BAB I PENDAHULUAN I.1.

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB I PENDAHULUAN I.1."

Transkripsi

1 BAB I PENDAHULUAN I.1. Latar Belakang Candi Borobudur merupakan salah warisan dunia yang dimiliki oleh Indonesia. Tidak sedikit wisatawan mancanegara maupun wisatawan dalam negeri yang sengaja mengunjungi tempat ini. Candi Borobudur menjadi magnet tersendiri bagi wisatawan yang ingin berekreasi maupun mempelajari tentang sejarah. Hal ini membuat Dinas Pendididikan dan Kebudayaan serta Dinas Pariwisata Republik Indonesia dengan ketat menjaga warisan dunia agar tetap terjaga dengan baik. Dalam upaya menjaga warisan dunia, perlu dilaksanakan pemantauan struktur Candi Borobudur secara geometrik menggunakan metode geodetik. Salah satu caranya adalah dengan pembangunan bench mark (BM) atau titik kontrol untuk pemantauan deformasi menggunakan Global Positioning System (GPS). Pembangunan BM telah dilakukan melalui kerjasama antara Jurusan Teknik Geodesi FT UGM dengan Balai Konservasi Borobudur (BKB) pada tahun Titik BM yang dibangun berjumlah sembilan (Ma ruf, dkk., 2001). Pengukuran dan studi pemanfaatan teknologi GPS untuk pemantauan stabilitas Candi Borobudur telah dilakukan pada tahun 2002, 2003, dan 2012 (Lestari, 2015). Jumlah titik yang diamat sebanyak 12 titik, yaitu 1) titik A (BORA); 2) titik B (BORB); 3) titik C (BORC); 4) titik D (BORD); 5) titik E (BORE); 6) titik F (BONE); 7) titik G (BOSE); 8) titik H (BOSW); 9) titik I (BONW); 10) titik BOR1; 11) titik BOR3 dan 12) titik BOR6. Dua belas titik tersebut tersebar di area taman dan di area candi. Penambahan tiga titik dimaksudkan untuk memperkuat geometri jaring pengamatan GPS khususnya di halaman candi. Posisi dan laju perubahan posisi titik-titik GPS pada studi tersebut dinyatakan dalam sistem koordinat 3D di atas elipsoid referensi World Geodetic System 1984 (WGS 84), dihitung mengacu pada kerangka acuan global International Terestrial Reference Frame 2000 (ITRF 2000). Hasil analisis pergeseran dengan GLOBK (Global Kalman Filter VLBI and GPS Analysis) menggunakan kerangka acuan ITRF2000 pada tingkat kepercayaan

2 95%, diketahui bahwa penambahan kala pengamatan GPS tahun 2012 pada solusi gabungan terbukti meningkatkan ketelitian estimasi posisi dan vektor kecepatan pergeseran horizontal. Pergeseran horizontal berdasarkan data pengamatan GPS dipengaruhi oleh faktor internal dan eksternal. Vektor kecepatan pergeseran horizontal rerata yang diperoleh adalah 29 mm/thn dengan arah pergeseran ke tenggara. Nilai ini memberikan gambaran besar dan arah yang konsisten dengan pergerakan tektonik di Pulau Jawa (Lestari, 2015). ITRF merupakan kerangka referensi geospasial global sebagai realisasi dari ITRS (The International Terrestrial Reference System ) (Fahrurrazi, 2011). Koordinat jaring stasiun ITRF merealisasikan origin dan orientasi sumbu koordinat geodetik. Titik-titik stasiun ITRF senantiasa bergerak karena gerakan lempeng tektonik sehingga koordinatnya juga senantiasa berubah secara dinamis dengan pola (besar dan arah) yang bervariasi antara satu titik dengan titik yang lain. Untuk keperluan pemeliharaan ITRS, maka dilakukan pengamatan secara berkelanjutan di titik-titik stasiun ITRF dengan teknikteknik Very Long Baseline Interferometry (VLBI), Lunar Laser Ranging (LLR), Global Positioning System (GPS), Satelite Laser Ranging (SLR), dan DORIS. Teknik-teknik tersebut senantiasa dikembangkan, sehingga menuntut perkembangan ITRF. Sampai dengan tahun 2010, IERS (International Earth Rotation and Reference Systems Service) telah mempublikasikan 12 versi ITRF, dimulai dengan ITRF88, ITRF89, ITRF90, ITRF91, ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000, ITRF2005, dan ITRF2008. ITRF 2008 terdiri dari 700 titik stasiun pengamatan (Fahrurrazi, 2011). Pada studi ini ITRF digunakan sebagai kerangka acuan dalam penentuan posisi titik-titik pengamatan GPS, sehingga posisi titik-titik GPS dapat disatukan dalam satu sistem referensi global. Perbedaan penggunaan versi ITRF pada pengolahan data GPS berdampak pada perbedaan ketelitian estimasi posisi, besar kecepatan dan arah pergeseran titik-titik kontrol. Pengolahan data GPS menggunakan ITRF terbaru menghasilkan ketelitian yang lebih akurat (Xiangang, dkk., 2013). 2

3 I.2. Identifikasi Masalah Berdasarkan latar belakang, dapat diketahui bahwa terjadi perkembangan kerangka acuan ITRF. Perkembangan terbaru menghasilkan ITRF Perkembangan ITRF terbaru menunjukkan tingkat konsistensi dan akurasi yang semakin baik. Oleh karena itu, perbedaan versi ITRF yang digunakan dalam pengolahan data GPS, kemungkinan menyebabkan perbedaan analisis pergeseran koordinat, serta besar dan arah kecepatan pergeseran titiktitik kontrol pemantau deformasi Candi Borobudur apabila dibandingkan dengan analisis yang telah dilakukan dengan ITRF Berdasarkan kondisi tersebut, maka pada penelitian ini dilakukan analisis ketelitian estimasi posisi, besar kecepatan dan arah pergeseran titik-titik kontrol GPS jaring pemantau deformasi Candi Borobudur, berdasarkan data pengamatan tahun 2003 dan 2012 mengacu pada ITRF I.3. Pertanyaan Penelitian Berdasarkan identifikasi masalah yang telah dibahas, dapat dibuat pertanyaan penelitian sebagai berikut : 1. Berapa ketelitian estimasi posisi titik-titik kontrol GPS pada jaring pemantau deformasi Candi Borobudur dengan data 2003 dan 2012 apabila mengacu pada kerangka acuan global ITRF 2008? 2. Berapa ketelitian estimasi besar kecepatan dan arah pergeseran titik kontrol GPS jaring pemantau Candi Borobudur pada rentang waktu tahun 2003 s.d. 2012, apabila mengacu pada kerangka acuan global ITRF 2008? I.4. Cakupan Penelitian Cakupan masalah dalam penelitian ini difokuskan pada: 1. Data yang digunakan adalah data pengamatan GPS geodetik metode statik di Candi Borobudur pada tahun 2003 dan

4 2. Pengolahan data menggunakan perangkat lunak GAMIT/GLOBK, mengacu pada ITRF 2008 dengan skenario pengolahan dan masukan yang sama dengan pengolahan sebelumnya (Lestari, 2015). 3. Posisi titik pengamatan GPS hasil pengolahan GAMIT/GLOBK mengacu pada ITRF 2008 dibandingkan dengan hasil pengolahan yang mengacu ke ITRF 2000 yang telah ditransformasi ke ITRF I.5. Tujuan Tujuan dilakukannya penelitian ini adalah : 1. Teridentifikasinya ketelitian estimasi posisi titik-titik kontrol GPS pada jaring pemantau deformasi Candi Borobudur dengan data 2003 dan 2012 apabila mengacu pada kerangka acuan global ITRF Teridentifikasinya ketelitian estimasi besar kecepatan dan arah pergeseran titik kontrol GPS jaring pemantau Candi Borobudur pada rentang waktu tahun 2003 s.d. 2012, apabila mengacu pada kerangka acuan global ITRF I.6. Manfaat Manfaat yang didapat dari penelitian ini adalah manfaat untuk pengetahuan (ilmiah) dan manfaat untuk BKB (Balai Konservasi Borobudur) atau untuk pembangunan. Adapun manfaat dari aspek ilmiah adalah diperoleh pengetahuan tentang ketelitian hasil pengaruh dari perkembangan kerangka acuan global (ITRF) terhadap analisis pergeseran, khususnya untuk pemantauan stabilitas candi atau pemantauan deformasi secara umum. Manfaat untuk BKB adalah melalui teknik pengolahan data GPS menggunakan kerangka acuan ITRF2008 diharapkan dapat memberikan informasi perubahan posisi yang lebih teliti sehingga analisis pergeseran menjadi lebih akurat, sehingga dapat membantu BKB dalam pemeliharaan Candi Borobudur. 4

5 I.7. Tinjauan Pustaka Ma ruf, dkk. (2001) melakukan penelitian tentang pengamatan GPS di Candi Borobudur. Penelitian ini melingkupi kegiatan pemasangan BM titiktitik GPS dan pengukuran GPS (tipe single frequency) untuk evaluasi dan analisis desain jaring GPS. Hasil dari penelitian ini menyatakan jaring GPS memiliki bentuk yang bagus yang dinyatakan dengan bentuk elips kesalahan seragam dan mendekati lingkaran. Lestari (2015) melakukan penelitian dengan pengukuran dan analisis pergeseran Candi Borobudur. Pengukuran dan studi pemanfaatan teknologi GPS untuk pemantauan stabilitas Candi Borobudur dilakukan pada tahun 2002, 2003, dan Penambahan kala pengamatan GPS tahun 2012 pada solusi gabungan terbukti meningkatkan ketelitian estimasi posisi horizontal maupun vertikal. Ketelitian estimasi posisi rerata berdasarkan solusi gabungan 2002, 2003, dan 2012 untuk posisi X, Y, Z dalam fraksi kurang dari 1 mm dan ketelitian estimasi vektor kecepatan adalah 0,1 s.d 0,2 mm/thn. Sementara ketelitian vektor kecepatan pergeseran dengan dua kala pengamatan (2002 dan 2003) dalam fraksi 10 mm/thn baik untuk arah X, Y, maupun Z. Pergeseran horizontal berdasarkan data pengamatan GPS dipengaruhi oleh faktor eksternal dan internal. Vektor kecepatan pergeseran horizontal rerata yang diperoleh adalah 29 mm/thn dengan arah pergeseran ke tenggara. Nilai ini memberikan gambaran besar dan arah yang konsisten dengan pergerakan tektonik di Pulau Jawa. Pergeseran horizontal rerata antara kala 2002 dan 2012 adalah 286 mm ke arah tenggara yang berarti konsisten dengan vektor kecepatan yang diperoleh (Lestari, 2015). Xiangang, dkk. (2011) melakukan penelitian tentang dampak perbedaan kerangka acuan ITRF 2000 dan ITRF 2005 dalam pengolahan data GNSS. Data yang digunakan adalah data dari 30 stasiun acuan yang didapatkan dari Crustal Movement Observation Network of China (CMONC) dan 16 stasiun International GNSS Service (IGS) di seluruh China yang digunakan sebagai jaringan regional. Data yang dikumpulkan dari tahun 2008 sampai 2009 diolah menggunakan software GAMIT/GLOBK untuk mendapatkan time series 5

