computer

Implementasi OpenCV pada Robot Humanoid Pemain Bola Berbasis Single Board Computer Implementasi OpenCV pada Robot Humanoid Pemain Bola Berbasis Single Board Computer Disusun Oleh: Nama : Edwin Nicholas Budiono NRP : 0922004 Jurusan Teknik Elektro, Fakultas Teknik,, Jl. Prof.Drg.Suria

Lebih terperinci

PERANCANGAN DAN REALISASI PENDETEKSI POSISI KEBERADAAN MANUSIA MENGGUNAKAN METODE DETEKSI GERAK DENGAN SENSOR WEBCAM

PERANCANGAN DAN REALISASI PENDETEKSI POSISI KEBERADAAN MANUSIA MENGGUNAKAN METODE DETEKSI GERAK DENGAN SENSOR WEBCAM PERANCANGAN DAN REALISASI PENDETEKSI POSISI KEBERADAAN MANUSIA MENGGUNAKAN METODE DETEKSI GERAK DENGAN SENSOR WEBCAM Disusun oleh : Yockie Andika Mulyono (1022027) Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

Aplikasi Metoda Random Walks untuk Kontrol Gerak Robot Berbasis Citra

Aplikasi Metoda Random Walks untuk Kontrol Gerak Robot Berbasis Citra Abstrak Aplikasi Metoda Random Walks untuk Kontrol Gerak Robot Berbasis Citra R. Febriani, Suprijadi Kelompok Keahlian Fisika Teoritik Energi Tinggi dan Instrumentasi Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

PEMANFAATAN KAMERA CCTV SEBAGAI ALAT BANTU TRAFFIC SURVEY BIDANG : TRAFFIC ENGINEERING. Ressi Dyah Adriani NPP

PEMANFAATAN KAMERA CCTV SEBAGAI ALAT BANTU TRAFFIC SURVEY BIDANG : TRAFFIC ENGINEERING. Ressi Dyah Adriani NPP PEMANFAATAN KAMERA CCTV SEBAGAI ALAT BANTU TRAFFIC SURVEY BIDANG : TRAFFIC ENGINEERING Ressi Dyah Adriani NPP 10529 ressi.adriani@jasamarga.co.id ABSTRAK Data kepadatan lalu-lintas merupakan kebutuhan

Lebih terperinci

PENERAPAN ALGORITMA EFFICIENT RANDOMIZED UNTUK MENGHITUNG JUMLAH KOIN DAN BOLA ABSTRAK

PENERAPAN ALGORITMA EFFICIENT RANDOMIZED UNTUK MENGHITUNG JUMLAH KOIN DAN BOLA ABSTRAK PENERAPAN ALGORITMA EFFICIENT RANDOMIZED UNTUK MENGHITUNG JUMLAH KOIN DAN BOLA Yuliana Melita Pranoto 1, Endang Setyati 2 1) Teknik Informatika, Sekolah Tinggi Teknik Surabaya Jl. Ngagel Jaya Tengah 73-77

Lebih terperinci

BAB 1 PENDAHULUAN. Dewasa ini, lahan parkir menjadi kebutuhan utama pengguna kendaraan,

BAB 1 PENDAHULUAN. Dewasa ini, lahan parkir menjadi kebutuhan utama pengguna kendaraan, BAB 1 PENDAHULUAN 1.1 Latar Belakang Dewasa ini, lahan parkir menjadi kebutuhan utama pengguna kendaraan, terutama di kota-kota besar. Pada tempat-tempat yang ramai dikunjungi, untuk memudahkan dokumentasi

Lebih terperinci

ROBUST BLIND WATERMARKING PADA CITRA DIGITAL MENGGUNAKAN TEKNIK KUANTISASI KOEFISIEN DISCRETE WAVELET TRANSFORM

ROBUST BLIND WATERMARKING PADA CITRA DIGITAL MENGGUNAKAN TEKNIK KUANTISASI KOEFISIEN DISCRETE WAVELET TRANSFORM ROBUST BLIND WATERMARKING PADA CITRA DIGITAL MENGGUNAKAN TEKNIK KUANTISASI KOEFISIEN DISCRETE WAVELET TRANSFORM Annissa Yanuvita Prabawaningtyas (1022053) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.

Lebih terperinci

REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI ABSTRAK

REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI ABSTRAK REALISASI SISTEM PENJEJAKAN WAJAH DENGAN ALGORITMA FISHERFACE BERBASIS RASPBERRY PI Disusun oleh : Natalio Andor Pangihutan Sihite (1022052) Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen

Lebih terperinci

Model Sistem Akses Tempat Parkir Berdasarkan Pengenalan Plat Nomor Kendaraan. Andry Jonathan ( )

Model Sistem Akses Tempat Parkir Berdasarkan Pengenalan Plat Nomor Kendaraan. Andry Jonathan ( ) Model Sistem Akses Tempat Parkir Berdasarkan Pengenalan Plat Nomor Kendaraan Andry Jonathan (1122041) Email: andry.jonathan1234@gmail.com Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof. Drg. Suria Sumantri

Lebih terperinci

Realisasi Perangkat Color Object Tracking Menggunakan Raspberry Pi

Realisasi Perangkat Color Object Tracking Menggunakan Raspberry Pi Realisasi Perangkat Color Object Tracking Menggunakan Raspberry Pi Disusun Oleh: Iona Aulia Risnadi (0922049) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.Drg.Suria Sumantri, MPH no. 65, Bandung,

