BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA"

Transkripsi

1 BAB III PENGAMATAN GPS EPISODIK DAN PENGOLAHAN DATA 3.1 Pengamatan Data Salah satu cara dalam memahami gempa bumi Pangandaran 2006 adalah dengan mempelajari deformasi yang mengiringi terjadinya gempa bumi tersebut yaitu coseismik dan postseismik. Dalam tugas akhir ini penulis membatasi deformasi yang diamati adalah hanya pada deformasi postseismik saja. Untuk melakukannya diperlukan data pengamatan dari stasiun-stasiun pengamatan GPS. Seperti yang telah dijelaskan pada bab sebelumnya bahwa informasi yang ingin ditampilkan adalah informasi perubahan atau pergeseran titik-titik di sekitar daerah gempa sehingga dapat dijadikan informasi untuk mengetahui karakteristik deformasi postseismik Pangandaran. Pengamatan data dilakukan dengan metode survei statik secara episodik yaitu dengan menempatkan receiver - receiver GPS di titik-titik sekitar Pangandaran pada tahun 2006 dan Survei GPS Pangandaran ini merupakan hasil kerjasama antara ITB (diwakili oleh KK Geodesi ITB) dengan Nagoya University, Tokyo University dan LIPI. Titik-titik pengamatan GPS ditempatkan di titik-titik BPN dan titik-titik lainnya. Dari dua kali pengamatan, jumlah titik-titik yang diamati sekitar 30 titik per kalanya dengan catatan ada titik-titik yang diamati pada kala ke-1 tetapi tidak diamati pada kala, namun ada juga titik-titik pengamatan baru pada kala ke-2 yang tentunya dapat digunakan untuk penelitian selanjutnya. Hasil pengamatan dari dua kala ini akan diolah secara diferensial yang diikatkan ke kerangka ITRF 2005 yang menyebar di seluruh dunia. Distribusi dari titik-titik pengamatan GPS dapat dilihat pada gambar

2 Letak titik-titik pengamatan GPS Pangandaran. Gambar 3.1 Distribusi titik-titik pemantauan di Pangandaran (Google earth) 37

3 Adapun visualisasi dari beberapa titik-titik pengamatan GPS di Pangandaran dapat ditunjukkan pada gambar 3.2 di bawah ini :

4 GP01 KRTW Gambar 3.2 Foto Titik-Titik Survei GPS Pangandaran 39

5 3.1.1 Survei GPS Pangandaran kala ke-1 Sekitar seminggu setelah gempa Pangandaran yang diikuti tsunami menerjang pantai selatan Jawa, survei GPS Pangandaran kala ke-1 langsung dilakukan. Pengamatan dilakukan pada mulai tanggal 23 Juli sampai dengan tanggal 30 Juli Pada saat melakukan survei ke Pangandaran ini, tidak hanya dilakukan pengamatan GPS kala 1 saja, tetapi juga dilakukan pengukuran ketinggian tsunami berdasarkan bukti fisis di lapangan dan mewawancarai para penduduk setempat tentang bagaimana mereka merasakan gempa. Jumlah titik yang diamati pada kala ke-1 ini adalah 28 titik pengamatan GPS. Lama pengamatan berkisar dari 10 jam sampai 20 jam dan pada umumnya dari lama pengamatan tersebut sudah cukup untuk mendapatkan ketelitian posisi hingga level mm. Untuk lebih jelasnya lama pengamatan GPS dapat dilihat pada tabel 3.1 di halaman selanjutnya. Adapun jenis receiver GPS yang digunakan pada survei GPS kali ini yaitu TRIMBLE 4000 SSI dan ASHTECH Z-XII3. Perincian dari jenis receiver dan tipe antenanya adalah 24 titik pengamatan menggunakan jenis TRIMBLE 4000 SSI dan 4 titik pengamatan lainnya menggunakan jenis ASHTECH Z-XII3. Perbedaan antara kedua jenis receiver tersebut tidak akan mempengaruhi hasil pengukuran karena data akan diolah menggunakan perangkat lunak yang mampu menangani berbagai jenis antena receiver dalam satu campaign karena tersedianya fasilitas untuk mengkalibrasi kesalahan pusat fase antena yang bermacam-macam. 40

6 Tabel 3.1 Lama pengamatan GPS kala ke-1 No. Titik DOY (Day of year) jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam GP01-24 jam 24 jam 24 jam 24 jam 24 jam 24 jam 27 KRTW jam - 28 LGJW jam

7 3.1.2 Survei GPS Pangandaran Kala ke-2 Survei GPS Pangandaran kala ke-2 ini dilakukan setahun setelah gempa Pangandaran 2006 yaitu pada tanggal 9 Agustus sampai dengan 14 Agustus Dengan selang waktu selama satu tahun itu ( ) diharapkan hasil pengamatan GPS tersebut dapat melihat sinyal deformasi postseismik Pangandaran. Pada pengamatan yang kedua ini diamati titik-titik baru yang berjumlah 4 buah titik yaitu 1273, 1661, GPS2, dan ORFP. Tetapi ada 2 titik yang pada kala ke-1 diamati namun pada pengamatan kali ini tidak diamati yaitu 0444 dan Dari pengamatan kala ke-2 ini total titik yang diamati berjumlah 30 titik dengan masing-masing pengamatan selama jam. Lama pengamatan kali ini kurang lebih sama dengan lama pengamatan kala ke-1 sehingga ketelitian posisi yang dihasilkan juga kurang lebih akan sama. Tabel 3.2 di bawah ini memperlihatkan lama pengamatan pada setiap titik pengamatan GPS. 42

8 Tabel 3.2 Lama pengamatan GPS kala ke-2 DOY (Day of Year) No. Titik jam ,5 jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam jam GP01-24 jam 24 jam 24 jam 24 jam 24 jam 27 GPS2-20 jam KRTW jam LGJW jam ORFP 15 jam Berbeda dengan survei GPS kala ke-1, pada pengamatan kali ini jenis receiver yang digunakan untuk semua titik pengamatan adalah sama yaitu jenis TRIMBLE 4000SS1. 43

9 3.2 Pengolahan Data Data pengamatan GPS dalam dua kala selanjutnya diolah dengan menggunakan metode diferensial dengan moda jaring. Titik-titik di sekitar Pangandaran diikatkan ke dalam suatu jaring kerangka dasar dimana titik-titik ikat terletak di luar objek pengamatan yang posisinya dianggap stabil atau dengan kata lain titik-titik ikat tersebut terletak di luar Pangandaran. Titik-titik ikat tersebut adalah titik-titik yang berjumlah 20 stasiun GPS yang tersebar di seluruh dunia (ITRF2005). Adapun ke 20 titik tersebut terletak pada lempeng-lempeng yang mengelilingi daerah pengamatan GPS yang dimaksudkan untuk melihat deformasi titik-titik pengamatan. Visualisasi dari sebaran titik-titik IGS dapat dilihat pada gambar 3.3. Gambar 3.3 Titik-titik IGS (20 titik) untuk pemantauan postseismik Pangandaran Ada dua tahapan utama dalam pengolahan data pada tugas akhir ini yaitu yang pertama pengolahan data GPS untuk menghasilkan koordinat titik-titik pantau dalam dua kala dan kemudian dari hasil pengolahan tersebut akan ditentukan vektor pergeserannya dari dua kala sehingga dapat diketahui kecepatan dan pola deformasi di Pangandaran. 44