6 dari setiap stasiun. Pengaturan parameter pada perhitungan adalah : interval data sampling adalah 30 detik; mode pemrosesan data adalah relaxation; medan gravitasi disesuaikan dengan IERS2003; model pasang surut air laut global adalah Finite Element Solution 2004 (FES2004); kombinasi linear observasi digunakan untuk menghilangkan efek refraksi ionosfer; model Vienna Mapping Function 1 (VMF1) adalah fungsi pemetaan troposfer; dan parameter delay zenith diperkirakan setiap 2 jam. Perbedaan nilai koordinat stasiun yaitu 1,26 mm sd 3,67 mm (memenuhi syarat pengukuran GNSS sangat teliti). Perbedaan besar kecepatan adalah 1 mm/thn, sedangkan perbedaan arah sekitar 2. Jika dibandingkan dengan ITRF2000, ITRF terbaru dapat menggambarkan kemajuan yang pesat pada pembuatan solusi, pendefinisian datum, dan realisasi data. Pengolahan data GPS menggunakan ITRF terbaru menghasilkan ketelitian yang lebih akurat. Berdasarkan penelitian-penelitian tersebut maka dalam penelitian ini penulis bermaksud menganalisis ketelitian estimasi posisi, besar kecepatan dan arah pergeseran titik-titik kontrol pemantau deformasi Candi Borobudur berdasarkan data tahun 2003 dan tahun 2012 menggunakan kerangka acuan global ITRF Berbeda dengan penelitian sebelumnya, dalam penelitian ini kajian yang ingin dianalisis adalah pengaruh perubahan kerangka acuan global, yaitu penggunaan ITRF 2008 dalam analisis pergeseran jaring pemantau GPS Candi Borobudur. Analisis tersebut dilakukan dengan bantuan software GAMIT/GLOBK. I.8. Landasan Teori I.8.1. Global Positioning System (GPS) Global Navigation Sattelite System atau yang dikenal dengan GNSS merupakan sebutan umum dari teknologi penentuan posisi. GNSS merupakan istilah umum dari beberapa satelit pengamatan posisi seperti GPS milik Amerika Serikat, GLONASS milik Eropa, dan COMPASS milik China (Panuntun, 2012). Satelit tersebut memiliki tiga segmen. Adanya teknologi GNSS ini, pengukuran posisi suatu titik di permukaan bumi menjadi lebih teliti karena jumlah satelit yang terekam oleh receiver lebih banyak. Namun, dalam 6

7 pengolahan data pengamatan dibutuhkan suatu transformasi datum untuk mengintegrasikan hasil pengamatan dari beberapa satelit. Global Positioning System (GPS) merupakan sistem radio navigasi dan penentuan posisi menggunakan satelit yang didesain untuk untuk memberikan posisi dan kecepatan tiga dimensi yang teliti serta informasi waktu secara kontinyu di seluruh dunia. Teknologi GPS ini terdiri atas tiga segmen, yaitu segmen kontrol, segmen angkasa, dan segmen pengguna. Gambar I.1. Segmen dalam teknologi GNSS (El-Rabbany, 2002) Gambar I.1 menunjukkan tiga segmen yang ada dalam teknologi GPS. Segmen satelit terdiri atas satelit-satelit GPS yang beredar pada orbitnya masing-masing. Orbit satelit GPS memiliki inklinasi 55 dengan ketinggian rerata adalah km. Satu lintasan orbit satelit terdapat empat satelit GPS. Masing-masing satelit GPS dilengkapi dengan jam atom yang digunakan untuk perhitungan jarak satelit ke receiver GPS. Segmen kontrol terdiri atas stasiun-stasiun pemantau orbit satelit GPS. Segmen kontrol ini menentukan informasi broadcast ephemeris yang digunakan dalam perhitungan koordinat. Secara spesifik segmen kontrol terdiri atas Ground Control Stations (GCS), Monitor Stations (MS), Prelaunch Compatibility Stations (PCS), dan Master Control Stations (MCS) (Abidin, 1995). 7

8 Segmen pengguna atau dalam Gambar I.1 dikenal dengan user segment merupakan pihak pengguna dari teknologi GPS. Dalam segmen pengguna, diperlukan suatu receiver GPS untuk menangkap sinyal satelit GPS, sehingga didapatkan posisi dari segmen pengguna. Receiver GPS ini juga dilengkapi dengan jam untuk mengukur waktu tempuh sinyal GPS, namun jam receiver ini tidak lebih teliti dari jam satelit. I.8.2. Penentuan Posisi dengan GPS Penentuan posisi dengan GPS pada dasarnya dilakukan dengan prinsip pengikatan ke belakang yaitu dengan mengukur jarak dari beberapa satelit yang diketahui posisinya sehingga posisi pengamat dapat dihitung. Pengamatan dengan teknologi GPS menghasilkan koordinat dalam sistem koordinat geodetik (φ, λ, h), koordinat kartesi tiga dimensi (X,Y,Z) dan parameter waktu. Pengukuran jarak pada saat pengamatan dan pengukuran menggunakan teknologi GPS dibagi menjadi dua jenis (Rizos, 1999) yaitu pengukuran pseudorange dan carrier phase. Pengukuran pseudorange merupakan jarak yang diukur dari waktu perambatan sinyal satelit dari satelit ke receiver. Pengukuran dilakukan oleh receiver dengan membandingkan kode yang diterima dari satelit dan replika kode yang diformulasikan dalam receiver. Pengukuran dengan carrier phase merupakan pengukuran yang dilakukan dengan mengukur beda fase sinyal GPS. Proses hitungan dilakukan dengan mengurangkan fase sinyal pembawa dari satelit dengan sinyal yang dibangkitkan dalam receiver. Penentuan posisi dengan teknologi GPS dapat dilakukan dengan dua metode yaitu metode absolut dan metode relatif. Metode absolut atau point positioning merupakan penentuan posisi suatu titik yang dapat ditentukan dengan menggunakan sebuah receiver GPS. Karakteristik dari metode absolut adalah pengukuran yang dilakukan pada satu titik pengamatan, dan pengukuran jarak yang hanya dilakukan dari satelit GNSS ke titik pengamatan berdasarkan jumlah ranging yang terekam oleh antena (Sunantyo, 1999). 8

9 Penentuan posisi relatif melibatkan setidaknya dua receiver GNSS, titik-titik stasiunnya statik (tidak bergerak) maupun bergerak (kinematik) dan pengolahan data umunya dilakukan secara post-processing untuk memperoleh ketelitian yang lebih tinggi (Abidin, 1995). Pada penentuan posisi ini, dilakukan pengurangan data yang diamati oleh dua receiver yang mengamat satelit secara simultan (waktu pengamatan sama). Pengurangan (differencing) ini bisa mereduksi atau mengeliminasi efek kesalahan dan bias. Kesalahan jam receiver dan jam satelit, dapat dihilangkan. Kesalahan dan bias troposfer, ionosfer, dan efemeris dapat direduksi, sedangkan efek multipath tidak dapat direduksi. Differencing ini bisa dalam bentuk single difference, double difference, dan triple difference, masingmasing kombinasi linear differencing tersebut saling berbeda dan berbeda penggunaannya pula. Pada akhirnya, differencing ini akan meningkatkan ketelitian posisi yang didapat dari kondisi penentuan posisi absolut. Penentuan posisi secara diferensial ini bias memakai dua metode, yakni dengan data pseudorange dan data carrier phase (Widjajanti, 2010). I.8.3. Bias dan Kesalahan dalam Penentuan Posisi GPS Bias. Bias didefinisikan sebagai efek-efek pada pengukuran yang menyebabkan jarak sesungguhnya berbeda dengan jarak terukur dengan jumlah yang sistematis dan harus dimasukkan dalam model pengukuran pada pengolahan data. Bias dapat bergantung pada beberapa faktor yaitu bergantung pada satelit, receiver, dan receiver-satelit (Sunantyo,1999). Bias yang bergantung pada satelit yaitu adanya ketidakpastian efemeris, dan adanya ketidakpastian jam satelit. Bias yang bergantung pada receiver yaitu ketidakpastian pada jam receiver, dan koordinat stasiun. Adapula kesalahan yang disebabkan pada receiver-satelit yaitu bias ionosfer, bias troposfer, dan ambiguitas fase pembawa (Sunantyo,1999) Kesalahan. Kesalahan dalam penentuan posisi dengan GPS dapat disebabkan oleh beberapa hal yaitu bias yang tidak termodelkan, cycle slips, mulitipath, pergerakan pusat fase antena, dan kesalahan acak pengamatan (Sunantyo, 2000). 9