Lebih terperinci

ANALISIS PELACAKAN OBJEK MOBIL DENGAN OPTICAL FLOW PADA KAMERA DIAM DAN BERGERAK

ANALISIS PELACAKAN OBJEK MOBIL DENGAN OPTICAL FLOW PADA KAMERA DIAM DAN BERGERAK ANALISIS PELACAKAN OBJEK MOBIL DENGAN OPTICAL FLOW PADA KAMERA DIAM DAN BERGERAK Wahyu Supriyatin 1), Winda Widya Ariestya 2) 1, 2) Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma

Lebih terperinci

BAB 2 LANDASAN TEORI. metode yang digunakan sebagai pengawasan kendaraan yang menggunakan pengenalan

BAB 2 LANDASAN TEORI. metode yang digunakan sebagai pengawasan kendaraan yang menggunakan pengenalan BAB 2 LANDASAN TEORI 2.1 Automatic Number Plate Recognition Automatic Number Plate Recognition atau yang disingkat dengan ANPR adalah metode yang digunakan sebagai pengawasan kendaraan yang menggunakan

Lebih terperinci

DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE

DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE DETEKSI DAN REPRESENTASI FITUR MATA PADA SEBUAH CITRA WAJAH MENGGUNAKAN HAAR CASCADE DAN CHAIN CODE Riandika Lumaris dan Endang Setyati Teknologi Informasi Sekolah Tinggi Teknik Surabaya riandika.lumaris@gmail.com

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER

BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER BAB 3 ANALISIS DAN PERANCANGAN SISTEM PROGRAM APLIKASI HANDS RECOGNIZER Dalam analisis dan perancangan sistem program aplikasi ini, disajikan mengenai analisis kebutuhan sistem yang digunakan, diagram

Lebih terperinci

DAFTAR ISI. BAB 3 PERANCANGAN PERANGKAT LUNAK 3.1 Diagram Alir Utama Kamera Web iii

DAFTAR ISI. BAB 3 PERANCANGAN PERANGKAT LUNAK 3.1 Diagram Alir Utama Kamera Web iii Aplikasi Kamera Web Untuk Mengidentifikasi Plat Nomor Mobil Jemmy / 0322042 E-mail : kaiser_jemmy@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. Drg. Suria

Lebih terperinci

Perbandingan Efektivitas Algoritma Blind-Deconvolution, Lucy-Richardson dan Wiener-Filter Pada Restorasi Citra. Charles Aditya /

Perbandingan Efektivitas Algoritma Blind-Deconvolution, Lucy-Richardson dan Wiener-Filter Pada Restorasi Citra. Charles Aditya / Perbandingan Efektivitas Algoritma Blind-Deconvolution, Lucy-Richardson dan Wiener-Filter Pada Restorasi Citra Charles Aditya / 0322026 Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri

Lebih terperinci

PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. M. Yoyok Ikhsan *

PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. M. Yoyok Ikhsan * PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN M. Yoyok Ikhsan * ABSTRAK PENENTUAN POSISI KAMERA DENGAN GEODESIC DOME UNTUK PEMODELAN. Makalah ini memaparkan metode untuk menentukan posisi

Lebih terperinci

BAB III METODE PENELITIAN. tracking obyek. Pada penelitian tugas akhir ini, terdapat obyek berupa bola. Gambar 3.1. Blok Diagram Penelitian

BAB III METODE PENELITIAN. tracking obyek. Pada penelitian tugas akhir ini, terdapat obyek berupa bola. Gambar 3.1. Blok Diagram Penelitian BAB III METODE PENELITIAN 3.1 Metode Penelitian Metode penelitian yang digunakan dalam pengerjaan Tugas Akhir ini adalah studi literatur, pembuatan program serta melakukan deteksi dan tracking obyek. Pada

Lebih terperinci

Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP

Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP Pokok Bahasan PENDAHULUAN PERANCANGAN SISTEM HASIL PENGUJIAN PENUTUP PENDAHULUAN 1. Sistem navigasi robot banyak dipakai dimanfaatkan untuk berbagai kebutuhan misalnya untuk membantu departemen pemadam

Lebih terperinci

Simulasi Pelacakan Target Tunggal Untuk Mengetahui Jarak, Sudut Azimuth, Sudut elevasi dan kecepatan target ABSTRAK

Simulasi Pelacakan Target Tunggal Untuk Mengetahui Jarak, Sudut Azimuth, Sudut elevasi dan kecepatan target ABSTRAK Simulasi Pelacakan Target Tunggal Untuk Mengetahui Jarak, Sudut Azimuth, Sudut elevasi dan kecepatan target Willy Sukardi / 0322041 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha

Lebih terperinci

DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM

DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM DESAIN DAN IMPLEMENTASI SISTEM OBJECT TRACKING PADA BALANCING ROBOT MENGGUNAKAN HOUGH TRANSFORM DESIGN AND IMPLEMENTATION OBJECT TRACKING SYSTEM ON BALANCING ROBOT USING HOUGH TRANSFORM Tidar Haryo Sularso

Lebih terperinci

2015 PENGGUNAAN ALGORITMA FAST CONNECTIVE HOUGH TRANSFORM DAN ANALISIS HISTOGRAM UNTUK MENENTUKAN LOKASI PLAT NOMOR

2015 PENGGUNAAN ALGORITMA FAST CONNECTIVE HOUGH TRANSFORM DAN ANALISIS HISTOGRAM UNTUK MENENTUKAN LOKASI PLAT NOMOR BAB I PENDAHULUAN Latar Belakang Sistem pengawasan menggunakan kamera merupakan salah satu aplikasi praktis dari perkembangan teknologi yang dapat membantu permasalahan seharihari. Dengan sistem pengawasan