10 3.2.1 Metode Pengolahan Data Dalam melakukan pengolahan data untuk mendapatkan koordinat tiap titik ini, seluruh prosesnya menggunakan software ilmiah Bernese 5.0 yang dikembangkan oleh Astronomical Institute University of Berne Swiss. Dengan software ini maka berbagai aplikasi yang menuntut ketelitian posisi yang tinggi dapat terpenuhi seperti pengadaan jaringan kontrol, pemantauan geodinamika bumi dan pemantauan bangunan-bangunan tinggi termasuk dalam pemantauan deformasi postseismik di Pangandaran ini. Adapun proses pengolahan di software tersebut meliputi berbagai tahapan pengolahan yang dijelaskan oleh gambar 3.4 berikut. 45

11 Data Pengamatan GPS Pangandaran 2006 dan 2007 Data Pengamatan GPS Titik-titik IGS IGS File (Precise Orbit, Pole, Clock, DCB) Data Format RINEX IGS File dalam Format Bernese Data Pengamatan Format Bernese Single Point Positioning Data Input - station information - titik-titik IGS koordinat titik - kecepatan titik - kode titik Pembentukan Baseline Otomatis (OBS-MAX) Jaring Optimum Solusi Jaring (Ambiguity-Float) Resolusi Ambiguitas Solusi Jaring (Ambiguity-fixed) Hasil Koordinat (X,Y,Z) dan Standar Deviasi Gambar 3.4 Alur Pengolahan Data GPS Pangandaran pada Bernese

12 Dari alur pengolahan di atas dapat dilihat bahwa data yang diperlukan tidak hanya RINEX pengamatan saja, namun dibutuhkan informasi-informasi pendukung antara lain : Precise ephemeris dalam format igswwwwd.sp3 dan igswwwwd.erp yang didapatkan dengan cara men-download di Differensial code bias (DCB) satelit dalam format P1P2yymm.DCB dan P1C1yymm.DCB dengan cara men-download format tersebut pada alamat website Parameter ionosfer dengan format CODwwwwd.ION yang di-download di Setiap campaign pengolahan dalam Bernese 5.0 memiliki folder pengguna masing-masing yang namanya disesuaikan dengan keinginan. Dalam folder tersebut terdapat folder-folder tempat data baik input maupun output. Dalam alur pengolahan di atas yang dimaksud dengan data input adalah file-file yang harus dibuat sebelum melakukan pengolahan data. File-file tersebut dapat berupa : EXAMPLE.STA EXAMPLE.ABB IGS_00.CRD IGS_00_R.CRD IGS_00.VEL IGS_00_R.VEL IGS_00.FIX Semua file data input tersebut didapat dari meng-copy dari folder example atau dengan men-download pada alamat 47

13 Parameter yang digunakan dalam pengolahan data GPS ini ditampilkan pada tabel 3.3. Tabel 3.3 Parameter Pengolahan Data GPS Parameter Bernese 5.0 Sudut Elevasi 10º Interval data pengamatan 30 detik Gelombang yang digunakan L1 dan L2 Informasi orbit Precise Ephemeris Metode pemecahan ambiguitas fase QIF (Quasi Ionosphere Free) Penanganan bias troposfer Saastamoinen Sebuah tool yang terdapat pada Bernese 5.0 dan digunakan dalam pengolahan data tugas akhir ini adalah BPE (Bernese Processing Engine). Pada intinya BPE akan menyelesaikan seluruh program dan script dalam sekali pengolahan sehingga dapat mengefisiensikan proses pengolahan data GPS. Dewasa ini BPE banyak digunakan dalam analisis harian jaringan permanen GPS dan otomatisasi analisis dari GPS campaign yang besar (Dach, R). BPE terdiri dari beberapa komponen penyusunnya, yaitu dapat ditunjukkan pada tabel 3.4 ini : Tabel 3.4 Komponen BPE pada program Bernese 5.0 Bagian Fungsi Processing Control File (PCF) Daftar job yang akan dilakukan CPU Control File Letak CPU yang akan dijalankan Run BPE Dasar organisasi yang menjalankan BPE Client User Script Script yang harus dijalankan Input Option Direktori Option yang dimasuki input ke dalam program Fungsi-fungsi dari komponen BPE di atas dijalankan dengan suatu mekanisme tertentu dan ditampilkan pada gambar 3.5 di bawah ini. 48

14 Gambar 3.5 Function of BPE (University of Berne) Pada umumnya, para pengguna BPE sebenarnya hanya bekerja pada komponen PCF saja karena komponen ini mengandung daftar script dari direktori ${U}/SCRIPT untuk dijalankan dalam urutan pendefinisian yang baik oleh server BPE. Daftar script tersebut mempersilahkan user untuk memilih program mana saja yang ingin dijalankan dan bagaimana input-an setiap scriptnya. Dalam pengolahan data Pangandaran ini PCF yang digunakan adalah BPEDIFOKE.PCF. Dengan memasukkan data-data yang diperlukan dan sesuai dengan pengamatan kepada file PCF ini maka proses pengolahan data dimulai dengan menjalankan program BPE (Start BPE). Jika tidak ada kesalahan maka program akan selesai dan menuliskan ringkasan pemrosesan dalam file PRC setiap sesinya. Seperti telah dijelaskan di atas, baik input maupun output program disajikan dalam sebuah folder khusus. Kedua input dan output tersebut merupakan hal yang sangat penting karena menentukan keberhasilan pengolahan data. Input dan output tersebut ditampilkan dalam beberapa variabel yang bisa diubah sesuai keperluan dalam program PCF. Contoh beberapa variabel pengolahan diferensial ditampilkan pada gambar 3.6 berikut ini. 49

15 Gambar 3.6 Variabel PCF dalam BPE Pengolahan data Pangandaran baik pada tahun 2006 maupun 2007 menggunakan file PCF yang sama. Mekanisme pengolahannya setiap titik-titik Pangandaran akan diikatkan secara otomatis pada kerangka ITRF (20 stasiun). Dalam program ini strategi pengolahan yang digunakan adalah OBS-MAX yang membuat ke seluruh titik baik titik yang akan ditentukan koordinatnya maupun titik-titik kerangka membentuk sebuah jaring yang optimum sehingga baseline yang terbentuk, ditentukan secara otomatis oleh BPE. Ada banyak sekali script yang digunakan dalam pengolahan data ini yaitu 30 buah script (semua script dapat dilihat pada Lampiran) yang akan dijalankan dalam sekali pengolahan saja untuk setiap sesinya, artinya setiap sesi akan memiliki jaring GPS tersendiri tergantung distribusi pengamatan GPS pada sesi tersebut. Setelah tahapan input file pada PCF telah selesai semua, maka selanjutnya program tersebut dijalankan secara serentak dan BPE akan mendefinisikannya sendiri. Jika proses pengolahan data telah selesai dan benar (tidak terjadi error) maka hasil koordinat titik-titik yang ingin ditentukan beserta standar deviasinya terbentuk dalam folder SOL dengan format file F1_yydoy0.SNX. 50

16 3.2.2 Hasil Pengolahan Data Dari hasil pengolahan data menggunakan software ilmiah Bernese 5.0 maka dihasilkan koordinat titik-titik pengamatan GPS di Pangandaran dalam dua kala yaitu tahun 2006 dan Pengolahan menggunakan software ini menyajikan hasil koordinat beserta standar deviasinya dalam sistem koordinat Geosentrik 3-D. Dalam kaitannya studi deformasi vektor pergeseran titik akan lebih terlihat pada bumi fisis, oleh karena itu koordinat hasil pengolahan GPS tersebut ditransformasi ke dalam sistem koordinat toposentrik. Koordinat toposentrik kala 2006 ini berjumlah 25 titiik dengan titik pengamat atau titik referensi adalah titik 0464 dikarenakan titik tersebut berada di tengah-tengah sehingga dapat meminimalisir efek perambatan kesalahan. Adapun koordinat Toposentrik Pangandaran 2006 ditampilkan pada tebel 3.5 di bawah ini: 51