10 Dalam pengolahan data GPS, bias dan kesalahan harus diperhitungkan untuk mendapatkan hasil yang kualitasnya baik. Beberapa dari bias dan kesalahan tersebut dapat dihilangkan dengan teknik dan pemodelan tertentu, namun sebagian lagi masih sulit untuk dimodelkan (Sunantyo,1999). I.8.4. Perataan Jaring pada GAMIT/GLOBK Perangkat lunak GAMIT menggunakan metode double difference dan prinsip metode parameter berbobot dalam perhitungan data pseudorange dan carrier phase. Persamaan merupakan persamaan observasi dengan menggunakan data fase. Sebagai contoh, apabila ada dua receiver yang berada pada dua titik stasiun A dan B, dengan vektor koordinat stasiun A dan B dinyatakan sebagai (XA, YA, ZA) dan (XB, YB, ZB). Untuk persamaan double difference, pengamatan dilakukan terhadap dua satelit yaitu j dan k, menghasilkan persamaan umum seperti pada persamaan (I.1) (King dan Bock, 2002) : [ ( ) ] [ ( ) ] [ ( ) ] (I.1) Dalam hal ini, : jarak antara sateit i ke stasiun A i : notasi untuk satelit ke-n A : notasi untuk stasiun ke-m Koordinat stasiun A didefinisikan dengan koordinat pendekatan yaitu,,. Sehingga diperoleh nilai koordinat stasiun A (,, ) menggunakan rumus (I.2), (I.3), dan (I.4) sebagai berikut :.. (I.2).... (I.3).... (I.4) Dalam hal ini,,, : koordinat stasiun A,, : koordinat pendekatan A,, : koreksi posisi stasiun A dari koordinat pendekatan Setelah mendapatkan nilai koordinat stasiun A, selanjutnya dilakukan proses linearisasi persamaan (I.5). Hasilnya terdapat pada persamaan (I.5) : ( ) ( ) ( ) ( ). (I.5) 10

11 Dalam hal ini, i : notasi untuk satelit ke-n i0 : notasi nilai pendekatan jarak antara satelit ke-n dengan stasiun ke-m A : notasi untuk stasiun ke-m Dengan melakukan substitusi persamaan tersebut ke dalam persamaan matriks residu, menghasilkan penyelesaian double difference menjadi persamaan (I.6). ( ) ( ) ( ) ( ) ( ) ( ). (I.6) Dalam hal ini, : besaran double difference ρ : merupakan jarak antara satelit ke titik pengamatan dan λ merupakan panjang gelombang sinyal pembawa Selanjutnya penerapan metode parameter berbobot sehingga menjadi persamaan (I.7). L a = Xa... (I.7) Dengan matriks bobot seperti tertera pada persamaan (I.8) dan persamaan matriks residu pada persamaan (I.9). [ ] (I.8)... (I.9) Dalam hal ini matriks A, X dan L dapat dilihat dalam persamaan (I.10), (I.11), (I.12). [ ( ) ( ) ( ) ]... (I.10) [ ( ) ( )]... (I.11) [ ]... (I.12) Hasil persamaan observasi (I.12) yang telah dilinierisasi menjadi persamaan (I.13). [ ].... (I.13) Jika, 11

12 L : matriks observasi A : matriks desain X : matriks parameter N : ambiguitas fase P : matriks Bobot L : matriks Observasi terkoreksi I.8.5. Hitung Perataan dengan Kalman Filter Metode estimasi parameter dengan kuadrat terkecil yang mampu memecahkan masalah terkait dengan waktu adalah metode Kalman filter. Pembaruan menjadi kunci dari Kalman Filter, artinya adalah ada pengamatan baru pada titik-titik yang sama, maka pengamatan baru ini merubah estimasi parameter hasil hitungan perataan yang sudah dilakukan. Perubahan tersebut dihitung untuk mendapatkan estimasi parameter yang baru. Nilai estimasi yang baru tersebut dapat dinyatakan seperti pernyataan (I.14) (Strang and Borre, 1997). ẋ new = Lẋ old + Kb new.. (I.14) Kunci Kalman Filter ada empat butir sebagai berikut ini (Lestari, 2015). 1. Prosesnya bersifat rekursif, bahwa pengamatan yang lama tidak disimpan sebagai b old, karena sudah digunakan pada estimasi x old. 2. Persamaan (I.14) dapat diturunkan menjadi persamaan baru yang ekivalen dengan memisahkan nilai prediksi dan koreksi sesuai persamaan I.15. ẋ new = ẋ old + K (b new - A new ẋ old ).. (I.15) Berdasarkan persamaan I.15 dapat dilihat pengukuran prediksi A new ẋ old dapat diperoleh dari estimasi parameter ẋold, sedangkan koreksi ẋ adalah besarnya nilai K(b new - Aẋ old ). 3. Pembaruan matriks varian kovarian P. Matriks P adalah matriks kovarian kesalahan dari parameter estimasi ẋ ( ẋ ). P dinyatakan sebagai nilai statistik ẋ berdasarkan nilai statistik b. Matriks P atau matriks varian kovarian kesalahan dari parameter ẋ ini yang diperbarui, apabila ada penambahan pengukuran b new dengan kesalahan pengukuran Σ e,new, seperti persamaan I

13 P new = (I-KA)P old (I-KA) T +KΣ e,new K T. (I.16) 4. Pada butir 1,2,3 masih menggambarkan problem kuadrat terkecil yang sifatnya statis, sedangkan Kalman Filter, merupakan kuadrat terkecil yang digunakan untuk problem dinamik, misalkan pada penentuan posisi dengan GPS, posisi saat k (x k ) belum tentu sama dengan posisi pada saat k-1 (x k-1 ), misalkan ada kesalahan besar k, seperti Persamaan I.17. x k = F k-1 x k-1 +Ɛ k.. (I.17) maka persamaan pengukuran yang baru dijelaskan pada Persamaan I.18, b k =A k x k +e k... (I.18) sehingga proses pembaruan ada dua tahap yaitu prediksi dan koreksi. Proses hitungan pada GLOBK merupakan proses Kalman Filter untuk mengkombinasikan solusi-solusi hasil pengolahan data pengamatan. Ada tiga program utama dalam perangkat lunak GLOBK, yaitu GLOBK, GLRED, dan GLORG. GLOBK merupakan proses Kalman Filter untuk mengkombinasikan data pengolahan harian GAMIT dan untuk mendapatkan estimasi posisi rerata titik pengamatan. GLORG melakukan pengikatan titik-titik pengamatan terhadap titiktitik referensi yang diberikan. GLRED melakukan perhitungan posisi pada masingmasing hari. Proses tersebut menjadikan ketelitian posisi yang diperoleh dapat dibandingkan per waktu tertentu (Herring, 2006). I.8.6. Analisis Hitung Perataan Pengamatan yang dilakukan secara berulang-ulang, menghasilkan data yang beragam, sehingga menyebabkan data hasil pengamatan mengandung kesalahan. Kesalahan tersebut dalam konsep hitung kuadrat terkecil diasumsikan mengikuti persebaran normal. Oleh karena itu uji statistik perlu pada derajat kepercayaan tertentu untuk memastikan bahwa data tersebut tidak mengandung kesalahan. Uji statistik dilakukan dengan melihat kesesuaian antara varian aposteriori ( ) dengan nilai varian apriori ( ) melalui uji global dan data snooping, serta menganalisis nilai fract dan postfit nrms hasil pengolahan dengan GAMIT Uji global dan data snooping. Uji global dilakukan untuk mengetahui ada atau tidaknya kesalahan kasar yang mempengaruhi suatu data 13

14 pengamatan setelah dilakukan hitung perataan (Kuang, 1996). Konsep dalam melakukan uji global ini adalah membandingkan nilai varian aposteriori ( ) dengan nilai varian apriori ( ) dengan menggunakan sebaran fungsi chisquare seperti Persamaan I (I.19) dengan X 2 ϑ V P : nilai chi-square : varian aposteriori : varian apriori : derajat kebebasan (degree of freedom) : matriks koreksi ukuran : matriks bobot Distribusi chi-square tergantung pada tiga hal (Lestari, 2015): 1. spesifikasi presentase probabilitas 2. varian sampel 3. derajat kebebasan (degree of freedom) Convidence interval pada chi-square (Ghilani, 2010) seperti pada persamaan I.20. P(X 2 I-α/2 < X 2 < X 2 α/2 = 1-α) (I.20) Dalam hal ini, P : probabilitas X 2 α : notasi chi-square : presentase kepercayaan Berdasarkan persamaan I.20 dapat dikatakan bahwa uji chi-square diterima jika berada dalam interval batasan tersebut atau lebih kecil dari nilai interval uji global yang digunakan (Ghilani, 2010). Proses hitungan kuadrat terkecil memungkinkan uji global ditolak. Apabila uji global ditolak, maka evaluasi selanjutnya dilakukan terhadap nilai residu masing-masing ukuran melalui proses data snooping. Data snooping dilakukan untuk mencari kesalahan kasar dari suatu data pengukuran (Kuang, 14

15 1996). Teknik ini dilakukan setelah dilakukannya uji global. Dalam melakukan data snooping setiap data diuji untuk menemukan data pengukuran yang mengandung kesalahan kasar. Penyusunan hipotesis diterima jika memenuhi persamaan I.21 berikut :.....(I.21) Dalam hal ini, : residu pengukuran ke-i : simpangan baku pengukuran ke-i Nilai fract dan postfit nrms. Nilai postfit nrms dihitung dengan persamaan I.22 dan I.23 (Herring, dkk., 2006). Postfit nrms =... (I.22) ( ).. (I.23) Dalam hal ini, : varian aposteriori untuk unit bobot : varian apriori untuk unit bobot n : jumlah ukuran u : ukuran minimum Postfit nrms merupakan perbandingan nilai varian aposteriori dan varian apriori untuk unit bobot. Standar kualitas postfit nrms adalah ± 0,25. Apabila nilai postfit nrms lebih besar dari 0,25 maka mengindikasikan masih terdapat efek cycle slip yang belum dihilangkan berkaitan dengan parameter bias ekstra atau terdapat kesalahan dalam pemodelan (Herring, dkk., 2006). Nilai fract merupakan perbandingan antara nilai adjust dan nilai formal. Nilai fract digunakan untuk menganalisis apakah terdapat nilai adjust yang janggal dan perlu tidaknya iterasi untuk mendapatkan nilai adjust yang bebas dari efek nonlinear. Nilai adjust menunjukkan besarnya perataan yang diberikan pada parameter hitungan. Sedangkan nilai formal menunjukkan ketidakpastian pada pemberian bobot untuk perhitungan kuadrat terkecil. Kontrol kualitas nilai fract adalah nilai fract tidak boleh lebih dari 10 (Herring, dkk., 2006). 15