Lebih terperinci

PENGARUH PENCAHAYAAN TERHADAP KINERJA SEGMENTASI

PENGARUH PENCAHAYAAN TERHADAP KINERJA SEGMENTASI PENGARUH PENCAHAYAAN TERHADAP KINERJA SEGMENTASI Iman H. Kartowisatro Computer Engineering Department, Faculty of Engineering, BINUS University Jln. K.H. Syahdan No. 9, Palmerah, Jakarta Barat 11480 imanhk@binus.edu

Lebih terperinci

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION

PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION PENGENALAN POLA GARIS DASAR KALIMAT PADA TULISAN TANGAN UNTUK MENGETAHUI KARAKTER SESEORANG DENGAN MENGGUNAKAN ALGORITMA RESILIENT BACKPROPAGATION ABSTRAK Juventus Suharta (0722026) Jurusan Teknik Elektro

Lebih terperinci

Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC)

Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC) Verifikasi Sidik Jari Menggunakan Pencocokan Citra Berbasis Fasa Dengan Fungsi Band-Limited Phase Only Correlation (BLPOC) Adryan Chrysti Sendjaja (1022005) Jurusan Teknik Elektro Universitas Kristen Maranatha

Lebih terperinci

IP TRAFFIC CAMERA PADA PERSIMPANGAN JALAN RAYA MENGGUNAKAN METODE LUASAN PIKSEL

IP TRAFFIC CAMERA PADA PERSIMPANGAN JALAN RAYA MENGGUNAKAN METODE LUASAN PIKSEL IP TRAFFIC CAMERA PADA PERSIMPANGAN JALAN RAYA MENGGUNAKAN METODE LUASAN PIKSEL OLEH : ANDI MUHAMMAD ALI MAHDI AKBAR Pembimbing 1: Arief Kurniawan, ST., MT Pembimbing 2: Ahmad Zaini, ST., M.Sc. Page 1

Lebih terperinci

Algoritma Interpolasi Citra Berbasis Deteksi Tepi Dengan Directional Filtering dan Data Fusion

Algoritma Interpolasi Citra Berbasis Deteksi Tepi Dengan Directional Filtering dan Data Fusion Algoritma Interpolasi Citra Berbasis Deteksi Tepi Dengan Directional Filtering dan Data Fusion Nama : Adrianus Ivan Hertanto Nrp : 0522058 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha,

Lebih terperinci

BAB I PENDAHULUAN. (terlibat 8%) (Austroads, 2002). Salah satu faktor terbesar penyebab kecelakaan

BAB I PENDAHULUAN. (terlibat 8%) (Austroads, 2002). Salah satu faktor terbesar penyebab kecelakaan BAB I PENDAHULUAN 1.1 Latar Belakang Tingkat kecelakaan lalu lintas diindonesia tergolong cukup tinggi. Menurut BPS (Badan Pusat Statistik) Indonesia, terdapat sebanyak 117.949 kecelakaan lalu lintas pada

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan 1 BAB I PENDAHULUAN 1.1. Latar Belakang dan Permasalahan Indonesia merupakan negara berkembang yang memiliki jumlah penduduk yang cukup banyak. Menurut hasil sensus penduduk tahun 2010 yang dikeluarkan

Lebih terperinci

Implementasi Teori Graf Dalam Masalah Fingerprint Recognition (Pengenalan Sidik Jari)

Implementasi Teori Graf Dalam Masalah Fingerprint Recognition (Pengenalan Sidik Jari) Implementasi Teori Graf Dalam Masalah Fingerprint Recognition (Pengenalan Sidik Jari) Amalfi Yusri Darusman Jurusan Teknik Informatika Institut Teknologi Bandung, jalan Ganesha 10 Bandung, email : if17023@students.if.itb.a.c.id

Lebih terperinci

Traffic IP Camera untuk Menghitung Kendaraan Roda Empat Menggunakan Metode Luasan Piksel

Traffic IP Camera untuk Menghitung Kendaraan Roda Empat Menggunakan Metode Luasan Piksel 1 Traffic IP Camera untuk Menghitung Kendaraan Roda Empat Menggunakan Metode Luasan Piksel Andi Muhammad Ali Mahdi Akbar, Arief Kurniawan, Ahmad Zaini Jurusan Teknik Elektro, Fakultas Teknik Industri Institut

Lebih terperinci

Simulasi Estimasi Arah Kedatangan Dua Dimensi Sinyal menggunakan Metode Propagator dengan Dua Sensor Array Paralel

Simulasi Estimasi Arah Kedatangan Dua Dimensi Sinyal menggunakan Metode Propagator dengan Dua Sensor Array Paralel ABSTRAK Simulasi Estimasi Arah Kedatangan Dua Dimensi Sinyal menggunakan Metode Propagator dengan Dua Sensor Array Paralel Disusun oleh : Enrico Lukiman (1122084) Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH ABSTRAK

IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH ABSTRAK IDENTIFIKASI SESEORANG BERDASARKAN CITRA TELINGA DENGAN MENGGUNAKAN METODE TRANSFORMASI HOUGH Syafril Tua (0822088) Jurusan Teknik Elektro email: syafrilsitorus@gmail.com ABSTRAK Struktur telinga adalah

Lebih terperinci

Agita Indraputri Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Marantha

Agita Indraputri Jurusan Teknik Elektro, Fakultas Teknik. Universitas Kristen Marantha Simulasi Pendeteksian Kepadatan Lalu Lintas Menggunakan Kamera yang Dipublikasikan ke Jejaring Sosial (Twitter) Agita Indraputri 0822087 Email : agita.indraputri@gmail.com Jurusan Teknik Elektro, Fakultas

Lebih terperinci

BAB IV IMPLEMENTASI DAN EVALUASI. Jones, kami membuat sebuah aplikasi sederhana, dengan spesifikasi perangkat lunak