17 Koordinat Toposentrik Pangandaran 2006 Tabel 3.5 Koordinat Toposentrik Pangandaran kala 2006 No. Titik Utara (m) Timur (m) Tinggi (m) std Utara (m) std Timur (m) std Tinggi (m) GP KRTW LGJW

18 Sedangkan koordinat Toposentrik Pangandaran 2007 ditampilkan pada tabel 3.6 sebagai berikut : Tabel 3.6 Koordinat Toposentrik Pangandaran kala 2007 No. Titik Utara (m) Timur (m) Tinggi (m) std Utara (m) std Timur (m) std Tinggi (m) GP GPS KRTW LGJW ORFP

19 3.3 Vektor Pergeseran Vektor pergeseran dapat diartikan sebagai besaran yang menyatakan perubahan atau pergeseran suatu benda atau titik dalam selang waktu tertentu. Definisi tersebut jika dikaitkan dengan deformasi yang terjadi di Pangandaran mengartikan adanya pergerakan titik-titik pantau dalam selang pengukuran sehingga vektor pergeseran dapat mengindikasikan terjadinya deformasi tersebut. Besar vektor pergeseran ini didapat dari selisih besaran koordinat toposentrik titik pada kala ke-1 dengan besaran koordinat titik pada kala ke Besar Vektor Pergeseran Hasil dari pengolahan data ditransformasikan ke toposentrik juga dimaksudkan agar lebih mudah dalam pemahamannya. Selisih dari koordinat-koordinat toposentrik Pangandaran dari Survei GPS episodik dapat dilihat pada tabel 3.7. Tabel 3.7 Besar Vektor Pergeseran Pangandaran dalam Sistem Koordinat Toposentrik No. Titik Pergeseran Utara ΔN (cm) Pergeseran Timur ΔE (cm) Pergeseran Tinggi ΔU (cm) GP KRTW LGJW

20 3.3.2 Hasil Plotting Vektor Pergeseran Visualisasi dari vektor pergeseran di atas dihasilkan dengan menggunakan GMT (Generic Mapping Tools) dan dapat dilihat pada gambar 3.7 di bawah ini Gambar 3.7 Plotting Vektor Pergeseran horisontal Toposentrik Pangandaran (Masih dipengaruhi Sunda Block) 55

BAB IV ANALISIS. Lama Pengamatan GPS. Gambar 4.1 Perbandingan lama pengamatan GPS Pangandaran kala 1-2. Episodik 1 Episodik 2. Jam Pengamatan KRTW

BAB IV ANALISIS. Lama Pengamatan GPS. Gambar 4.1 Perbandingan lama pengamatan GPS Pangandaran kala 1-2. Episodik 1 Episodik 2. Jam Pengamatan KRTW BAB IV ANALISIS Dalam bab ke-4 ini dibahas mengenai analisis dari hasil pengolahan data dan kaitannya dengan tujuan dan manfaat dari penulisan tugas akhir ini. Analisis dilakukan terhadap data pengamatan

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA 4.1 Pengolahan Data Data GPS yang digunakan pada Tugas Akhir ini adalah hasil pengukuran secara kontinyu selama 2 bulan, yang dimulai sejak bulan Oktober 2006 sampai November 2006

Lebih terperinci

BAB IV PENGOLAHAN DATA

BAB IV PENGOLAHAN DATA BAB IV PENGOLAHAN DATA IV.1 SOFTWARE BERNESE 5.0 Pengolahan data GPS High Rate dilakukan dengan menggunakan software ilmiah Bernese 5.0. Software Bernese dikembangkan oleh Astronomical Institute University

Lebih terperinci

B A B IV HASIL DAN ANALISIS

B A B IV HASIL DAN ANALISIS B A B IV HASIL DAN ANALISIS 4.1 Output Sistem Setelah sistem ini dinyalakan, maka sistem ini akan terus menerus bekerja secara otomatis untuk mendapatkan hasil berupa karakteristik dari lapisan troposfer

Lebih terperinci

BAB 3 PENGOLAHAN DATA DAN HASIL. 3.1 Data yang Digunakan

BAB 3 PENGOLAHAN DATA DAN HASIL. 3.1 Data yang Digunakan BAB 3 PENGOLAHAN DATA DAN HASIL 3.1 Data yang Digunakan Data GPS yang digunakan dalam kajian kemampuan kinerja perangkat lunak pengolah data GPS ini (LGO 8.1), yaitu merupakan data GPS yang memiliki panjang

Lebih terperinci

BAB III KARAKTERISTIK DAN PENGOLAHAN DATA GPS GUNUNGAPI PAPANDAYAN

BAB III KARAKTERISTIK DAN PENGOLAHAN DATA GPS GUNUNGAPI PAPANDAYAN BAB III KARAKTERISTIK DAN PENGOLAHAN DATA GPS GUNUNGAPI PAPANDAYAN 3.1 Karakteristik Gunungapi Papandayan Gunungapi Papandayan terletak di sebelah selatan kota Garut, sekitar 70 km dari kota Bandung, Jawa

Lebih terperinci

B A B III GPS REALTIME UNTUK PENGAMATAN TROPOSFER DAN IONOSFER

B A B III GPS REALTIME UNTUK PENGAMATAN TROPOSFER DAN IONOSFER B A B III GPS REALTIME UNTUK PENGAMATAN TROPOSFER DAN IONOSFER 3.1 Pengembangan Sistem GPS Realtime Karakteristik dari lapisan troposfer dan ionosfer bervariasi secara spasial dan temporal, oleh karena

Lebih terperinci

BAB III PENGAMATAN DAN PENGOLAHAN DATA

BAB III PENGAMATAN DAN PENGOLAHAN DATA BAB III PENGAMATAN DAN PENGOLAHAN DATA 3.1 Pengamatan GPS di lapangan Untuk memantau karakteristik sesar Cimandiri, digunakan 17 titik pengamatan yang diukur koordinatnya secara periodik. Pada tugas akhir

Lebih terperinci

BAB 4 PENGOLAHAN DATA DAN ANALISIS

BAB 4 PENGOLAHAN DATA DAN ANALISIS BAB 4 PENGOLAHAN DATA DAN ANALISIS 4.1. Pengolahan Data Hasil Survey GPS Pengamatan penurunan muka tanah memerlukan tingkat ketelitian ketinggian yang tinggi. Oleh karena itu, penelitian ini menggunakan

Lebih terperinci

BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY

BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY BAB III PENENTUAN ZENITH TROPOSPHERIC DELAY 3.1 Akuisisi Data Data yang dibutuhkan dalam pengolahan data dikategorikan menjadi data observasi dan data meteorologi. Setiap data yang diambil berpengaruh

Lebih terperinci

BAB 3 PENGOLAHAN DATA

BAB 3 PENGOLAHAN DATA BAB 3 PENGOLAHAN DATA 3.1 Data yang Digunakan Untuk mengamati suatu pola deformasi yang terjadi di suatu wilayah, diperlukan pengamatan GPS dengan ketelitian hingga fraksi milimeter. Metodenya dengan melakukan

Lebih terperinci

BAB I PENDAHULUAN. Halaman Latar Belakang

BAB I PENDAHULUAN. Halaman Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Satelit GPS beredar mengelilingi bumi pada ketinggian sekitar 20.200 km. Satelit GPS tersebut berada di atas atmosfer bumi yang terdiri dari beberapa lapisan dan ditandai

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu karakteristik bumi adalah bumi merupakan salah satu bentuk alam yang bersifat dinamis yang disebabkan oleh tenaga-tenaga yang bekerja di dalam bumi itu sendiri

Lebih terperinci

BAB 3 PEMBAHASAN DAN PENGOLAHAN DATA

BAB 3 PEMBAHASAN DAN PENGOLAHAN DATA BAB 3 PEMBAHASAN DAN PENGOLAHAN DATA 3.1 Data Pengamatan GPS Kontinyu yang Digunakan Dalam mencapai target penelitian pada tugas akhir ini, yaitu pengujian terhadap perangkat lunak RTKLIB yang nantinya