16 Parameter evaluasi lain adalah solusi ambiguitas fase yang dapat diselesaikan untuk Wide Lane (WL) dan Narrow Lane (NL). WL yang baik adalah diatas 90%, jika di bawah angka tersebut mengindikasikan noise pseudorange. Selain itu nilai NL yang baik adalah diatas 80%, jika di bawah angka tersebut mengindikasikan kesalahan pada ukuran dan konfigurasi jaringan, kualitas orbit, koordinat apriori, dan kondisi atmosfer (Herring, 2010) Parameter evaluasi GLOBK. Pengolahan menggunakan GLOBK dilakukan dalam proses harian dan proses global. Proses harian dilakukan menggunakan perintah GLRED. Proses ini menghasilkan plot time series dari hasil pengolahan data harian. Evaluasi dilakukan dengan melihat apakah ada data yang outliers. Kondisi outliers dapat diidentifikasi dari nilai (weight root mean square) wrms kurang dari 10 mm (Lestari, 2006) Analisis Perbandingan Dua Nilai Dalam statistika dan probabilitas, simpangan baku adalah ukuran sebaran statistik yang paling lazim. Singkatnya, ia mengukur bagaimana nilai-nilai data tersebar. Bisa juga didefinisikan sebagai, rata-rata jarak penyimpangan titiktitik data diukur dari nilai rata-rata data tersebut. Simpangan baku didefinisikan sebagai akar kuadrat varians. Simpangan baku merupakan bilangan tak-negatif, dan memiliki satuan yang sama dengan data. Misalnya jika suatu data diukur dalam satuan meter, maka simpangan baku juga diukur dalam meter pula. Istilah simpangan baku pertama kali diperkenakan oleh Karl Pearson pada tahun 1894, dalam bukunya On the dissection of asymmetrical frequency curves. Wilayah data yang berada di antara ± 1 simpangan baku akan berkisar 68.2%, wilayah data yang berada di antara ± 2 simpangan baku akan berkisar 95.4%, dan wilayah data yang berada di antara ± 3 simpangan baku akan berkisar 99.7% (Elrod, dkk, 2002) Distribusi probabilitas yang digunakan dalam analisis adalah distribusi normal. Sifat-sifat distribusi normal adalah Rata-ratanya (mean) μ dan standard deviasinya = σ, mode (maximum) terjadi di x=μ, bentuk simetrik thd x=μ, titik belok tepat di x=μ±σ, kurva mendekati nol secara asimptotis semakin x jauh 16

17 dari x=μ, dan total luasnya = satu. Fungsi rapat probabilitas variabel random X dengan mean μ dan variansi σ 2 yang memiliki distribusi normal terdapat pada persamaan I.24. n ( x;, ) 1 e 2 1 ( x ) (I.24) Uji signifikansi dilakukan untuk mengetahui signifikansi perbedaan dua parameter dengan menggunakan distribusi student pada tingkat kepercayaan dan derajat kebebasan tertentu. Pada penelitian ini, uji signifikansi beda dua parameter digunakan untuk mengetahui signifikansi perbedaan koordinat dan kecepatan pergerakan 12 stasiun pengamatan pada tahun 2003 dan Kriteria pengujian yang digunakan sesuai dengan persamaan I.25 dan persamaan I.26. (Widjajanti, 2010) (I.25) ( )..... (I.26) Dalam hal ini, t : nilai t-hitungan 1 : komponen koordinat pertama stasiun pengamatan 2 : komponen koordinat kedua stasiun pengamatan : simpangan baku komponen koordinat pertama stasiun pengamatan : simpangan baku komponen koordinat kedua stasiun pengamatan Hipotesis nol (Ho) dinyatakan ditolak apabila kriteria tidak sesuai dengan persamaan I.25. Penolakan Ho ini mengindikasikan bahwa dua parameter berbeda secara signifikan. Penerimaan Ho mengindikasikan bahwa dua parameter tidak berbeda signifikan secara statistik. I.8.8. International GNSS Service (IGS) IGS merupakan badan multi nasional yang menyediakan data GPS, informasi ephemeris satelit GPS, serta informasi pendukung keperluan geodetik lainnya. IGS ini didirikan oleh International Association of Geodesy (IAG) pada tahun 1993, dan mulai beroperasi pada tahun Saat ini, IGS memiliki 17

18 stasiun pengamat yang berjumlah sekitar 200 stasiun yang tersebar di permukaan bumi. Persebaran stasiun IGS ditunjukkan pada Gambar 1.2 Gambar I.2. Persebaran titik stasiun IGS (NASA, 2015) Gambar I.2 menujukkan persebaran IGS di permukaan bumi. Data pengamatan IGS biasanya digunakan sebagai titik ikat dalam pengolahan data pengamatan menggunakan teknologi GPS. Data pengamatan IGS dapat diunduh secara gratis di situs Datum Geodetik Global Dinamik Pergerakan lempeng tektonik menyebabkan titik-titik di bumi bergerak sesuai dengan gerak lempeng tektonik tempat titik tersebut, maka posisi spasial titik-titik kontrol yang direferensikan pada sistem koordinat acuan tertentu (misal ITRF) juga berubah, sehingga titik-titik kontrol tersebut tidak lagi dapat dianggap tetap (pada tingkat ketelitian tertentu dan untuk jangka waktu tertentu). Kondisi ini menuntut pemutakhiran data koordinat titik-titik kontrol secara periodik untuk memelihara kehandalan sistem dan kerangka acuan. Kehandalan sistem dan kerangka acuan ini diperlukan karena fungsinya sebagai acuan atau ikatan dalam penentuan posisi spasial titi-titik yang lain (Fahrurrazi, 2011). 18

19 Sebelum ditemukan datum geodetik global, sistem atau datum (lokal) direalisasikan melalui satu titik datum, namun saat ini sistem atau datum geodetik (global) direalisasikan melalui jaring titik kontrol atau fiducial points yang tersebar di permukaan bumi seperti ITRS yang direalisasikan melalui ITRF. Koordinat fiducial points ITRF secara implisit merealisasikan origin dan orientasi salib sumbu kordinat serta skala yang telah didefinisikan. Posisi spasial fiducial points dalam ITRF senantiasa berubah dari waktu ke waktu terutama karena gerak lempeng tektonik, maka koordinat fiducial points tersebut perlu diperbaharui secara periodik. Data ITRF terdiri atas koordinat (X, Y, Z) dan laju pergeseran atau velocity field (Vx, Vy, Vz) pada kala acuan tertentu (Fahrurrazi, 2011). ITRF merupakan kerangka referensi geospasial global sebagai realisasi dari ITRS. Koordinat jaring stasiun ITRF merealisasikan origin dan orientasi sumbu koordinat geodetik (Fahrurrazi, 2011). Sementara itu titik-titik stasiun ITRF senantiasa bergerak karena gerakan lempeng tektonik sehingga koordinatnya juga senantiasa berubah secara dinamis dengan pola (besar dan arah) yang bervariasi antara satu titik dengan titik yang lain. Untuk keperluan pemeliharaan ITRS, maka dilakukan pengamatan secara berkelanjutan di titiktitik stasiun ITRF dengan teknik-teknik VLBI, LLR, GPS, SLR, dan DORIS. Teknik-teknik tersebut senantiasa dikembangkan, sehingga menuntut perkembangan ITRF. Pemutakhiran ITRF secara periodik selama kurun waktu 20 tahun telah menghasilkan 13 versi ITRF, mulai dari ITRF88 sampai dengan ITRF2008. Istilah datum dinamik nampaknya pantas diberikan kepada sistem dan kerangka acuan geodetik yang data koordinat beserta laju pergeseran fiducial points nya dimutakhirkan secara berkala. Tiap versi ITRF merealisasikan secara unik kedudukan origin dan orientasi sumbu koordinat serta skala yang telah didefinisikan. Variasi kecil yang ditemui antara versi ITRF mengindikasikan konsistensi dan kehandalan sistem dan kerangka acuan yang dikembangkan. Dengan adanya variasi antara versi ITRF tersebut maka diperlukan transformasi (datum) untuk menghubungkan atau mengintegrasikan titik-titik yang koordinatnya mengacu pada versi ITRF yang berbeda (Fahrurrazi, 2011). Perbedaan penggunaan ITRF pada pengolahan data GPS 19

20 berdampak pada perbedaan ketelitian estimasi posisi horizontal, besar kecepatan dan arah pergeseran titik-titik kontrol. Pengolahan data GPS menggunakan ITRF terbaru menghasilkan ketelitian yang lebih akurat (Xiangang, dkk., 2013). ITRF 2000 merupakan sebuah solusi yang ditujukan menjadi solusi standar pada jaringan aplikasi yang luas (geodesi, geofisika, navigasi, dll). Hal tersebut tercapai dengan cara menggabungkan posisi dan kecepatan stasiun secara bersamaan menggunakan informasi full variance-covariance yang tersedia dalam format SINEX, yang dilakukan oleh pusat analisis IERS (Boucher, dkk, 2004). Solusi yang terbentuk pada kombinasi yang ada merupakan solusi yang bebas dari kendala eksternal, yang menghasilkan estimasi ruang geodesi aktual dari segi posisi dan kecepatan. Skala ITRF2000 tingkatnya setara dengan rerata dari lima solusi SLR dan tiga solusi VLBI. Orientasi ITRF 2000 selaras dengan ITRF97 dan evolusi waktu orientasi ITRF2000 selaras dengan model geofisika NNR-NUVEL-1A. Orientasi dan evolusi waktu tersebut diimplementasikan menggunakan metode geodetik yang konsisten pada lebih dari 50 situs berkualitas geodetik tinggi. ITRF2000 memiliki sekitar 800 stasiun yang terletak pada sekitar 500 situs (Boucher, dkk, 2004). ITRF2008 merupakan perbaikan terbaru dari ITRS dan didemonstrasikan memiliki kualitas lebih tinggi dibandingkan dengan versi ITRF yang lebih lama (Altamimi, dkk, 2012). Perbaikan tersebut dicapai melalui dua langkah prosedur berikut: 1) menyusun urutan waktu posisi stasiun dan Earth Orientation Parameters (EOPs) yang disediakan oleh 4 IERS Technique Centers (TC), dan 2) menggabungkan solusi jangka panjang yang dihasilkan pada langkah pertama bersamaan dengan ikatan lokal pada situs co-location. Dua langkah prosedur tersebut menggunakan informasi ful variancecovariance yang tersedia dalam format SINEX. Solusi TC yang diperoleh pada kombinasi ITRF2008 merupakan solusi yang bebas dari kendala eksternal, sehingga ia mempertahankan estimasi ruang geodesi aktual pada posisi stasiun, kecepatan, dan EOPs. Skala ITRF2008 ditentukan dengan meniadakan faktor 20