BAB IV IMPLEMENTASI DAN EVALUASI. Jones, kami membuat sebuah aplikasi sederhana, dengan spesifikasi perangkat lunak BAB IV IMPLEMENTASI DAN EVALUASI 4.1 Aplikasi Pengujian Untuk menguji kecepatan dan keakuratan metode pendeteksian wajah Viola Jones, kami membuat sebuah aplikasi sederhana, dengan spesifikasi perangkat

Lebih terperinci

BAB 1 PENDAHULUAN. Sistem penglihatan manusia merupakan suatu system yang sangat kompleks,

BAB 1 PENDAHULUAN. Sistem penglihatan manusia merupakan suatu system yang sangat kompleks, BAB 1 PENDAHULUAN 1.1 LATAR BELAKANG PERMASALAHAN Sistem penglihatan manusia merupakan suatu system yang sangat kompleks, tetapi sangat dapat diandalkan. Sistem ini memberikan sarana pengenalan obyek yang

Lebih terperinci

Perancangan dan Realisasi Robot Berbasis ROS (Robot Operating System) yang Dapat Mendekati Posisi Manusia dengan Sensor Visi 3D ABSTRAK

Perancangan dan Realisasi Robot Berbasis ROS (Robot Operating System) yang Dapat Mendekati Posisi Manusia dengan Sensor Visi 3D ABSTRAK Perancangan dan Realisasi Robot Berbasis ROS (Robot Operating System) yang Dapat Mendekati Posisi Manusia dengan Sensor Visi 3D Osgar Karsena (1122069) Jurusan Teknik Elektro, Fakultas Teknik Jl. Prof.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Manusia memiliki kemampuan visual dalam satu sistem yang utuh. Sistem visual manusiatersebut terdiri atas gabungan dari proses perekaman dan pendeteksian obyek. Oleh

Lebih terperinci

ESTIMASI POSISI OBJEK BERDASARKAN STEREO VISION SYSTEM

ESTIMASI POSISI OBJEK BERDASARKAN STEREO VISION SYSTEM ESTIMASI POSISI OBJEK BERDASARKAN STEREO VISION SYSTEM Chandra Suharlim; Eka Putra; Tommy Budiman; Iman Herwidiana Kartowisastro Computer Engineering Department, Faculty of Engineering, Binus University

Lebih terperinci

Implementasi Kalman Filter Pada Sensor Jarak Berbasis Ultrasonik

Implementasi Kalman Filter Pada Sensor Jarak Berbasis Ultrasonik Implementasi Kalman Filter Pada Sensor Jarak Berbasis Ultrasonik Hendawan Soebhakti, Rifqi Amalya Fatekha Program Studi Teknik Mekatronika, Jurusan Teknik Elektro Politeknik Negeri Batam Email : hendawan@polibatam.ac.id

Lebih terperinci

DAFTAR ISI.. LEMBAR PENGESAHAN SURAT PERNYATAAN ABSTRAK.. ABSTRACT... DAFTAR TABEL.. DAFTAR PERSAMAAN..

DAFTAR ISI.. LEMBAR PENGESAHAN SURAT PERNYATAAN ABSTRAK.. ABSTRACT... DAFTAR TABEL.. DAFTAR PERSAMAAN.. ABSTRAK Perkembangan teknologi yang semakin pesat, membuat semakin sedikitnya suatu industri yang memakai operator dalam menjalankan suatu proses produksi. Pada saat ini, kontrol otomatis lebih banyak

Lebih terperinci

BAB I PENDAHULUAN. mengantar barang, mengantar anak ke sekolah, dan lain sebagainya.

BAB I PENDAHULUAN. mengantar barang, mengantar anak ke sekolah, dan lain sebagainya. BAB I PENDAHULUAN 1.1 Latar Belakang Jalan raya merupakan jalan besar atau jalan utama yang sering digunakan oleh kendaraan-kendaraan bermotor seperti kendaraan beroda dua (motor), kendaraan beroda empat

Lebih terperinci

Menggunakan Pattern-Matching Untuk Mengurangi Kecelakaan Lalu Lintas

Menggunakan Pattern-Matching Untuk Mengurangi Kecelakaan Lalu Lintas Menggunakan Pattern-Matching Untuk Mengurangi Kecelakaan Lalu Lintas Kevin Indra S / 13510022 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha

Lebih terperinci

PENGENALAN RAMBU LALU LINTAS TERTENTU DENGAN MENGGUNAKAN TEMPLATE MATCHING ABSTRAK

PENGENALAN RAMBU LALU LINTAS TERTENTU DENGAN MENGGUNAKAN TEMPLATE MATCHING ABSTRAK PENGENALAN RAMBU LALU LINTAS TERTENTU DENGAN MENGGUNAKAN TEMPLATE MATCHING Ivan Jesse (0322025) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri 65, Bandung 40164, Indonesia iv4nj3ss3@yahoo.com

Lebih terperinci

Rancang Bangun Sistem Penghitung Laju dan Klasifikasi Kendaraan Berbasis Pengolahan Citra

Rancang Bangun Sistem Penghitung Laju dan Klasifikasi Kendaraan Berbasis Pengolahan Citra Rancang Bangun Sistem Penghitung Laju dan Klasifikasi Kendaraan Berbasis Pengolahan Citra M Agus Taksiono, Dr. Ronny Mardiyanto, ST., MT.dan Ir. Joko Purwanto M.Eng, Ph.d Jurusan Teknik Elektro, Fakultas