Lebih terperinci

BAB Analisis Perbandingan Hasil LGO 8.1 & Bernese 5.0

BAB Analisis Perbandingan Hasil LGO 8.1 & Bernese 5.0 BAB 4 ANALISIS 4.1 Analisis Perbandingan Hasil LGO 8.1 & Bernese 5.0 Pada subbab ini akan dibahas mengenai analisis terhadap hasil pengolahan data yang didapatkan. Dari koordinat hasil pengolahan kedua

Lebih terperinci

GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc

GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc GLOBAL POSITIONING SYSTEM (GPS) Mulkal Razali, M.Sc www.pelagis.net 1 Materi Apa itu GPS? Prinsip dasar Penentuan Posisi dengan GPS Penggunaan GPS Sistem GPS Metoda Penentuan Posisi dengan GPS Sumber Kesalahan

Lebih terperinci

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL

ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL ANALISIS KETELITIAN DATA PENGUKURAN MENGGUNAKAN GPS DENGAN METODE DIFERENSIAL STATIK DALAM MODA JARING DAN RADIAL Oleh : Syafril Ramadhon ABSTRAK Ketelitian data Global Positioning Systems (GPS) dapat

Lebih terperinci

B A B I PENDAHULUAN. 1.1 Latar Belakang. bab 1 pendahuluan

B A B I PENDAHULUAN. 1.1 Latar Belakang. bab 1 pendahuluan B A B I PENDAHULUAN 1.1 Latar Belakang Satelit-satelit GPS beredar mengelilingi bumi jauh di atas permukaan bumi yaitu pada ketinggian sekitar 20.200 km dimana satelit tersebut berputar mengelilingi bumi

Lebih terperinci

PEMANTAUAN POSISI ABSOLUT STASIUN IGS

PEMANTAUAN POSISI ABSOLUT STASIUN IGS PEMANTAUAN POSISI ABSOLUT STASIUN IGS (Sigit Irfantono*, L. M. Sabri, ST., MT.**, M. Awaluddin, ST., MT.***) *Mahasiswa Teknik Geodesi Universitas Diponegoro. **Dosen Pembimbing I Teknik Geodesi Universitas

Lebih terperinci

DAFTAR PUSTAKA. Abidin, H.Z. (2000). Penentuan Posisi dengan GPS dan Aplikasinya. PT Pradnya Pramita, Jakarta. Cetakan kedua.

DAFTAR PUSTAKA. Abidin, H.Z. (2000). Penentuan Posisi dengan GPS dan Aplikasinya. PT Pradnya Pramita, Jakarta. Cetakan kedua. DAFTAR PUSTAKA Abidin, H.Z. (2000). Penentuan Posisi dengan GPS dan Aplikasinya. PT Pradnya Pramita, Jakarta. Cetakan kedua. Abidin, H.Z., A. Jones, J. Kahar (2002). Survei Dengan GPS. PT Pradnya Pramita,

Lebih terperinci

BAB III GLOBAL POSITIONING SYSTEM (GPS)

BAB III GLOBAL POSITIONING SYSTEM (GPS) BAB III GLOBAL POSITIONING SYSTEM (GPS) III. 1 GLOBAL POSITIONING SYSTEM (GPS) Global Positioning System atau GPS adalah sistem radio navigasi dan penentuan posisi menggunakan satelit [Abidin, 2007]. Nama

Lebih terperinci

ANALISA NILAI TEC PADA LAPISAN IONOSFER DENGAN MENGGUNAKAN DATA PENGAMATAN GPS DUA FREKUENSI PEMBIMBING EKO YULI HANDOKO, ST, MT

ANALISA NILAI TEC PADA LAPISAN IONOSFER DENGAN MENGGUNAKAN DATA PENGAMATAN GPS DUA FREKUENSI PEMBIMBING EKO YULI HANDOKO, ST, MT ANALISA NILAI TEC PADA LAPISAN IONOSFER DENGAN MENGGUNAKAN DATA PENGAMATAN GPS DUA FREKUENSI MOCHAMMAD RIZAL 3504 100 045 PEMBIMBING EKO YULI HANDOKO, ST, MT PENDAHULUAN Ionosfer adalah bagian dari lapisan

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar belakang. tatanan tektonik yang kompleks. Pada bagian barat Indonesia terdapat subduksi

BAB I PENDAHULUAN. I.1. Latar belakang. tatanan tektonik yang kompleks. Pada bagian barat Indonesia terdapat subduksi BAB I PENDAHULUAN I.1. Latar belakang Indonesia terletak pada pertemuan antara tiga lempeng besar yakni lempeng Eurasia, Hindia-Australia, dan Pasifik yang menjadikan Indonesia memiliki tatanan tektonik

Lebih terperinci

ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP

ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP ANALISIS PENGARUH TOTAL ELECTRON CONTENT (TEC) DI LAPISAN IONOSFER PADA DATA PENGAMATAN GNSS RT-PPP Oleh : Syafril Ramadhon ABSTRAK Metode Real Time Point Precise Positioning (RT-PPP) merupakan teknologi

Lebih terperinci

Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB

Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Tugas Akhir Karya tulis sebagai salah satu syarat untuk memperoleh gelar sarjana Oleh : Henri Kuncoro NIM 151 08 030 PROGRAM STUDI TEKNIK

Lebih terperinci

Latar Belakang STUDI POST-SEISMIC SEISMIC GEMPA ACEH 2004 MENGGUNAKAN DATA GPS KONTINYU. Maksud & Tujuan. Ruang Lingkup

Latar Belakang STUDI POST-SEISMIC SEISMIC GEMPA ACEH 2004 MENGGUNAKAN DATA GPS KONTINYU. Maksud & Tujuan. Ruang Lingkup STUDI POST-SISMIC SISMIC GMPA ACH 2004 MGGUAKA DATA GPS KOTIYU Ole : Imron Malra Setyawan 15103027 Latar Belakang Interseismik Gempa Bumi artquake Cycle Pre-seismik Co-seismik Post-seismik Pemantauan Potensi

Lebih terperinci

ANALISIS PERGESERAN AKIBAT GEMPA BUMI SUMATERA 11 APRIL 2012 MENGGUNAKAN METODE GPS CONTINUE

ANALISIS PERGESERAN AKIBAT GEMPA BUMI SUMATERA 11 APRIL 2012 MENGGUNAKAN METODE GPS CONTINUE ANALISIS PERGESERAN AKIBAT GEMPA BUMI SUMATERA 11 APRIL 2012 MENGGUNAKAN METODE GPS CONTINUE DISPLACEMENT ANALYSIS OF APRIL 11 TH 2012 SUMATERA EARTHQUAKE BY USING GPS CONTINUE METHODE (Case Study : Indian

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN IV.1 Pengecekan dengan TEQC Data pengamatan GPS terlebih dahulu dilakukan pengecekan untuk mengetahui kualitas data dari masing-masing titik pengamatan dengan menggunakan program

Lebih terperinci

BAB IV ANALISIS. Gambar 4.1 Suhu, tekanan, dan nilai ZWD saat pengamatan

BAB IV ANALISIS. Gambar 4.1 Suhu, tekanan, dan nilai ZWD saat pengamatan BAB IV ANALISIS 4.1 Analisis Input Data Setelah dilakukan pengolahan data, ada beberapa hal yang dianggap berpengaruh terhadap hasil pengolahan data, yaitu penggunaan data observasi GPS dengan interval

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) Konsep Penentuan Posisi Dengan GPS

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) Konsep Penentuan Posisi Dengan GPS BAB 2 DASAR TEORI 2.1 Global Positioning System (GPS) 2.1.1 Konsep Penentuan Posisi Dengan GPS GPS (Global Positioning System) merupakan sistem satelit navigasi dan penentuan posisi menggunakan satelit.