21 skala dan tingkatnya setara dengan rerata VLBI dan solusi jangka panjang SLR yang diperoleh dengan cara menyusun urutan waktu masing-masing. Orientasi dan tingkat ITRF2008 setara dengan ITRF2005 menggunakan 179 stasiun yang memiliki kualitas geodetik tinggi. ITRF2008 mencakup posisi dan kecepatan dari 934 stasiun yang terletak pada 580 situs. Gambar I.3 menunjukkan cakupan dari situs-situs tersebut yang mendasari teknik ruang geodesi (Altamimi, dkk, 2012). Gambar I.3. Jaringan ITRF2008 (Z. Altamimi, dkk, 2014) I Transformasi Datum Geodetik Transformasi datum geodetik ialah transformasi koordinat titik yang mengacu pada satu datum geodetik tertentu ke datum geodetik yang lain. Berkenaan dengan realisasi ITRS oleh ITRFyy, tiap versi atau seri ITRFyy merealisasikan ITRS (sistem atau datum geodetik yang sama) melalui himpunan koordinat dan laju pergeseran fiducial points. Jumlah fiducial points untuk masing-masing ITRF dapat berbeda, namun sebagian besar menduduki titik yang sama (common points). Realisasi ITRS oleh ITRFyy ini bervariasi dari satu ITRFyy ke ITRFyy yang lain. Dengan perkataan lain, tiap versi ITRFyy mengimplikasikan secara unik origin dan orientasi salib sumbu koordinat ITRS, sehingga diperlukan transformasi datum untuk mengintegrasikan titik-titik yang mengacu pada versi ITRF yang bebeda ke dalam versi ITRF yang sama. Demikian pula realisasi WGS84 dengan G730 21

22 pada tahun 1994, G873 pada tahun 1996, dan G1150 pada tahun Variasi antar ITRFyy ditunjukkan oleh nilai besaran parameter transformasi antar ITRFyy ( Fahrurrazi, 2011). Parameter transformasi antar ITRFyy terdiri atas 14 parameter, yaitu besaran translasi origin dan perubahannya (enam parameter), besaran faktor skala dan perbahannya (dua parameter), serta besaran rotasi sumbu koordinat dan berugahannya (enam parameter). Parameter transformasi dari ITRF2008 ke ITRF sebelumnya dapat dilihat pada Tabel I.1. ZII Z R3(θ R1(θ X Δ OII O Δ Δ YII XI R2(θ YI Gambar I.4. Parameter transformasi antar ITRFyy ( Fahrurrazi, 2011) Rumus transformasi (tujuh parameter) digunakan apabila titik bersifat statik seperti pada persamaan I.26. [ ] [ ] ( )[ ] [ ]... (I.26) Rumus transformasi 14 parameter digunakan untuk titk yang bersifatr dinamis (lihat penjabaran dalam Fahrurrazi, 2011): [ ( )] [ ] ( )[ ] [ ( )] [ ( )] ( ) [ ]( ) {( )[ ]( ) ( )[ ]} [ ( )]... (I.27) : kala acuan untuk parameter transformasi datum x : kala acuan untuk koordinat titik dan laju pergeserannya dalam ITRFyy t : kala transformasi ITRFyy ke ITRFzz [ T ] : translasi origin ITRFyy ke origin ITRFzz pada kala 22

23 [ R ] : matriks rotasi dari ITRFyy ke ITRFzz pada kala D : faktor perubahan skala dari ITRFyy ke ITRFzz pada kala Alternatif atau bentuk lain rumus (I.27) ialah pada persamaan I.28. [ ( )] [ ( ) ( )] [ { ( ) ( )}][ ][ ( )]... (I.28) Tabel I.1 Parameter transformasi dari ITRF2008 ke ITRF sebelumnya (Sumber: IERS Technical Note No.36) ITRF T1 (mm) T2 (mm) T3 (mm) D (ppb) R1 (mas) R2 (mas) ITRF2005-2,0-0,9-4,7 0,94 0,00 0,00 Laju 0,3 0,0 0,0 0,00 0,00 0,00 ITRF2000-1,9-1,7-10,5 1,34 0,00 0,00 Laju 0,1 0,1-1,8 0,08 0,00 0,00 ITRF97 4,8 2,6-33,2 2,92 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF96 4,8 2,6-33,2 2,92 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF94 4,8 2,6-33,2 2,92 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF93-24,0 2,4-38,6 3,41-1,71-1,48 Laju -2,8-0,1-2,4 0,09-0,11-0,19 ITRF92 12,8 4,6-41,2 2,21 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF91 24,8 18,6-47,2 3,61 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF90 22,8 14,6-63,2 3,91 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF89 27,8 38,6-101,2 7,31 0,00 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ITRF88 22,8 2,6-125,2 10,41 0,10 0,00 Laju 0,1-0,5-3,2 0,09 0,00 0,00 ppb = part per billion (10-9 ); mas = 0,001 ; laju perubahan (rates) per tahun R3 (mas) 0,00 0,00 0,00 0,00 0,06 0,02 0,06 0,02 0,06 0,02-0,30 0,07 0,06 0,02 0,06 0,02 0,06 0,02 0,06 0,02 0,06 0,02 Kala Acuan 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 2000,0 I.9. Hipotesis ITRF terbaru menggambarkan kemajuan yang pesat pada pembuatan solusi, pendefinisian datum, dan realisasi data. Berdasarkan hal tersebut, hipotesis dari penelitian ini adalah penggunaan kerangka acuan global ITRF 2008 pada analisis pergeseran posisi Candi Borobudur dengan data tahun 2003 dan tahun 2012 menghasilkan ketelitian yang lebih baik jika dibandingkan menggunakan kerangka acuan global ITRF

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang 1 BAB I PENDAHULUAN I.1. Latar Belakang Kepulauan Sangihe merupakan pulau yang terletak pada pertemuan tiga lempeng besar yaitu Philippine sea plate, Carolin plate dan Pacific plate. Pertemuan tiga lempeng

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang. Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan

BAB I PENDAHULUAN. I.1. Latar Belakang. Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan BAB I PENDAHULUAN I.1. Latar Belakang Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan metode terestris dan ekstra-terestris. Penentuan posisi dengan metode terestris dilakukan dengan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengecekan Kualitas Data Observasi Dengan TEQC Kualitas dari data observasi dapat ditunjukkan dengan melihat besar kecilnya nilai moving average dari multipath untuk

Lebih terperinci

BAB I PENDAHULUAN. Latar Belakang

BAB I PENDAHULUAN. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Sebagai salah satu situs warisan budaya dunia, Candi Borobudur senantiasa dilakukan pengawasan serta pemantauan baik secara strukural candi, arkeologi batuan candi,

Lebih terperinci

PENGGUNAAN TITIK IKAT GPS REGIONAL DALAM PENDEFINISIAN STASIUN AKTIF GMU1 YANG DIIKATKAN PADA ITRF Sri Rezki Artini ABSTRAK

PENGGUNAAN TITIK IKAT GPS REGIONAL DALAM PENDEFINISIAN STASIUN AKTIF GMU1 YANG DIIKATKAN PADA ITRF Sri Rezki Artini ABSTRAK PENGGUNAAN TITIK IKAT GPS REGIONAL DALAM PENDEFINISIAN STASIUN AKTIF GMU1 YANG DIIKATKAN PADA ITRF 2008 Sri Rezki Artini Staf pengajar Teknik Sipil, Fakultas Teknik, Politeknik Negeri Sriwijaya Jalan.

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang. Lempeng Eurasia. Lempeng Indo-Australia

BAB I PENDAHULUAN. I.1. Latar Belakang. Lempeng Eurasia. Lempeng Indo-Australia BAB I PENDAHULUAN I.1. Latar Belakang Indonesia terletak pada pertemuan antara tiga lempeng besar yakni lempeng Eurasia, Hindia-Australia, dan Pasifik yang menjadikan Indonesia memiliki tatanan tektonik

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Pada era yang semakin modern ini mengakibatkan pesatnya perkembangan teknologi. Salah satunya adalah teknologi untuk penentuan posisi, yaitu seperti Global Navigation

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) Konsep Penentuan Posisi Dengan GPS

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) Konsep Penentuan Posisi Dengan GPS BAB 2 DASAR TEORI 2.1 Global Positioning System (GPS) 2.1.1 Konsep Penentuan Posisi Dengan GPS GPS (Global Positioning System) merupakan sistem satelit navigasi dan penentuan posisi menggunakan satelit.