Lebih terperinci

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B

IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN ANALISIS DETEKSI TEPI PADA ARM 11 OK6410B Heri Setiawan, Iwan Setyawan, Saptadi Nugroho IMPLEMENTASI PENTERJEMAH KODE ISYARAT TANGAN MENGGUNAKAN

Lebih terperinci

Konsep Penambahan High Pass Filter pada Pengenalan Pola Metode SIFT

Konsep Penambahan High Pass Filter pada Pengenalan Pola Metode SIFT Konsep Penambahan High Pass Filter pada Pengenalan Pola Metode SIFT Argo Wibowo 1 1 Universitas Atma Jaya Yogyakarta,Yogyakarta 55281 ABSTRAK Salah satu tools pengenalan obyek yang sedang banyak dikembangkan

Lebih terperinci

Perancangan Prototipe Sistem Pencarian Tempat Parkir Kosong dengan Kamera Web Sebagai Pemantau

Perancangan Prototipe Sistem Pencarian Tempat Parkir Kosong dengan Kamera Web Sebagai Pemantau Perancangan Prototipe Sistem Pencarian Tempat Parkir Kosong dengan Kamera Web Sebagai Pemantau Bobby Wirawan / 0522010 E-mail : Leon_bobby@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof.

Lebih terperinci

Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection

Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection JURNAL TEKNIK POMITS Vol., No., (22) -6 Rancang Bangun Sistem Pengujian Distorsi Menggunakan Concentric Circle Method Pada Kaca Spion Kendaraan Bermotor Kategori L3 Berbasis Edge Detection Muji Tri Nurismu

Lebih terperinci

IMPLEMENTASI PENGUKURAN JARAK DENGAN METODA DISPARITY MENGGUNAKAN STEREO VISION PADA ROBOT OTONOMUS PENGHINDAR RINTANGAN

IMPLEMENTASI PENGUKURAN JARAK DENGAN METODA DISPARITY MENGGUNAKAN STEREO VISION PADA ROBOT OTONOMUS PENGHINDAR RINTANGAN IMPLEMENTASI PENGUKURAN JARAK DENGAN METODA DISPARITY MENGGUNAKAN STEREO VISION PADA ROBOT OTONOMUS PENGHINDAR RINTANGAN Disusun oleh : Hendra (1022021) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof.

Lebih terperinci

Pengontrolan Kamera IP Menggunakan Pengontrol Mikro Arduino dan Handphone Sebagai Pengontrolnya Berbasis Web Browser

Pengontrolan Kamera IP Menggunakan Pengontrol Mikro Arduino dan Handphone Sebagai Pengontrolnya Berbasis Web Browser Pengontrolan Kamera IP Menggunakan Pengontrol Mikro Arduino dan Handphone Sebagai Pengontrolnya Berbasis Web Browser Disusun Oleh: Braham Lawas Lawu (0922031) Jurusan Teknik Elektro, Fakultas Teknik, Jl.

Lebih terperinci

Rancang Bangun Sistem Pengukuran Posisi Target dengan Kamera Stereo untuk Pengarah Senjata Otomatis

Rancang Bangun Sistem Pengukuran Posisi Target dengan Kamera Stereo untuk Pengarah Senjata Otomatis A216 Rancang Bangun Sistem Pengukuran Posisi Target dengan Kamera Stereo untuk Pengarah Senjata Otomatis Anas Maulidi Utama, Djoko Purwanto, dan Ronny Mardiyanto Jurusan Teknik Elektro, Fakultas Teknologi

Lebih terperinci

ANALISIS PELACAKAN OBJEK MENGGUNAKAN BACKGROUND ESTIMATION PADA KAMERA DIAM DAN BERGERAK (Hasil Penelitian)

ANALISIS PELACAKAN OBJEK MENGGUNAKAN BACKGROUND ESTIMATION PADA KAMERA DIAM DAN BERGERAK (Hasil Penelitian) ANALISIS PELACAKAN OBJEK MENGGUNAKAN BACKGROUND ESTIMATION PADA KAMERA DIAM DAN BERGERAK ( Penelitian) Oleh : Wahyu Supriyatin 1, Yeniwarti Rafsyam 2, Jonifan 3 1,3 Universitas Gunadarma Jakarta, Jalan

Lebih terperinci

Perancangan dan Realisasi Dinding Interaktif Menggunakan Bahasa Pemrograman Flash ABSTRAK

Perancangan dan Realisasi Dinding Interaktif Menggunakan Bahasa Pemrograman Flash ABSTRAK Perancangan dan Realisasi Dinding Interaktif Menggunakan Bahasa Pemrograman Flash Herald Putra / 0522087 E-mail : herald_widjaja@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof. Drg. Suria

Lebih terperinci

BAB I PENDAHULUAN I.1 Latar Belakang

BAB I PENDAHULUAN I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Prinsip teknologi dikembangkan adalah untuk membuat alat atau sarana yang dapat membantu dan memberi kemudahan bagi manusia untuk melakukan kegiatan dalam hidup. Seiring

Lebih terperinci

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS)

PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) PENGENALAN WAJAH DENGAN MENGGUNAKAN NLDA (NULL-SPACE LINEAR DISCRIMINANT ANALYSIS) Disusun oleh : Yudi Setiawan (0722095) Jurusan Teknik Elektro, Fakultas Teknik, Jl. Prof. Drg. Suria Sumantri, MPH, No.