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengecekan Kualitas Data Observasi Dengan TEQC Kualitas dari data observasi dapat ditunjukkan dengan melihat besar kecilnya nilai moving average dari multipath untuk

Lebih terperinci

Jurnal Geodesi Undip Januari 2014

Jurnal Geodesi Undip Januari 2014 Verifikasi TDT Orde 2 BPN dengan Stasiun CORS BPN-RI Kabupaten Grobogan Rizna Trinayana, Bambang Darmo Yuwono, L. M. Sabri *) Program Studi Teknik Geodesi, Fakultas Teknik, Universitas Diponegoro Jl. Prof

Lebih terperinci

BAB I PENDAHULUAN I. 1 LATAR BELAKANG

BAB I PENDAHULUAN I. 1 LATAR BELAKANG BAB I PENDAHULUAN I. 1 LATAR BELAKANG Gempa bumi merupakan fenomena alam yang sudah tidak asing lagi bagi kita semua, karena seringkali diberitakan adanya suatu wilayah dilanda gempa bumi, baik yang ringan

Lebih terperinci

BAB II SISTEM SATELIT NAVIGASI GPS

BAB II SISTEM SATELIT NAVIGASI GPS BAB II SISTEM SATELIT NAVIGASI GPS Satelit navigasi merupakan sistem radio navigasi dan penentuan posisi menggunakan satelit. Satelit dapat memberikan posisi suatu objek di muka bumi dengan akurat dan

Lebih terperinci

METODE PENENTUAN POSISI DENGAN GPS

METODE PENENTUAN POSISI DENGAN GPS METODE PENENTUAN POSISI DENGAN GPS METODE ABSOLUT Metode Point Positioning Posisi ditentukan dalam sistem WGS 84 Pronsip penentuan posisi adalah reseksi dengan jarak ke beberapa satelit secara simultan

Lebih terperinci

BAB 3 DATA DAN PENGOLAHAN DATA. Tabel 3.1 Data dampak penurunan tanah

BAB 3 DATA DAN PENGOLAHAN DATA. Tabel 3.1 Data dampak penurunan tanah BAB 3 DATA DAN PENGOLAHAN DATA 3.1 Data Dampak Penurunan Tanah Pemetaan dampak penurunan tanah diperlukan data data bukti kerusakan akibat dari penurunan tanah, sehingga dibutuhkan survey lapangan untuk

Lebih terperinci

Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015

Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015 A389 Analisa Pergeseran Titik Pengamatan GPS pada Gunung Merapi Periode Januari-Juli 2015 Joko Purnomo, Ira Mutiara Anjasmara, dan Sulistiyani Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

BAB III PEMANFAATAN SISTEM GPS CORS DALAM RANGKA PENGUKURAN BIDANG TANAH

BAB III PEMANFAATAN SISTEM GPS CORS DALAM RANGKA PENGUKURAN BIDANG TANAH BAB III PEMANFAATAN SISTEM GPS CORS DALAM RANGKA PENGUKURAN BIDANG TANAH Keberadaan sistem GPS CORS memberikan banyak manfaat dalam rangka pengukuran bidang tanah terkait dengan pengadaan titik-titik dasar

Lebih terperinci

Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah GAMIT/GLOBK 10.6

Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah GAMIT/GLOBK 10.6 A432 Analisa Pengolahan Data Stasiun GPS CORS Gunung Merapi Menggunakan Perangkat Lunak Ilmiah /GLOBK 10.6 Andri Arie Rahmad, Mokhamad Nur Cahyadi, Sulistiyani Jurusan Teknik Geomatika, Fakultas Teknik

Lebih terperinci

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP

PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP PENGUKURAN GROUND CONTROL POINT UNTUK CITRA SATELIT CITRA SATELIT RESOLUSI TINGGI DENGAN METODE GPS PPP Oleh A. Suradji, GH Anto, Gunawan Jaya, Enda Latersia Br Pinem, dan Wulansih 1 INTISARI Untuk meningkatkan

Lebih terperinci

PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM

PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM PETA TERESTRIAL: PEMBUATAN DAN PENGGUNAANNYA DALAM PENGELOLAAN DATA GEOSPASIAL CB NURUL KHAKHIM UU no. 4 Tahun 2011 tentang INFORMASI GEOSPASIAL Istilah PETA --- Informasi Geospasial Data Geospasial :

Lebih terperinci

PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS)

PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS) PENGARUH DATA METEOROLOGI TERHADAP NILAI KOORDINAT HASIL PENGAMATAN GLOBAL POSITIONING SYSTEM (GPS) Faqih Rizki Ramadiansyah 1, Rustandi Poerawiardi 2, Dadan Ramdani 3 ABSTRAK Perambatan sinyal satelit

Lebih terperinci

Jurnal Geodesi Undip April 2016

Jurnal Geodesi Undip April 2016 ANALISIS PENGOLAHAN DATA GPS MENGGUNAKAN PERANGKAT LUNAK RTKLIB Desvandri Gunawan, Bambang Darmo Yuwono, Bandi Sasmito *) Program Studi Teknik Geodesi Fakultas Teknik Universitas Diponegoro Jl. Prof. Sudarto

Lebih terperinci

Analisa Kecepatan Pergeseran di Wilayah Jawa Tengah Bagian Selatan Menggunakan GPS- CORS Tahun

Analisa Kecepatan Pergeseran di Wilayah Jawa Tengah Bagian Selatan Menggunakan GPS- CORS Tahun Analisa Kecepatan Pergeseran di Wilayah Jawa Tengah Bagian Selatan Menggunakan GPS- CORS Tahun 2013-2015 Avrilina Luthfil Hadi 1), Ira Mutiara Anjasmara 2), dan Meiriska Yusfania 3) Jurusan Teknik Geomatika,

Lebih terperinci

KAJIAN REGANGAN SELAT BALI BERDASARKAN DATA GNSS KONTINU TAHUN ABSTRAK

KAJIAN REGANGAN SELAT BALI BERDASARKAN DATA GNSS KONTINU TAHUN ABSTRAK KAJIAN REGANGAN SELAT BALI BERDASARKAN DATA GNSS KONTINU TAHUN 2009-2011 Gina Andriyani 1), Sutomo Kahar 2), Moehammad Awaluddin 3), Irwan Meilano 4) 1) Program Studi Teknik Geodesi Fakultas Teknik Universitas

Lebih terperinci

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik

BAB VII ANALISIS. Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik 83 BAB VII ANALISIS 7.1 Analisis Komponen Airborne LIDAR Airborne LIDAR adalah survey untuk mendapatkan posisi tiga dimensi dari suatu titik dengan memanfaatkan sinar laser yang ditembakkan dari wahana

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Metode dan Desain Penelitian 3.1.1 Metode Penelitian Metode yang digunakan adalah metode deskriptif analitik dari data deformasi dengan survei GPS dan data seismik. Parameter

Lebih terperinci

PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK

PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK PENGGUNAAN TEKNOLOGI GNSS RT-PPP UNTUK KEGIATAN TOPOGRAFI SEISMIK Oleh : Syafril Ramadhon ABSTRAK Salah satu kegiatan eksplorasi seismic di darat adalah kegiatan topografi seismik. Kegiatan ini bertujuan

Lebih terperinci

BAB IV ANALISIS Seismisitas sesar Cimandiri Ada beberapa definisi seismisitas, sebagai berikut :

BAB IV ANALISIS Seismisitas sesar Cimandiri Ada beberapa definisi seismisitas, sebagai berikut : BAB IV ANALISIS Analisis yang dilakukan untuk dapat melihat karakteristik deformasi sesar cimandiri berdasarkan dua kala pengamatan pada tugas akhir ini meliputi seismisitas, analisis terhadap standar