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BB I PENDHULUN I.1. Latar Belakang Pengukuran geodesi dilakukan di atas bumi fisis yang bentuknya tidak beraturan. Untuk memudahkan dalam perhitungan data hasil pengukuran, bumi dimodelkan dalam suatu

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. 1 BAB I PENDAHULUAN I.1. Latar Belakang Sumber energi minyak bumi dan gas alam mempunyai peranan penting dalam menunjang keberlangsungan berbagai aktifitas yang dilakukan manusia. Seiring perkembangan

Lebih terperinci

Jurnal Geodesi Undip Januari 2014

Jurnal Geodesi Undip Januari 2014 Verifikasi TDT Orde 2 BPN dengan Stasiun CORS BPN-RI Kabupaten Grobogan Rizna Trinayana, Bambang Darmo Yuwono, L. M. Sabri *) Program Studi Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro Jl. Prof

Lebih terperinci

BAB I PENDAHULUAN. tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab. I.1. Latar Belakang

BAB I PENDAHULUAN. tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab. I.1. Latar Belakang BAB I PENDAHULUAN Bab pendahuluan ini terdiri dari dua sub bab yaitu latar belakang serta tujuan dan manfaat penelitian. Berikut ini uraian dari masing-masing sub bab tersebut. I.1. Latar Belakang Dinamika

Lebih terperinci

GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc

GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc www.pelagis.net 1 Materi Apa itu GPS? Prinsip dasar Penentuan Posisi dengan GPS Penggunaan GPS Sistem GPS Metoda Penentuan Posisi dengan GPS Sumber Kesalahan

Lebih terperinci

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2013 /2001 TENTANG SISTEM REFERENSI GEOSPASIAL INDONESIA 2013

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2013 /2001 TENTANG SISTEM REFERENSI GEOSPASIAL INDONESIA 2013 PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2013 /2001 TENTANG SISTEM REFERENSI GEOSPASIAL INDONESIA 2013 DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN INFORMASI GEOSPASIAL, Menimbang :

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Gempa bumi pada tahun 2006 yang terjadi di Yogyakarta mengindikasikan keberadaan Sesar Opak. Sesar Opak adalah sesar yang terletak di sekitar sebelah barat Sungai

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Pengolahan Data Data GPS yang digunakan pada Tugas Akhir ini adalah hasil pengukuran secara kontinyu selama 2 bulan, yang dimulai sejak bulan Oktober 2006 sampai November 2006

Lebih terperinci

BAB III GLOBAL POSITIONING SYSTEM (GPS)

BAB III GLOBAL POSITIONING SYSTEM (GPS) BAB III GLOBAL POSITIONING SYSTEM (GPS) III. 1 GLOBAL POSITIONING SYSTEM (GPS) Global Positioning System atau GPS adalah sistem radio navigasi dan penentuan posisi menggunakan satelit [Abidin, 2007]. Nama

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN I.1. Latar Belakang Badan Pertanahan Nasional (BPN) merupakan suatu Lembaga Pemerintah yang mempunyai tugas melaksanakan tugas pemerintahan di bidang pertanahan secara nasional, regional

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang 1 BAB I PENDAHULUAN I.1 Latar Belakang Kepulauan Sangihe merupakan kabupaten pemekaran yang berada di 244 km utara Manado ibukota Provinsi Sulawesi Utara. Kabupaten Kepuluan Sangihe berada di antara dua

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. 1 BAB I PENDAHULUAN I.1. Latar Belakang Jalan layang Jombor terletak di Kabupaten Sleman, Yogyakarta merupakan simpang empat dengan kepadatan lalu lintas yang cukup tinggi, karena merupakan salah satu

Lebih terperinci

Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015

Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015 A389 Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015 Joko Purnomo, Ira Mutiara Anjasmara, dan Sulistiyani Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL

PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL PILAR Jurnal Teknik Sipil, Volume 10, No. 1, Maret 2014 PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN

Lebih terperinci

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL Oleh : Syafril Ramadhon ABSTRAK Ketelitian data Global Positioning Systems (GPS) dapat

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA IV.1 SOFTWARE BERNESE 5.0 Pengolahan data GPS High Rate dilakukan dengan menggunakan software ilmiah Bernese 5.0. Software Bernese dikembangkan oleh Astronomical Institute University

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN I.1 Latar Belakang Jembatan adalah suatu struktur konstruksi yang memungkinkan rute transportasi melintasi sungai, danau, jalan raya, jalan kereta api dan lainlain.jembatan merupakan

Lebih terperinci

PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM

PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM UU no. 4 Tahun 2011 tentang INFORMASI GEOSPASIAL Istilah PETA --- Informasi Geospasial Data Geospasial :

Lebih terperinci

PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL

PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL PENENTUAN KOORDINAT STASIUN GNSS CORS GMU1 DENGAN KOMBINASI TITIK IKAT GPS GLOBAL DAN REGIONAL Sri Rezki Artini Staf pengajar Teknik Sipil, Fakultas Teknik, Politeknik Negeri Sriwijaya, Jalan Srijaya Negara

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN IV.1 Pengecekan dengan TEQC Data pengamatan GPS terlebih dahulu dilakukan pengecekan untuk mengetahui kualitas data dari masing-masing titik pengamatan dengan menggunakan program

Lebih terperinci

PENENTUAN POSISI DENGAN GPS

PENENTUAN POSISI DENGAN GPS PENENTUAN POSISI DENGAN GPS Disampaikan Dalam Acara Workshop Geospasial Untuk Guru Oleh Ir.Endang,M.Pd, Widyaiswara BIG BADAN INFORMASI GEOSPASIAL (BIG) Jln. Raya Jakarta Bogor Km. 46 Cibinong, Bogor 16911

Lebih terperinci

Datum dan Ellipsoida Referensi

Datum dan Ellipsoida Referensi Datum dan Ellipsoida Referensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Datum Geodetik Datum Geodetik adalah parameter yang mendefinisikan

Lebih terperinci

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik 83 BAB VII ANALISIS 7.1 Analisis Komponen Airborne LIDAR Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik dengan memanfaatkan sinar laser yang ditembakkan dari wahana

Lebih terperinci

Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech ASH111661

Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech ASH111661 A369 Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech I Gede Brawiswa Putra, Mokhamad Nur Cahyadi Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

BAB I PENDAHULUAN. Halaman Latar Belakang

BAB I PENDAHULUAN. Halaman Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Satelit GPS beredar mengelilingi bumi pada ketinggian sekitar 20.200 km. Satelit GPS tersebut berada di atas atmosfer bumi yang terdiri dari beberapa lapisan dan ditandai

Lebih terperinci

METODE PENENTUAN POSISI DENGAN GPS

METODE PENENTUAN POSISI DENGAN GPS METODE PENENTUAN POSISI DENGAN GPS METODE ABSOLUT Metode Point Positioning Posisi ditentukan dalam sistem WGS 84 Pronsip penentuan posisi adalah reseksi dengan jarak ke beberapa satelit secara simultan

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Digital earth surface mapping dapat dilakukan dengan teknologi yang beragam, diantaranya metode terestris, ekstra terestris, pemetaan fotogrametri, citra satelit,

Lebih terperinci

BAB II TINJAUAN MENGENAI GPS DALAM SISTEM AIRBORNE LIDAR

BAB II TINJAUAN MENGENAI GPS DALAM SISTEM AIRBORNE LIDAR 7 BAB II TINJAUAN MENGENAI GPS DALAM SISTEM AIRBORNE LIDAR Bagian pertama dari sistem LIDAR adalah Global Positioning System (GPS). Fungsi dari GPS adalah untuk menentukan posisi (X,Y,Z atau L,B,h) wahana

Lebih terperinci

BAB I PENDAHULUAN. Gambar I.1. Cuplikan data kegempaan wilayah Sumatera bagian utara tahun 2011 (BMKG, 2015)

BAB I PENDAHULUAN. Gambar I.1. Cuplikan data kegempaan wilayah Sumatera bagian utara tahun 2011 (BMKG, 2015) 1 BAB I PENDAHULUAN I.1. Latar belakang Pulau Sumatera merupakan salah satu pulau yang mempunyai aktifitas geodinamika yang cukup tinggi di Indonesia. Aktifitas geodinamika yang tinggi di Indonesia disebabkan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Gunungapi

BAB II DASAR TEORI. 2.1 Gunungapi BAB II DASAR TEORI 2.1 Gunungapi Gunungapi terbentuk sejak jutaan tahun lalu hingga sekarang. Pengetahuan tentang gunungapi berawal dari perilaku manusia dan manusia purba yang mempunyai hubungan dekat

Lebih terperinci

BAB 3 PENGOLAHAN DATA DAN HASIL. 3.1 Data yang Digunakan

BAB 3 PENGOLAHAN DATA DAN HASIL. 3.1 Data yang Digunakan BAB 3 PENGOLAHAN DATA DAN HASIL 3.1 Data yang Digunakan Data GPS yang digunakan dalam kajian kemampuan kinerja perangkat lunak pengolah data GPS ini (LGO 8.1), yaitu merupakan data GPS yang memiliki panjang

Lebih terperinci

BAB II Studi Potensi Gempa Bumi dengan GPS

BAB II Studi Potensi Gempa Bumi dengan GPS BAB II Studi Potensi Gempa Bumi dengan GPS 2.1 Definisi Gempa Bumi Gempa bumi didefinisikan sebagai getaran pada kerak bumi yang terjadi akibat pelepasan energi secara tiba-tiba. Gempa bumi, dalam hal

Lebih terperinci

Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah GAMIT/GLOBK 10.6

Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah GAMIT/GLOBK 10.6 A432 Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah /GLOBK 10.6 Andri Arie Rahmad, Mokhamad Nur Cahyadi, Sulistiyani Jurusan Teknik Geomatika, Fakultas Teknik

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. 1 BB I PENDHULUN I.1. Latar Belakang Pada zaman sekarang teknologi mengalami perkembangan yang sangat pesat, tak terkecuali teknologi dalam bidang survei dan pemetaan. Salah satu teknologi yang sedang

Lebih terperinci

SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI. Oleh: Andri Oktriansyah

SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI. Oleh: Andri Oktriansyah SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI Oleh: Andri Oktriansyah JURUSAN SURVEI DAN PEMETAAN UNIVERSITAS INDO GLOBAL MANDIRI PALEMBANG 2017 Pengukuran Detil Situasi dan Garis Pantai

Lebih terperinci

PEMANTAUAN POSISI ABSOLUT STASIUN IGS

PEMANTAUAN POSISI ABSOLUT STASIUN IGS PEMANTAUAN POSISI ABSOLUT STASIUN IGS (Sigit Irfantono*, L. M. Sabri, ST., MT.**, M. Awaluddin, ST., MT.***) *Mahasiswa Teknik Geodesi Universitas Diponegoro. **Dosen Pembimbing I Teknik Geodesi Universitas