Lebih terperinci

PERANCANGAN SISTEM ROBOT MOBIL PENDETEKSI BOLA TENIS MEJA

PERANCANGAN SISTEM ROBOT MOBIL PENDETEKSI BOLA TENIS MEJA PERANCANGAN SISTEM ROBOT MOBIL PENDETEKSI BOLA TENIS MEJA Ario Witjakso 1 ; Puspita Harum Larasati 2 ; Andi Nurdiansah 3 ; Nathaniel 4 Jurusan Sistem Komputer, Fakultas Ilmu Komputer, BINUS University

Lebih terperinci

Pengembangan Prototype Sistem Untuk Manajemen Lahan Parkir Dengan Jaringan Sensor Kamera Nirkabel

Pengembangan Prototype Sistem Untuk Manajemen Lahan Parkir Dengan Jaringan Sensor Kamera Nirkabel Pengembangan Prototype Sistem Untuk Manajemen Lahan Parkir Dengan Jaringan Sensor Kamera Nirkabel ALDELLA PUTRA A. NRP 070006 Bidang Studi Telekomunikasi Multimedia Jurusan Teknik Elektro-FTI, Institut

Lebih terperinci

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015)

Calyptra : Jurnal Ilmiah Mahasiswa Universitas Surabaya Vol.4 No.2 (2015) Estimasi Parameter Model Height-Roll-Pitch-Yaw AR Drone dengan Least Square Method Steven Tanto Teknik Elektro / Fakultas Teknik steventanto@gmail.com Agung Prayitno Teknik Elektro / Fakultas Teknik prayitno_agung@staff.ubaya.ac.id

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN

BAB 3 ANALISIS DAN PERANCANGAN BAB 3 ANALISIS DAN PERANCANGAN 3.1 Kerangka Pikir Pengenalan wajah merupakan suatu teknologi dalam dunia kecerdasan buatan agar komputer dapat meniru kemampuan otak manusia dalam mendeteksi dan mengenali

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tahapan Penelitian Pada penelitian tugas akhir ini ada beberapa tahapan penelitian yang akan dilakukan seperti yang terlihat pada gambar 3.1 : Mulai Pengumpulan Data Analisa

Lebih terperinci

PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING)

PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING) PENGELOMPOKAN CITRA WAJAH DENGAN TEKNIK SUBSPACE CLUSTERING MENGGUNAKAN ALGORITMA LSA SC (LOCAL SUBSPACE AFFINITY SPECTRAL CLUSTERING) Disusun oleh : Febryan Setiawan (0922081) Jurusan Teknik Elektro,

Lebih terperinci

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah

Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter. Roslyn Yuniar Amrullah Pengenalan Benda di Jalan Raya dengan Metode Kalman Filter Roslyn Yuniar Amrullah 7406040026 Abstrak Computer Vision merupakan disiplin ilmu perpanjangan dari pengolahan citra digital dan kecerdasan buatan.

Lebih terperinci

KONTROL ROBOT MOBIL PENJEJAK GARIS BERWARNA DENGAN MEMANFAATKAN KAMERA SEBAGAI SENSOR

KONTROL ROBOT MOBIL PENJEJAK GARIS BERWARNA DENGAN MEMANFAATKAN KAMERA SEBAGAI SENSOR KONTROL ROBOT MOBIL PENJEJAK GARIS BERWARNA DENGAN MEMANFAATKAN KAMERA SEBAGAI SENSOR Thiang, Felix Pasila, Agus Widian Electrical Engineering Department, Petra Christian University 121-131 Siwalankerto,

Lebih terperinci

Dr. Ir. Endra Pitowarno, M.Eng PENS-ITS. Seminar New Concept Robotics: Robot Vision 22 Februari 2007 Universitas Gunadarma - Jakarta.

Dr. Ir. Endra Pitowarno, M.Eng PENS-ITS. Seminar New Concept Robotics: Robot Vision 22 Februari 2007 Universitas Gunadarma - Jakarta. Endra Pitowarno 27 Inside the Robotic Vision Dr. Ir. Endra Pitowarno, M.Eng PENS-ITS Seminar New Concept Robotics: Robot Vision 22 Februari 27 Universitas Gunadarma - Jakarta Endra Pitowarno 27 Vision

Lebih terperinci

ANALISA PERANCANGAN SISTEM

ANALISA PERANCANGAN SISTEM Gambar 2.16. Black Bo Pengujian black bo adalah pengujian aspek fundamental sistem tanpa memperhatikan struktur logika internal perangkat lunak. Metode ini digunakan untuk mengetahui apakah perangkat lunak

Lebih terperinci

SIMULASI PEMBUATAN POLA CITRA UNTUK MENGETAHUI JARAK ANTARA NANOPARTIKEL DENGAN MENGGUNAKAN LATTICE GENERATOR DAN LATTICE PARAMETER ANALYZER

SIMULASI PEMBUATAN POLA CITRA UNTUK MENGETAHUI JARAK ANTARA NANOPARTIKEL DENGAN MENGGUNAKAN LATTICE GENERATOR DAN LATTICE PARAMETER ANALYZER SIMULASI PEMBUATAN POLA CITRA UNTUK MENGETAHUI JARAK ANTARA NANOPARTIKEL DENGAN MENGGUNAKAN LATTICE GENERATOR DAN LATTICE PARAMETER ANALYZER Laurensius Morris 0522018 Jurusan Teknik Elektro, Fakultas Teknik,

Lebih terperinci

PENDETEKSI LOKASI PARKIR MOBIL MENGGUNAKAN METODE FRAME DIFFERENCES DAN STATIC TEMPLATE MATCHING

PENDETEKSI LOKASI PARKIR MOBIL MENGGUNAKAN METODE FRAME DIFFERENCES DAN STATIC TEMPLATE MATCHING PENDETEKSI LOKASI PARKIR MOBIL MENGGUNAKAN METODE FRAME DIFFERENCES DAN STATIC TEMPLATE MATCHING Vandry Eko Haris Setiyanto 1, Cahya Rahmad. 2, Ulla Delfana Rosiani. 3 Teknik Informatika, Teknologi Informasi,

Lebih terperinci

PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV

PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV PERANCANGAN PENGENALAN PLAT NOMOR MELALUI CITRA DIGITAL DENGAN OPENCV Abdillah Komarudin 1401139432 Program Studi Sistem Komputer, Universitas Bina Nusantara, abdee_dillah@yahoo.com Ahmad Teguh Satria

Lebih terperinci

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer.