Lebih terperinci

BAB II SEISMISITAS WILAYAH INDONESIA KHUSUSNYA PANGANDARAN DAN SURVEI GPS SEBAGAI METODE PEMANTAUAN DEFORMASI BUMI

BAB II SEISMISITAS WILAYAH INDONESIA KHUSUSNYA PANGANDARAN DAN SURVEI GPS SEBAGAI METODE PEMANTAUAN DEFORMASI BUMI BAB II SEISMISITAS WILAYAH INDONESIA KHUSUSNYA PANGANDARAN DAN SURVEI GPS SEBAGAI METODE PEMANTAUAN DEFORMASI BUMI 2.1 Seismisitas Wilayah Indonesia Indonesia merupakan salah satu wilayah dengan seismisitas

Lebih terperinci

Pengaruh Waktu Pengamatan Terhadap Ketelitian Posisi dalam Survei GPS

Pengaruh Waktu Pengamatan Terhadap Ketelitian Posisi dalam Survei GPS Jurnal Reka Geomatika Jurusan Teknik Geodesi No. 1 Vol. 1 ISSN 2338-350X Juni 2013 Jurnal Online Institut Teknologi Nasional Pengaruh Waktu Pengamatan Terhadap Ketelitian Posisi dalam Survei GPS RINA ROSTIKA

Lebih terperinci

STUDI TENTANG CONTINUOUSLY OPERATING REFERENCE STATION GPS (Studi Kasus CORS GPS ITS) Oleh: Prasetyo Hutomo GEOMATIC ENGINEERING ITS

STUDI TENTANG CONTINUOUSLY OPERATING REFERENCE STATION GPS (Studi Kasus CORS GPS ITS) Oleh: Prasetyo Hutomo GEOMATIC ENGINEERING ITS STUDI TENTANG CONTINUOUSLY OPERATING REFERENCE STATION GPS (Studi Kasus CORS GPS ITS) Oleh: Prasetyo Hutomo 3505.100.023 GEOMATIC ENGINEERING ITS CORS (Continuously Operating Reference System) CORS (Continuously

Lebih terperinci

PEMODELAN TINGKAT AKTIVITAS SESAR CIMANDIRI BERDASARKAN DATA DEFORMASI PERMUKAAN

PEMODELAN TINGKAT AKTIVITAS SESAR CIMANDIRI BERDASARKAN DATA DEFORMASI PERMUKAAN PEMODELAN TINGKAT AKTIVITAS SESAR CIMANDIRI BERDASARKAN DATA DEFORMASI PERMUKAAN TUGAS AKHIR Karya tulis sebagai salah satu syarat untuk memperoleh gelar Sarjana Oleh : Aris Phyrus Honggorahardjo 15105069

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Titik kontrol pada proses pembuatan peta selalu dibutuhkan sebagai acuan referensi, tujuannya agar seluruh objek yang dipetakan tersebut dapat direpresentasikan sesuai

Lebih terperinci

BAB I PENDAHULUAN I-1

BAB I PENDAHULUAN I-1 BAB I PENDAHULUAN I.1. Latar Belakang Badan Pertanahan Nasional (BPN) merupakan suatu Lembaga Pemerintah yang mempunyai tugas melaksanakan tugas pemerintahan di bidang pertanahan secara nasional, regional

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar Belakang

BAB 1 PENDAHULUAN 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang GPS adalah sistem satelit navigasi dan penentuan posisi menggunakan wahana satelit. Sistem yang dapat digunakan oleh banyak orang sekaligus dalam segala cuaca ini,

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Gempa bumi dengan magnitude besar yang berpusat di lepas pantai barat propinsi Nangroe Aceh Darussalam kemudian disusul dengan bencana tsunami dahsyat, telah menyadarkan

Lebih terperinci

Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB

Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Indonesian Journal Of Geospatial Vol. 3 No. 1, 2012 10 Analisis Metode GPS Kinematik Menggunakan Perangkat Lunak RTKLIB Henri Kuncoro, Irwan Meilano, Dina Anggreni Sarsito Program Studi Teknik Geodesi

Lebih terperinci

Jurnal Geodesi Undip Oktober 2014

Jurnal Geodesi Undip Oktober 2014 PEMANTAUAN POSISI ABSOLUT STASIUN IGS MENGGUNAKAN PERANGKAT LUNAK TOPCON TOOLS v.8.2 Amri Perdana Ginting, Bambang Darmo Yuwono, Moehammad Awaluddin *) Program Studi Teknik Geodesi Fakultas Teknik, Unversitas

Lebih terperinci

KARAKTERISTIK DEFORMASI GUNUNG MURIA PERIODE

KARAKTERISTIK DEFORMASI GUNUNG MURIA PERIODE Jurnal Pengembangan Energi Nuklir Volume 17, Nomor 2, Desember 2015 KARAKTERISTIK DEFORMASI GUNUNG MURIA PERIODE 2010-2014 Ari Nugroho 1) dan Irwan Gumilar 2) 1) Pusat Kajian Sistem Energi Nuklir (PKSEN)

Lebih terperinci

BAB 4 HASIL PENGOLAHAN DATA & ANALISIS

BAB 4 HASIL PENGOLAHAN DATA & ANALISIS BAB 4 HASIL PENGOLAHAN DATA & ANALISIS 4.1 Analisis Perbandingan Secara Keseluruhan Antara Pengolahan Baseline Pengamatan GPS Dengan RTKLIB dan TTC 4.1.1 Kualitas Pengolahan Baseline GPS Dengan RTKLIB

Lebih terperinci

Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech ASH111661

Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech ASH111661 A369 Analisis Ketelitian Penetuan Posisi Horizontal Menggunakan Antena GPS Geodetik Ashtech I Gede Brawiswa Putra, Mokhamad Nur Cahyadi Jurusan Teknik Geomatika, Fakultas Teknik Sipil dan Perencanaan,

Lebih terperinci

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK

ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK ANALISIS DEFORMASI JEMBATAN SURAMADU AKIBAT PENGARUH ANGIN MENGGUNAKAN PENGUKURAN GPS KINEMATIK Lysa Dora Ayu Nugraini, Eko Yuli Handoko, ST, MT Program Studi Teknik Geomatika, FTSP ITS-Sukolilo, Surabaya

Lebih terperinci

Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (Sumatran GPS Array)

Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (Sumatran GPS Array) Analisa Perubahan Kecepatan Pergeseran Titik Akibat Gempa Menggunakan Data SuGar (n GPS Array) Bima Pramudya Khawiendratama 1), Ira Mutiara Anjasmara 2), dan Meiriska Yusfania 3) Jurusan Teknik Geomatika,

Lebih terperinci

BAB IV PENGOLAHAN DATA DAN ANALISIS

BAB IV PENGOLAHAN DATA DAN ANALISIS BAB IV PENGOLAHAN DATA DAN ANALISIS IV.1. PENGOLAHAN DATA Dalam proses pemodelan gempa ini digunakan GMT (The Generic Mapping Tools) untuk menggambarkan dan menganalisis arah vektor GPS dan sebaran gempa,

Lebih terperinci

ANALISIS DEFORMASI GUNUNG API BATUR BERDASARKAN DATA PENGAMATAN GPS BERKALA TAHUN 2008, 2009, 2013, DAN 2015

ANALISIS DEFORMASI GUNUNG API BATUR BERDASARKAN DATA PENGAMATAN GPS BERKALA TAHUN 2008, 2009, 2013, DAN 2015 ANALISIS DEFORMASI GUNUNG API BATUR BERDASARKAN DATA PENGAMATAN GPS BERKALA TAHUN 008, 009, 013, DAN 015 DEFORMATION ANALYSIS OF BATUR VOLCANO BASED ON PERIODIC GPS OBSERVATIONS DATA IN 008, 009, 013,