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Salah satu tahapan dalam pengadaan jaring kontrol GPS adalah desain jaring. Desain jaring digunakan untuk mendapatkan jaring yang optimal. Terdapat empat tahapan dalam

Lebih terperinci

B A B IV HASIL DAN ANALISIS

B A B IV HASIL DAN ANALISIS B A B IV HASIL DAN ANALISIS 4.1 Output Sistem Setelah sistem ini dinyalakan, maka sistem ini akan terus menerus bekerja secara otomatis untuk mendapatkan hasil berupa karakteristik dari lapisan troposfer

Lebih terperinci

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP Oleh A. Suradji, GH Anto, Gunawan Jaya, Enda Latersia Br Pinem, dan Wulansih 1 INTISARI Untuk meningkatkan

Lebih terperinci

ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP

ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP Oleh : Syafril Ramadhon ABSTRAK Metode Real Time Point Precise Positioning (RT-PPP) merupakan teknologi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Penelitian Sebelumnya Penelitian ini merujuk ke beberapa penelitian sebelumnya yang membahas mengenai deformasi jembatan dan beberapa aplikasi penggunaan GPS (Global Positioning

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar belakang. tatanan tektonik yang kompleks. Pada bagian barat Indonesia terdapat subduksi

BAB I PENDAHULUAN. I.1. Latar belakang. tatanan tektonik yang kompleks. Pada bagian barat Indonesia terdapat subduksi BAB I PENDAHULUAN I.1. Latar belakang Indonesia terletak pada pertemuan antara tiga lempeng besar yakni lempeng Eurasia, Hindia-Australia, dan Pasifik yang menjadikan Indonesia memiliki tatanan tektonik

Lebih terperinci

STUDI EVALUASI METODE PENGUKURAN STABILITAS CANDI BOROBUDUR DAN BUKIT

STUDI EVALUASI METODE PENGUKURAN STABILITAS CANDI BOROBUDUR DAN BUKIT STUDI EVALUASI METODE PENGUKURAN STABILITAS CANDI BOROBUDUR DAN BUKIT Oleh Joni Setyawan, S.T. Balai Konservasi Peninggalan Borobudur ABSTRAK Candi Borobudur sebagai sebuah peninggalan bersejarah bagi

Lebih terperinci

BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY

BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY 3.1 Akuisisi Data Data yang dibutuhkan dalam pengolahan data dikategorikan menjadi data observasi dan data meteorologi. Setiap data yang diambil berpengaruh

Lebih terperinci

On The Job Training PENGENALAN CORS (Continuously Operating Reference Station)

On The Job Training PENGENALAN CORS (Continuously Operating Reference Station) On The Job Training PENGENALAN CORS (Continuously Operating Reference Station) Direktorat Pengukuran Dasar Deputi Survei, Pengukuran Dan Pemetaan Badan Pertanahan Nasional Republik Indonesia 2011 MODUL

Lebih terperinci

MODUL 3 GEODESI SATELIT

MODUL 3 GEODESI SATELIT MODUL 3 GEODESI SATELIT A. Deskripsi Singkat Geodesi Satelit merupakan cabang ilmu Geodesi yang dengan bantuan teknologi Satelite dapat menjawab persoalan-persoalan Geodesi seperti Penentuan Posisi, Jarak

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BB I PENDHULUN I.1. Latar Belakang Sumatera merupakan salah satu pulau di Indonesia dengan dinamika bumi yang tinggi. Hal ini disebabkan di wilayah ini terdapat pertemuan dua lempeng tektonik yaitu Lempeng

Lebih terperinci

BAB I PENDAHULUAN I. 1. Latar Belakang

BAB I PENDAHULUAN I. 1. Latar Belakang 1 BAB I PENDAHULUAN I. 1. Latar Belakang Candi Borobudur adalah bangunan yang memiliki nilai historis tinggi. Bangunan ini menjadi warisan budaya bangsa Indonesia maupun warisan dunia. Candi yang didirikan

Lebih terperinci

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK Lysa Dora Ayu Nugraini, Eko Yuli Handoko, ST, MT Program Studi Teknik Geomatika, FTSP ITS-Sukolilo, Surabaya

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang. bentuk spasial yang diwujudkan dalam simbol-simbol berupa titik, garis, area, dan

BAB I PENDAHULUAN. I.1. Latar Belakang. bentuk spasial yang diwujudkan dalam simbol-simbol berupa titik, garis, area, dan BAB I PENDAHULUAN I.1. Latar Belakang Gambar situasi adalah gambaran wilayah atau lokasi suatu kegiatan dalam bentuk spasial yang diwujudkan dalam simbol-simbol berupa titik, garis, area, dan atribut (Basuki,

Lebih terperinci

Penentuan Posisi dengan GPS

Penentuan Posisi dengan GPS Penentuan Posisi dengan GPS Dadan Ramdani Penggunaan GPS sekarang ini semaikin meluas. GPS di disain untuk menghasilkan posisi tiga dimensi secara cepat dan akurat tanpa tergantung waktu dan cuaca. Beberapa

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang

BAB I PENDAHULUAN. I.1. Latar Belakang BB I PENDHULUN I.1. Latar Belakang Indonesia merupakan negara kepulauan yang terletak pada pertemuan tiga lempeng benua, yaitu lempeng Eurasia, Indo-ustralia, dan Pasifik yang menjadikan Indonesia memiliki

Lebih terperinci

PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK

PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK Oleh : Syafril Ramadhon ABSTRAK Salah satu kegiatan eksplorasi seismic di darat adalah kegiatan topografi seismik. Kegiatan ini bertujuan

Lebih terperinci

PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI

PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG Winardi Puslit Oseanografi - LIPI Sekilas GPS dan Kegunaannya GPS adalah singkatan dari Global Positioning System yang merupakan sistem untuk menentukan

Lebih terperinci

TUGAS 1 ASISTENSI GEODESI SATELIT. Sistem Koordinat CIS dan CTS

TUGAS 1 ASISTENSI GEODESI SATELIT. Sistem Koordinat CIS dan CTS TUGAS 1 ASISTENSI GEODESI SATELIT KELAS A Sistem Koordinat CIS dan CTS Oleh : Enira Suryaningsih (3513100036) Dosen : JURUSAN TEKNIK GEOMATIKA FAKULTAS TEKNIK SIPIL DAN PERENCANAAN INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

Studi Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System

Studi Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System Studi Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System Akbar.K 1 *, M.Taufik 1 *, E.Y.Handoko 1 * Teknik Geomatika, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesi Email : akbar@geodesy.its.ac.id

Lebih terperinci

Jurnal Geodesi Undip Januari 2017

Jurnal Geodesi Undip Januari 2017 KAJIAN PENENTUAN POSISI JARING KONTROL HORIZONTAL DARI SISTEM TETAP (DGN-95) KE SRGI (Studi Kasus : Sulawesi Barat) Amirul Hajri, Bambang Darmo Yuwono, Bandi Sasmito *) Program Studi Teknik Geodesi Fakultas

Lebih terperinci

ANALISIS PERBANDINGAN PARAMETER TRANSFORMASI ANTAR ITRF HASIL HITUNGAN KUADRAT TERKECIL MODEL HELMERT 14-PARAMETER DENGAN PARAMETER STANDAR IERS

ANALISIS PERBANDINGAN PARAMETER TRANSFORMASI ANTAR ITRF HASIL HITUNGAN KUADRAT TERKECIL MODEL HELMERT 14-PARAMETER DENGAN PARAMETER STANDAR IERS ANALISIS PERBANDINGAN PARAMETER TRANSFORMASI ANTAR ITRF HASIL HITUNGAN KUADRAT TERKECIL MODEL HELMERT 14-PARAMETER DENGAN PARAMETER STANDAR IERS Romi Fadly 1) Citra Dewi 1) Abstract This research aims

Lebih terperinci

Jurnal Geodesi Undip Oktober 2015

Jurnal Geodesi Undip Oktober 2015 PERHITUNGAN DEFORMASI GEMPA KEBUMEN 2014 DENGAN DATA CORS GNSS DI WILAYAH PANTAI SELATAN JAWA TENGAH Budi Prayitno, Moehammad Awaluddin, Bambang Sudarsono *) Program Studi Teknik Geodesi Fakultas Teknik

Lebih terperinci

BAB I. PENDAHULUAN. Kota Semarang berada pada koordinat LS s.d LS dan

BAB I. PENDAHULUAN. Kota Semarang berada pada koordinat LS s.d LS dan BAB I. PENDAHULUAN I.1. Latar Belakang Kota Semarang berada pada koordinat 6 0 55 34 LS s.d. 7 0 07 04 LS dan 110 0 16 20 BT s.d. 110 0 30 29 BT memiliki wilayah pesisir di bagian utara dengan garis pantai

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS)

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) BAB 2 DASAR TEORI 2.1 Global Positioning System (GPS) Pembahasan dasar teori GPS pada subbab ini merupakan intisari dari buku Penentuan Posisi dengan GPS dan Aplikasinya oleh [Abidin, 2007] dan SURVEI

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang GPS adalah sistem satelit navigasi dan penentuan posisi menggunakan wahana satelit. Sistem yang dapat digunakan oleh banyak orang sekaligus dalam segala cuaca ini,

Lebih terperinci

BAB IV ANALISIS. Lama Pengamatan GPS. Gambar 4.1 Perbandingan lama pengamatan GPS Pangandaran kala 1-2. Episodik 1 Episodik 2. Jam Pengamatan KRTW

BAB IV ANALISIS. Lama Pengamatan GPS. Gambar 4.1 Perbandingan lama pengamatan GPS Pangandaran kala 1-2. Episodik 1 Episodik 2. Jam Pengamatan KRTW BAB IV ANALISIS Dalam bab ke-4 ini dibahas mengenai analisis dari hasil pengolahan data dan kaitannya dengan tujuan dan manfaat dari penulisan tugas akhir ini. Analisis dilakukan terhadap data pengamatan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang GPS (Global Positioning System) adalah sistem satelit navigasi dan penetuan posisi yang dimiliki dan dikelola oleh Amerika Serikat. Sistem ini didesain untuk memberikan