BAB 1 PENDAHULUAN. keakuratan dari penglihatan mesin membuka bagian baru dari aplikasi komputer. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Melihat perkembangan teknologi sekarang ini, penggunaan komputer sudah hampir menjadi sebuah bagian dari kehidupan harian kita. Semakin banyak muncul peralatan-peralatan

Lebih terperinci

BAB 4 PENGUJIAN DAN EVALUASI. teknik pemrosesan citra dengan menggunakan logika samar dan dengan teknikteknik

BAB 4 PENGUJIAN DAN EVALUASI. teknik pemrosesan citra dengan menggunakan logika samar dan dengan teknikteknik BAB 4 PENGUJIAN DAN EVALUASI 4.1 Pengujian Pengujian yang akan dilakukan buertujuan untuk melakukan perbandingan antara teknik pemrosesan citra dengan menggunakan logika samar dan dengan teknikteknik konvensional.

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Pendeteksian objek dalam suatu citra merupakan hal mendasar dalam banyak aplikasi analisis citra (image analysis). Manusia bisa langsung mengenali objek yang dilihatnya

Lebih terperinci

PENERAPAN METODE HOUGH LINE TRANSFORM UNTUK MENDETEKSI PINTU RUANGAN MENGGUNAKAN KAMERA

PENERAPAN METODE HOUGH LINE TRANSFORM UNTUK MENDETEKSI PINTU RUANGAN MENGGUNAKAN KAMERA PENERAPAN METODE HOUGH LINE TRANSFORM UNTUK MENDETEKSI PINTU RUANGAN MENGGUNAKAN KAMERA ABSTRACT Syahri Muharom Jurusan Teknik Elektro Institut Teknologi Adhi Tama Surabaya Jl. Arief Rachman Hakim, Klampis

Lebih terperinci

BAB I PENDAHULUAN. Penggunaan pemrosesan citra digital (digital image processing) dalam

BAB I PENDAHULUAN. Penggunaan pemrosesan citra digital (digital image processing) dalam BAB I PENDAHULUAN 1.1 Latar Belakang Perkembangan suatu negara seperti Indonesia sangat berhubungan dengan perkembangan jaringan jalan pada negara tersebut. Jaringan jalan sebagai urat nadi pembangunan

Lebih terperinci

Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality

Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality Pengembangan Program Simulator Frame Kacamata Secara Real-Time 3D Face Tracking dengan Menggunakan Augmented Reality Endang Setyati Information Technology Department Sekolah Tinggi Teknik Surabaya endang@stts.edu,

Lebih terperinci

APLIKASI PERUBAHAN CITRA 2D MENJADI 3D DENGAN METODE STEREOSCOPIC ANAGLYPH BERBASISKAN KOMPUTER

APLIKASI PERUBAHAN CITRA 2D MENJADI 3D DENGAN METODE STEREOSCOPIC ANAGLYPH BERBASISKAN KOMPUTER APLIKASI PERUBAHAN CITRA 2D MENJADI 3D DENGAN METODE STEREOSCOPIC ANAGLYPH BERBASISKAN KOMPUTER Wikaria Gazali; Michael Ivan; Ngarap Imanuel Manik Mathematics & Statistics Department, School of Computer

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang 1.2 Tujuan Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang Pada sebuah citra, sangat dimungkinkan terdapat berbagai macam objek. Objek yang ada pun bisa terdiri dari berbagai bentuk dan ukuran. Salah satu objek yang mungkin

Lebih terperinci

Sistem Penangkap Citra Pelanggaran Lampu Merah

Sistem Penangkap Citra Pelanggaran Lampu Merah Sistem Penangkap Citra Pelanggaran Lampu Merah 1 Muhtadin 1) Isrin Ramdani 2) Ahmad Zaini 2) 1) Jurusan Teknik Elektro ITS, Surabaya 60111, email: muhtadin@ee.its.ac.id 2) Jurusan Teknik Elektro ITS, Surabaya

Lebih terperinci

Realisasi Sistem Pemantau Kepadatan Lalu-Lintas Menggunakan Teknologi Radar RTMS G4

Realisasi Sistem Pemantau Kepadatan Lalu-Lintas Menggunakan Teknologi Radar RTMS G4 Realisasi Sistem Pemantau Kepadatan Lalu-Lintas Menggunakan Teknologi Radar RTMS G4 Egne Novanda / 0422028 E-mail : E.novanda@yahoo.com Jurusan Teknik Elektro, Fakultas Teknik, Jalan Prof. Drg. Suria Sumantri

Lebih terperinci

ABSTRAK

ABSTRAK APLIKASI KAMERA WEB DALAM PERMAINAN MENUSUK BALON Krisyunardi Widjojo / 0322140 Jurusan Teknik Elektro, Fakultas Teknik, Universitas Kristen Maranatha Jalan Prof. Drg. Suria Sumantri 65 Bandung 40164,

Lebih terperinci

pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI uji coba terhadap program aplikasi pengenalan plat nomor kendaraan roda empat ini,

pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI uji coba terhadap program aplikasi pengenalan plat nomor kendaraan roda empat ini, pbab 4 IMPLEMENTASI DAN EVALUASI PROGRAM APLIKASI Bab ini berisi penjelasan tentang implementasi sistem meliputi kebutuhan perangkat lunak dan perangkat keras yang digunakan untuk melakukan perancangan