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Sesar Cimandiri (gambar 1.1) merupakan sesar aktif yang berada di wilayah selatan Jawa Barat, tepatnya berada di Sukabumi selatan. Sesar Cimandiri memanjang dari Pelabuhan

Lebih terperinci

BAB I PENDAHULUAN. I.1. Latar Belakang. Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan

BAB I PENDAHULUAN. I.1. Latar Belakang. Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan BAB I PENDAHULUAN I.1. Latar Belakang Penentuan posisi/kedudukan di permukaan bumi dapat dilakukan dengan metode terestris dan ekstra-terestris. Penentuan posisi dengan metode terestris dilakukan dengan

Lebih terperinci

SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI. Oleh: Andri Oktriansyah

SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI. Oleh: Andri Oktriansyah SURVEI HIDROGRAFI PENGUKURAN DETAIL SITUASI DAN GARIS PANTAI Oleh: Andri Oktriansyah JURUSAN SURVEI DAN PEMETAAN UNIVERSITAS INDO GLOBAL MANDIRI PALEMBANG 2017 Pengukuran Detil Situasi dan Garis Pantai

Lebih terperinci

Analisis Deformasi Gunung Merapi Berdasarkan Data Pengamatan GPS Februari- Juli 2015

Analisis Deformasi Gunung Merapi Berdasarkan Data Pengamatan GPS Februari- Juli 2015 A427 Analisis Deformasi Gunung Merapi Berdasarkan Data Pengamatan GPS Februari- Juli 2015 Yuandhika Galih Wismaya, Ira Mutiara Anjasmara, dan Sulistiyani Jurusan Teknik Geomatika, Fakultas Teknik Sipil

Lebih terperinci

BAB II DASAR TEORI. 2.1 Gunungapi

BAB II DASAR TEORI. 2.1 Gunungapi BAB II DASAR TEORI 2.1 Gunungapi Gunungapi terbentuk sejak jutaan tahun lalu hingga sekarang. Pengetahuan tentang gunungapi berawal dari perilaku manusia dan manusia purba yang mempunyai hubungan dekat

Lebih terperinci

sensing, GIS (Geographic Information System) dan olahraga rekreasi

sensing, GIS (Geographic Information System) dan olahraga rekreasi GPS (Global Positioning System) Global positioning system merupakan metode penentuan posisi ekstra-teristris yang menggunakan satelit GPS sebagai target pengukuran. Metode ini dinamakan penentuan posisi

Lebih terperinci

BAB 1 PENDAHULUAN I.1 Latar Belakang

BAB 1 PENDAHULUAN I.1 Latar Belakang BAB 1 PENDAHULUAN I.1 Latar Belakang Posisi merupakan informasi yang sangat dibutuhkan untuk mengetahui kedudukan relatif suatu objek terhadap objek lainnya. Pada saat sekarang ini kebutuhan akan posisi

Lebih terperinci

Jurnal Geodesi Undip Oktober 2015

Jurnal Geodesi Undip Oktober 2015 PERHITUNGAN DEFORMASI GEMPA KEBUMEN 2014 DENGAN DATA CORS GNSS DI WILAYAH PANTAI SELATAN JAWA TENGAH Budi Prayitno, Moehammad Awaluddin, Bambang Sudarsono *) Program Studi Teknik Geodesi Fakultas Teknik

Lebih terperinci

Studi Kinerja Perangkat Lunak Starpoint untuk Pengolahan Baseline GPS Irwan Gumilar, Brian Bramanto, dan Teguh P. Sidiq

Studi Kinerja Perangkat Lunak Starpoint untuk Pengolahan Baseline GPS Irwan Gumilar, Brian Bramanto, dan Teguh P. Sidiq Studi Kinerja Perangkat Lunak Starpoint untuk Pengolahan Baseline GPS Irwan Gumilar, Brian Bramanto, dan Teguh P. Sidiq Kelompok Keahlian Geodesi, Institut Teknologi Bandung Labtek IX-C, Jalan Ganeca 10,

Lebih terperinci

BAB III PELAKSANAAN PENELITIAN

BAB III PELAKSANAAN PENELITIAN Ungaran Jembatan Penggaron (470 m) Semarang BAB III PELAKSANAAN PENELITIAN III.1 PERSIAPAN III.1.1 Lokasi Penelitian Dalam penelitian kali ini dilakukan pengamatan di titik ikat pengamatan deformasi Jembatan

Lebih terperinci

MODUL 3 GEODESI SATELIT

MODUL 3 GEODESI SATELIT MODUL 3 GEODESI SATELIT A. Deskripsi Singkat Geodesi Satelit merupakan cabang ilmu Geodesi yang dengan bantuan teknologi Satelite dapat menjawab persoalan-persoalan Geodesi seperti Penentuan Posisi, Jarak

Lebih terperinci

Studi Penelitian Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System

Studi Penelitian Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System Studi Penelitian Penurunan Tanah Kota Surabaya Menggunakan Global Positioning System Akbar Kurniawan 3509 201 005 Program Studi Teknik Geomatika Fakultas Teknik Sipil dan Perencanaan Institut Teknologi

Lebih terperinci

PPK RTK. Mode Survey PPK (Post Processing Kinematic) selalu lebih akurat dari RTK (Realtime Kinematic)

PPK RTK. Mode Survey PPK (Post Processing Kinematic) selalu lebih akurat dari RTK (Realtime Kinematic) Mode Survey PPK (Post Processing Kinematic) selalu lebih akurat dari RTK (Realtime Kinematic) Syarat Kondisi Keuntungan / Kekurangan PPK Tidak diperlukan Koneksi Data Base secara realtime Diperlukan 1

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS)

BAB 2 DASAR TEORI. 2.1 Global Positioning System (GPS) BAB 2 DASAR TEORI 2.1 Global Positioning System (GPS) Pembahasan dasar teori GPS pada subbab ini merupakan intisari dari buku Penentuan Posisi dengan GPS dan Aplikasinya oleh [Abidin, 2007] dan SURVEI

Lebih terperinci

On The Job Training PENGENALAN CORS (Continuously Operating Reference Station)

On The Job Training PENGENALAN CORS (Continuously Operating Reference Station) On The Job Training PENGENALAN CORS (Continuously Operating Reference Station) Direktorat Pengukuran Dasar Deputi Survei, Pengukuran Dan Pemetaan Badan Pertanahan Nasional Republik Indonesia 2011 MODUL

Lebih terperinci

Perbandingan Hasil Pengolahan Data GPS Menggunakan Hitung Perataan Secara Simultan dan Secara Bertahap

Perbandingan Hasil Pengolahan Data GPS Menggunakan Hitung Perataan Secara Simultan dan Secara Bertahap Perbandingan Hasil Pengolahan Data GPS Menggunakan Hitung Perataan Secara Simultan dan Secara Bertahap BAMBANG RUDIANTO, RINALDY, M ROBBY AFANDI Jurusan Teknik Geodesi, Fakultas Teknik Sipil dan Perencanaan

Lebih terperinci

PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI

PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG. Winardi Puslit Oseanografi - LIPI PENENTUAN POSISI DENGAN GPS UNTUK SURVEI TERUMBU KARANG Winardi Puslit Oseanografi - LIPI Sekilas GPS dan Kegunaannya GPS adalah singkatan dari Global Positioning System yang merupakan sistem untuk menentukan

Lebih terperinci

BAB II Studi Potensi Gempa Bumi dengan GPS

BAB II Studi Potensi Gempa Bumi dengan GPS BAB II Studi Potensi Gempa Bumi dengan GPS 2.1 Definisi Gempa Bumi Gempa bumi didefinisikan sebagai getaran pada kerak bumi yang terjadi akibat pelepasan energi secara tiba-tiba. Gempa bumi, dalam hal