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sistem satelit navigasi adalah sistem yang digunakan untuk menentukan posisi di bumi dengan menggunakan teknologi satelit. Sistem ini memungkinkan sebuah alat elektronik

Lebih terperinci

BAB II SISTEM SATELIT NAVIGASI GPS

BAB II SISTEM SATELIT NAVIGASI GPS BAB II SISTEM SATELIT NAVIGASI GPS Satelit navigasi merupakan sistem radio navigasi dan penentuan posisi menggunakan satelit. Satelit dapat memberikan posisi suatu objek di muka bumi dengan akurat dan

Lebih terperinci

Transformasi Datum dan Koordinat

Transformasi Datum dan Koordinat Transformasi Datum dan Koordinat Sistem Transformasi Koordinat RG091521 Lecture 6 Semester 1, 2013 Jurusan Pendahuluan Hubungan antara satu sistem koordinat dengan sistem lainnya diformulasikan dalam bentuk

Lebih terperinci

BAB 1 Pendahuluan 1.1.Latar Belakang

BAB 1 Pendahuluan 1.1.Latar Belakang BAB 1 Pendahuluan 1.1.Latar Belakang Perubahan vertikal muka air laut secara periodik pada sembarang tempat di pesisir atau di lautan merupakan fenomena alam yang dapat dikuantifikasi. Fenomena tersebut

Lebih terperinci

Jurnal Geodesi Undip April 2016

Jurnal Geodesi Undip April 2016 ANALISIS PENGOLAHAN DATA GPS MENGGUNAKAN PERANGKAT LUNAK RTKLIB Desvandri Gunawan, Bambang Darmo Yuwono, Bandi Sasmito *) Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro Jl. Prof. Sudarto

Lebih terperinci

BAB II CORS dan Pendaftaran Tanah di Indonesia

BAB II CORS dan Pendaftaran Tanah di Indonesia BAB II CORS dan Pendaftaran Tanah di Indonesia Tanah merupakan bagian dari alam yang tidak dapat dipisahkan dari kehidupan umat manusia. Hampir seluruh kegiatan manusia dilakukan di atas bidang tanah.

Lebih terperinci

BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA

BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA 3.1 Pengamatan Data Salah satu cara dalam memahami gempa bumi Pangandaran 2006 adalah dengan mempelajari deformasi yang mengiringi terjadinya gempa bumi

Lebih terperinci

B A B I PENDAHULUAN. 1.1 Latar Belakang. bab 1 pendahuluan

B A B I PENDAHULUAN. 1.1 Latar Belakang. bab 1 pendahuluan B A B I PENDAHULUAN 1.1 Latar Belakang Satelit-satelit GPS beredar mengelilingi bumi jauh di atas permukaan bumi yaitu pada ketinggian sekitar 20.200 km dimana satelit tersebut berputar mengelilingi bumi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.. Latar Belakang Pulau Sumatra merupakan pulau yang terletak pada zona subduksi lempeng Eurasia dengan Indo-Australia di wilayah barat Indonesia. Zona subduksi ini merupakan zona yang

Lebih terperinci

Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (Sumatran GPS Array)

Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (Sumatran GPS Array) Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (n GPS Array) Bima Pramudya Khawiendratama 1), Ira Mutiara Anjasmara 2), dan Meiriska Yusfania 3) Jurusan Teknik Geomatika,

Lebih terperinci

BAB 2 STUDI REFERENSI

BAB 2 STUDI REFERENSI BAB 2 STUDI REFERENSI Pada bab ini akan dijelaskan berbagai macam teori yang digunakan dalam percobaan yang dilakukan. Teori-teori yang didapatkan merupakan hasil studi dari beragai macam referensi. Akan

Lebih terperinci

Mengapa proyeksi di Indonesia menggunakan WGS 84?

Mengapa proyeksi di Indonesia menggunakan WGS 84? Nama : Muhamad Aidil Fitriyadi NPM : 150210070005 Mengapa proyeksi di Indonesia menggunakan WGS 84? Jenis proyeksi yang sering di gunakan di Indonesia adalah WGS-84 (World Geodetic System) dan UTM (Universal

Lebih terperinci

Jurnal Geodesi Undip Oktober 2013

Jurnal Geodesi Undip Oktober 2013 Analisis Ketelitian Pengukuran Baseline Panjang GNSS Dengan Menggunakan Perangkat Lunak Gamit 10.4 dan Topcon Tools V.7 Maulana Eras Rahadi 1) Moehammad Awaluddin, ST., MT 2) L. M Sabri, ST., MT 3) 1)

Lebih terperinci

Penggunaan Egm 2008 Pada Pengukuran Gps Levelling Di Lokasi Deli Serdang- Tebing Tinggi Provinsi Sumatera Utara

Penggunaan Egm 2008 Pada Pengukuran Gps Levelling Di Lokasi Deli Serdang- Tebing Tinggi Provinsi Sumatera Utara Penggunaan Egm 2008 Pada Pengukuran Gps Levelling Di Lokasi Deli Serdang- Tebing Tinggi Provinsi Sumatera Utara Reza Mohammad Ganjar Gani, Didin Hadian, R Cundapratiwa Koesoemadinata Abstrak Jaring Kontrol

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Tertib administrasi bidang tanah di Indonesia diatur dalam suatu Peraturan Pemerintah Nomor 24 tahun 1997 tentang Pendaftaran Tanah. Peraturan Pemerintah tersebut memuat

Lebih terperinci

sensing, GIS (Geographic Information System) dan olahraga rekreasi

sensing, GIS (Geographic Information System) dan olahraga rekreasi GPS (Global Positioning System) Global positioning system merupakan metode penentuan posisi ekstra-teristris yang menggunakan satelit GPS sebagai target pengukuran. Metode ini dinamakan penentuan posisi

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Kebutuhan akan data batimetri semakin meningkat seiring dengan kegunaan data tersebut untuk berbagai aplikasi, seperti perencanaan konstruksi lepas pantai, aplikasi

Lebih terperinci

BAB I PENDAHULUAN I.1.

BAB I PENDAHULUAN I.1. BAB I PENDAHULUAN I.1. Latar Belakang Continuously Operating Reference Station (CORS) adalah sistem jaringan kontrol yang beroperasi secara berkelanjutan untuk acuan penentuan posisi Global Navigation

Lebih terperinci

Jurnal Geodesi Undip Januari 2017

Jurnal Geodesi Undip Januari 2017 PERHITUNGAN VELOCITY RATE CORS GNSS DI PULAU SULAWESI Haris Yusron, Bambang Darmo Yuwono, Moehammad Awaluddin *) Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro Jl. Prof. Sudarto SH,

Lebih terperinci

Evaluasi Spesifikasi Teknik pada Survei GPS

Evaluasi Spesifikasi Teknik pada Survei GPS Reka Geomatika Jurusan Teknik Geodesi Itenas No. 2 Vol. 1 ISSN 2338-350X Desember 2013 Jurnal Online Institut Teknologi Nasional Evaluasi Spesifikasi Teknik pada Survei GPS MUHAMMAD FARIZI GURANDHI, BAMBANG

Lebih terperinci

BAB II DASAR TEORI II-1

BAB II DASAR TEORI II-1 BAB II DASAR TEORI II.1. GNSS (Global Navigation Satellite System) GNSS (Global Navigation Satellite System) adalah suatu sistem satelit yang terdiri dari konstelasi satelit yang menyediakan informasi

Lebih terperinci

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA,

PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA, PERATURAN KEPALA BADAN INFORMASI GEOSPASIAL NOMOR 15 TAHUN 2014 TENTANG PEDOMAN TEKNIS KETELITIAN PETA DASAR DENGAN RAHMAT TUHAN YANG MAHA ESA, Menimbang : a. bahwa dalam penetapan standar ketelitian peta

Lebih terperinci

BAB IV ANALISIS. Ditorsi radial jarak radial (r)

BAB IV ANALISIS. Ditorsi radial jarak radial (r) BAB IV ANALISIS 4.1. Analisis Kalibrasi Kamera Analisis kalibrasi kamera didasarkan dari hasil percobaan di laboratorium dan hasil percobaan di lapangan. 4.1.1. Laboratorium Dalam penelitian ini telah

Lebih terperinci

I Elevasi Puncak Dermaga... 31

I Elevasi Puncak Dermaga... 31 DAFTAR ISI HALAMAN JUDUL... i HALAMAN PENGESAHAN... v HALAMAN PERNYATAAN.. vi HALAMAN PERSEMBAHAN... vii INTISARI... viii ABSTRACT... ix KATA PENGANTAR...x DAFTAR ISI... xii DAFTAR GAMBAR... xvi DAFTAR

Lebih terperinci

Jurnal Geodesi Undip Oktober 2017

Jurnal Geodesi Undip Oktober 2017 ANALISIS DEFORMASI DI WILAYAH JAWA TIMUR DENGAN MENGGUNKAN CORS BIG Renaud Saputra, M. Awaluddin, Bambang Darmo Yuwono *) Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro Jl. Prof. Sudarto,

Lebih terperinci

BAB I PENDAHULUAN I.1. Latar Belakang

BAB I PENDAHULUAN I.1. Latar Belakang BAB I PENDAHULUAN I.1. Latar Belakang Indonesia merupakan salah satu negara di dunia dengan peradaban masa lampau yang sangat megah. Peninggalan peradaban masa lampau tersebut masih dapat dinikmati hingga

Lebih terperinci

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN METODE PENGUKURAN GPS KINEMATIK

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN METODE PENGUKURAN GPS KINEMATIK ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN METODE PENGUKURAN GPS KINEMATIK Oleh : Lysa Dora Ayu Nugraini 3507 100 012 Dosen Pembimbing : Eko Yuli Handoko, ST, MT DEFORMASI Deformasi

Lebih terperinci

PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS)

PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS) PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS) Faqih Rizki Ramadiansyah 1, Rustandi Poerawiardi 2, Dadan Ramdani 3 ABSTRAK Perambatan sinyal satelit

Lebih terperinci