Lebih terperinci

PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN

PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN PENERAPAN GRABBERPADA OPTICAL FLOWUNTUK MENGGERAKKAN CURSORMOUSEMENGGUNAKAN BOLPOIN PENERAPAN GRABBER PADA OPTICAL FLOW UNTUK MENGGERAKKAN CURSOR MOUSE MENGGUNAKAN BOLPOIN Anton Setiawan Honggowibowo,

Lebih terperinci

PERANCANGAN dan REALISASI FACETRACKER WEBCAM MENGGUNAKAN METODE HAAR-LIKE FEATURE BERBASIS RASPBERRY PI 2

PERANCANGAN dan REALISASI FACETRACKER WEBCAM MENGGUNAKAN METODE HAAR-LIKE FEATURE BERBASIS RASPBERRY PI 2 PERANCANGAN dan REALISASI FACETRACKER WEBCAM MENGGUNAKAN METODE HAAR-LIKE FEATURE BERBASIS RASPBERRY PI 2 Disusun oleh : Steven Christian Santosa (1222038) Program Studi Teknik Elektro, Fakultas Teknik,

Lebih terperinci

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN MODIFIED HAUSDORFF DISTANCE ABSTRAK

IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN MODIFIED HAUSDORFF DISTANCE ABSTRAK IDENTIFIKASI SESEORANG BERDASARKAN CITRA PEMBULUH DARAH MENGGUNAKAN MODIFIED HAUSDORFF DISTANCE Daniel Halomoan (0822056) Jurusan Teknik Elektro Universitas Kristen Maranatha email: daniel170390@gmail.com

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Beberapa tahun terakhir ini, terlihat perkembangan penelitian yang pesat pada berbagai bidang ilmu komputer, dan penggunaan ilmu komputer pada kendaraan telah mencapai

Lebih terperinci

REALISASI ACTIVE NOISE REDUCTION MENGGUNAKAN ADAPTIVE FILTER DENGAN ALGORITMA LEAST MEAN SQUARE (LMS) BERBASIS MIKROKONTROLER LM3S6965 ABSTRAK

REALISASI ACTIVE NOISE REDUCTION MENGGUNAKAN ADAPTIVE FILTER DENGAN ALGORITMA LEAST MEAN SQUARE (LMS) BERBASIS MIKROKONTROLER LM3S6965 ABSTRAK REALISASI ACTIVE NOISE REDUCTION MENGGUNAKAN ADAPTIVE FILTER DENGAN ALGORITMA LEAST MEAN SQUARE (LMS) BERBASIS MIKROKONTROLER LM3S6965 Nama : Wito Chandra NRP : 0822081 Jurusan Teknik Elektro, Fakultas

Lebih terperinci

Analisis Jarak Microphone Array dengan Teknik Pemrosesan Sinyal Fast Fourier Transform Beamforming

Analisis Jarak Microphone Array dengan Teknik Pemrosesan Sinyal Fast Fourier Transform Beamforming 85 Analisis Jarak Microphone Array dengan Teknik Pemrosesan Sinyal Fast Fourier Transform Beamforming Moh Fausi, Agus Naba dan Djoko Santjojo Abstract The main problem in the application of the sound source

Lebih terperinci

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan

PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan PENGENALAN WAJAH DENGAN METODE TEMPLATE MATCHING SEBAGAI SISTEM STARTER SEPEDA MOTOR BERBASIS MIKROKONTROLER ATMEGA 16 Oleh : Margito Hermawan 6907040024 Fajar Indra 6907040026 ABSTRACT Face recognition

Lebih terperinci

ISSN : e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 555

ISSN : e-proceeding of Engineering : Vol.4, No.1 April 2017 Page 555 ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.1 April 217 Page 555 Abstrak DESAIN DAN IMPLEMENTASI PENGONTROL PID PADA SISTEM 2 DERAJAT KEBEBASAN UNTUK COLOUR OBJECT TRACKING DESIGN AND IMPLEMENTATION

Lebih terperinci

Deteksi Kepala Janin Pada Gambar USG Menggunakan Fuzzy C-Means (FCM) Dengan Informasi Spasial Dan Iterative Randomized Hough Transform (IRHT)

Deteksi Kepala Janin Pada Gambar USG Menggunakan Fuzzy C-Means (FCM) Dengan Informasi Spasial Dan Iterative Randomized Hough Transform (IRHT) Deteksi Kepala Janin Pada Gambar USG Menggunakan Fuzzy C-Means (FCM) Dengan Informasi Spasial Dan Iterative Randomized Hough Transform (IRHT) Dwi Puspitasari 1 *, Handayani Tjandrasa 2 Jurusan Teknik Elektro,

Lebih terperinci

REALISASI SISTEM DETEKSI RASA KANTUK BERDASARKAN DURASI KEDIPAN MATA SECARA REAL TIME MENGGUNAKAN METODE VIOLA-JONES

REALISASI SISTEM DETEKSI RASA KANTUK BERDASARKAN DURASI KEDIPAN MATA SECARA REAL TIME MENGGUNAKAN METODE VIOLA-JONES REALISASI SISTEM DETEKSI RASA KANTUK BERDASARKAN DURASI KEDIPAN MATA SECARA REAL TIME MENGGUNAKAN METODE VIOLA-JONES Avrian Andreas Marjono NRP : 1222006 e-mail : avrianandreas@yahoo.co.id ABSTRAK Rasa

Lebih terperinci