Lebih terperinci

BAB IV ANALISIS 4.1 Vektor Pergeseran Titik Pengamatan Gunungapi Papandayan

BAB IV ANALISIS 4.1 Vektor Pergeseran Titik Pengamatan Gunungapi Papandayan BAB IV ANALISIS Koordinat yang dihasilkan dari pengolahan data GPS menggunakan software Bernese dapat digunakan untuk menganalisis deformasi yang terjadi pada Gunungapi Papandayan. Berikut adalah beberapa

Lebih terperinci

URUTAN PENGGUNAAN E-GNSS SECARA UMUM

URUTAN PENGGUNAAN E-GNSS SECARA UMUM URUTAN PENGGUNAAN E-GNSS SECARA UMUM PASANG UNIT PADA TITIK SURVEI DAN COLOKKAN POWER BANK SETTING KONEKSI BLUETOOTH dan KAMERA HP SETTING PILIHAN MODE SURVEI SINGLE MULAI SURVEI Pengaturan dasar KONEKSI

Lebih terperinci

GEOTAGGING+ Acuan Umum Mode Survei dengan E-GNSS (L1)

GEOTAGGING+ Acuan Umum Mode Survei dengan E-GNSS (L1) Apa Mode Survei yang reliable? Kapan kondisi yang tepat? Realtime: RTK-Radio; RTK-NTRIP JIKA TERSEDIA JARINGAN DATA INTERNET Post Processing: Static- Relative; Kinematic; Stop and Go Realtime: RTK-Radio;

Lebih terperinci

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-titik Kerangka Dasar Pemetaan Skala Besar

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-titik Kerangka Dasar Pemetaan Skala Besar Reka Geomatika Jurusan Teknik Geodesi Itenas No.2 Vol. 01 ISSN 2338-350x Jurnal Online Institut Teknologi Nasional Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-titik

Lebih terperinci

BLUNDER PENGOLAHAN DATA GPS

BLUNDER PENGOLAHAN DATA GPS Blunder Pengolahan Data GPS... (Syetiawan) BLUNDER PENGOLAHAN DATA GPS (Blunder GPS Data Processing) Agung Syetiawan Badan Informasi Geospasial Jl. Raya Jakarta-Bogor Km. 46 Cibinong 16911, Indonesia E-mail:

Lebih terperinci

BAB III PELAKSANAAN PENELITIAN

BAB III PELAKSANAAN PENELITIAN BAB III PELAKSANAAN PENELITIAN Pada BAB III ini akan dibahas mengenai pengukuran kombinasi metode GPS dan Total Station beserta data yang dihasilkan dari pengukuran GPS dan pengukuran Total Station pada

Lebih terperinci

STUDI KINERJA PERANGKAT LUNAK LEICA GEO OFFICE 8.1 UNTUK PENGOLAHAN DATA GPS BASELINE PANJANG TUGAS AKHIR. Oleh: SIDIQ PURNAMA AGUNG

STUDI KINERJA PERANGKAT LUNAK LEICA GEO OFFICE 8.1 UNTUK PENGOLAHAN DATA GPS BASELINE PANJANG TUGAS AKHIR. Oleh: SIDIQ PURNAMA AGUNG STUDI KINERJA PERANGKAT LUNAK LEICA GEO OFFICE 8.1 UNTUK PENGOLAHAN DATA GPS BASELINE PANJANG TUGAS AKHIR Karya tulis sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik Oleh: SIDIQ PURNAMA

Lebih terperinci

BAB I PENDAHULUAN. Gambar 1.1 Gambar sesar aktif disekitar Bandung [ Anugrahadi, 1993]

BAB I PENDAHULUAN. Gambar 1.1 Gambar sesar aktif disekitar Bandung [ Anugrahadi, 1993] BAB I PENDAHULUAN 1.1 Latar Belakang Sesar Cimandiri adalah sesar aktif yang terdapat di Selatan Sukabumi. Sesar Cimandiri ini berarah Barat Daya Timur Laut [Anugrahadi, 1993]. Dari penelitian di lapangan

Lebih terperinci

BAB 3 PEMBAHASAN START DATA KALIBRASI PENGUKURAN OFFSET GPS- KAMERA DATA OFFSET GPS- KAMERA PEMOTRETAN DATA FOTO TANPA GPS FINISH

BAB 3 PEMBAHASAN START DATA KALIBRASI PENGUKURAN OFFSET GPS- KAMERA DATA OFFSET GPS- KAMERA PEMOTRETAN DATA FOTO TANPA GPS FINISH BAB 3 PEMBAHASAN Pada bab ini dibahas prosedur yang dilakukan pada percobaan ini. Fokus utama pembahasan pada bab ini adalah teknik kalibrasi kamera, penentuan offset GPS-kamera, akuisisi data di lapangan,

Lebih terperinci

Jurnal Geodesi Undip Januari 2017

Jurnal Geodesi Undip Januari 2017 ANALISIS STRATEGI PENGOLAHAN BASELINE GPS BERDASARKAN JUMLAH TITIK IKAT DAN VARIASI WAKTU PENGAMATAN Muhammad Chairul Ikbal, Bambang Darmo Yuwono, Fauzi Janu Amarrohman *) Program Studi Teknik Geodesi

Lebih terperinci

BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI

BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI BAB 3 PERBANDINGAN GEOMETRI DATA OBJEK TIGA DIMENSI Pada bab ini akan dijelaskan tentang perbandingan tingkat kualitas data, terutama perbandingan dari segi geometri, selain itu juga akan dibahas mengenai

Lebih terperinci

BAB II CORS dan Pendaftaran Tanah di Indonesia

BAB II CORS dan Pendaftaran Tanah di Indonesia BAB II CORS dan Pendaftaran Tanah di Indonesia Tanah merupakan bagian dari alam yang tidak dapat dipisahkan dari kehidupan umat manusia. Hampir seluruh kegiatan manusia dilakukan di atas bidang tanah.

Lebih terperinci

BAB III Deformasi Interseismic di Zona Subduksi Sumatra

BAB III Deformasi Interseismic di Zona Subduksi Sumatra BAB III Deformasi Interseismic di Zona Subduksi Sumatra 3.1 Data Catatan Sejarah Gempa Besar di Zona Subduksi Sumatra Data catatan sejarah gempa besar pada masa lalu yang pernah terjadi di suatu daerah

Lebih terperinci

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-Titik Kerangka Dasar Pemetaan Skala Besar

Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat Titik-Titik Kerangka Dasar Pemetaan Skala Besar Reka Geomatika Jurusan Teknik Geodesi Itenas No. 2 Vol. 1 ISSN 2338-350X Desember 2013 Jurnal Online Institut Teknologi Nasional Aplikasi Survei GPS dengan Metode Statik Singkat dalam Penentuan Koordinat

Lebih terperinci

Jurnal Geodesi Undip Oktober 2014

Jurnal Geodesi Undip Oktober 2014 SURVEI PENDAHULUAN DEFORMASI SESAR KALIGARANG DENGAN PENGAMATAN GPS Ramdhan Thoriq S, Moehammad Awaluddin, Bambang Darmo Yuwono *) Program Studi Teknik Geodesi Fakultas Teknik, Unversitas Diponegoro Jl.

Lebih terperinci

PENENTUAN POSISI DENGAN GPS

PENENTUAN POSISI DENGAN GPS PENENTUAN POSISI DENGAN GPS Disampaikan Dalam Acara Workshop Geospasial Untuk Guru Oleh Ir.Endang,M.Pd, Widyaiswara BIG BADAN INFORMASI GEOSPASIAL (BIG) Jln. Raya Jakarta Bogor Km. 46 Cibinong, Bogor 16911

Lebih terperinci