OPTIMASI PARAMETER α DAN γ DALAM PEMULUSAN EKSPONENSIAL DUA PARAMETER DENGAN METODE MODIFIKASI GOLDEN SECTION

Save this PDF as:
 WORD  PNG  TXT  JPG

Ukuran: px
Mulai penontonan dengan halaman:

Download "OPTIMASI PARAMETER α DAN γ DALAM PEMULUSAN EKSPONENSIAL DUA PARAMETER DENGAN METODE MODIFIKASI GOLDEN SECTION"

Transkripsi

1 OPTIMASI PARAMETER α DAN γ DALAM PEMULUSAN EKSPONENSIAL DUA PARAMETER DENGAN METODE MODIFIKASI GOLDEN SECTION NILA YUWIDA Dosen Pembimbing : Dra. Nuri Wahyuningsih, M.Kes Drs. Lukman Hanafi, M.Sc JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2012

2 1.1 Latar Belakang Pemulusan Eksponensial Ganda Satu Parameter dari Brown Metode Pemulusan Eksponensial Pemulusan Eksponensial Ganda Dua Parameter dari Holt Evaluasi Parameter Parameter Yang Optimal Pemulusan Eksponensial Tripel dari Winter

3 1.2 Rumusan Masalah Bagaimana menentukan estimasi nilai parameter α dan γ yang optimal dalam metode pemulusan eksponensial ganda dua parameter dengan menggunakan algoritma Nonlinear Programming.

4 1.3 Batasan Masalah Ukuran error peramalan yang digunakan adalah rata-rata kesalahan persentase absolut (Mean Absolute Persentage Error). Metode dalam algoritma Nonlinear Programming yang dipakai adalah modifikasi algoritma Golden Section. Program dibuat dengan bantuan software MATLAB. Data yang digunakan berasal dari data jumlah pengunjung Kusuma Agrowisata, Batu Asumsi yang digunakan dalam penulisan tugas akhir ini yaitu :

5 1.4 Tujuan Untuk mendapatkan estimasi nilai parameter α dan γ yang optimal dalam metode pemulusan eksponensial ganda dua parameter dengan metode modifikasi Golden Section.

6 1.5 Manfaat Dapat memberikan informasi mengenai penggunaan algoritma nonlinear programming dalam menyelesaikan permasalahan peramalan dengan menggunakan metode pemulusan eksponensial.

7 Metode Pemulusan Eksponensial Metode yang menunjukkan pembobotan menurun secara eksponensial terhadap nilai observasi yang lebih tua (Makridakis,1999). Metode ini terdiri atas metode pemulusan eksponensial satu parameter, metode pemulusan eksponensial dua parameter, dan metode pemulusan eksponensial tiga parameter.

8 Pemulusan eksponensial ganda dua parameter Model ini digunakan untuk memodelkan data yang mengandung pola trend (kecenderungan). Ramalan dari pemulusan ekponensial ganda didapat dengan menggunakan dua konstanta pemulusan (dengan nilai antara 0 dan 1). Rumus pemulusan eksponensial ganda dua parameter adalah:

9 Ukuran Error Peramalan Ukuran kesalahan peramalan digunakan untuk mengevaluasi nilai parameter peramalan. Nilai parameter peramalan yang terbaik adalah nilai yang memberikan nilai kesalahan peramalan yang terkecil.

10 Ukuran kesalahan peramalan yang digunakan adalah rata-rata kesalahan persentase absolut (Mean Absolut Percentage Error) karena menghilangkan nilai negatif pada tiap perhitungan. Rumus umum rata-rata kesalahan persentase absolut (Mean Absolut Percentage Error) : MAPE =

11 Suatu model mempunyai kinerja sangat bagus jika nilai MAPE berada di bawah 10%, dan mempunyai kinerja bagus jika nilai berada di antara 10% dan 20%. (Zainun dan Majid,2003)

12 Metode Modifikasi Golden Section Metode ini sebagai perluasan dari algoritma golden section yang hanya dapat menyelesaikan nonlinear programming dengan satu variabel. Dengan menggunakan prinsip-prinsip dasar dari algoritma golden section, untuk didapatkan penyelesaian nonlinear programming sejenis tetapi dengan banyak variabel. Maksimasi atau Minimasi : f(x 1,x 2, x 3,, x N ) Dengan kendala : a 1 x 1 d 1 a 2 x 2 d 2 a 3 x 3 d 3 : a N x N d N

13 Langkah Pengerjaan Studi pendahuluan Mendapatkan Data Berpola Trend Mendapatkan nilai α dan γ yang optimal Analisis Hasil Membuat Program Metode Modifikasi Golden Section Pada Software MATLAB Input Data Ke Program Kesimpulan dan Saran

14 Data Penelitian Tahun Periode Jumlah Pengunjung Tahun Periode Jumlah Pengunjung Sumber : Kusuma Agrowisata, Batu

15 Langkah Metode Modifikasi Golden Section Proses untuk mencari nilai parameter α dan γ yang optimal adalah suatu proses iterasi. Minimasi : F(α,γ) Kendala : 0 α 1 0 γ 1 Langkah-langkah pada metode modifikasi Golden Section : = 0 = 1 = 0 = 1 Dan diambil nilai toleransi = =

16 Nilai dan adalah toleransi variabel keputusan yang menjadi pembatas berhentinya iterasi, dimana iterasi akan berhenti saat nilai dan. Selanjutnya nilai dimasukkan pada : Mencari nilai fungsi maksimum dari fungsi Setelah mendapatkan nilai fungsi yang maksimum maka nilai interval akan berganti dengan nilai interval yang baru sesuai dengan fungsi mana yang maksimum.

17 Kemudian dilakukan pengujian iterasi apakah selisih batas akhir dan awal yang baru kurang dari dan. Jika nilai tersebut kurang dari dan maka iterasi akan berhenti dan dilanjutkan pada langkah selanjutnya yaitu mencari nilai fungsi yang minimum dari semua kombinasi dengan. Dari nilai fungsi yang minimum tersebut maka didapat nilai α dan γ yang optimal. Pada metode ini nilai adalah nilai MAPE dengan nilai adalah nilai yang dimasukkan sebagai nilai α dan γ pada metode pemulusan eksponensial.

18 Grafik Data Penelitian dan Hasil Peramalan Dengan α= 0, dan γ= 0, Data Penelitian Data Ramalan 2400 Jumlah Pengunjung Periode ke-t

19 Tabel Iterasi Metode Modifikasi Golden Section a1 b1 c1 d1 a2 b2 c

20

21 Kombinasi Nilai α dan γ yang Dimasukkan Secara Acak Gamma Alpha alpha = 0.1 alpha = 0.2 alpha = 0.3 alpha = 0.4 alpha = 0.5 alpha = 0.6 alpha = 0.7 alpha = 0.8 alpha = 0.9 gamma = 0.1 gamma = 0.2 gamma = 0.3 gamma = 0.4 gamma = 0.5 gamma = 0.6 gamma = 0.7 gamma = 0.8 gamma = 0.9 Memasukkan nilai α dan γ secara acak sehingga akan muncul suatu kombinasi dari nilai α dan γ.

22 Tabel MAPE terkecil pada grafik α No. α γ MAPE (%) Tabel MAPE terkecil pada grafik γ No. α γ MAPE (%) MAPE terkecil

23 Pada metode memasukkan nilai α dan γ secara acak menghasilkan nilai parameter optimal α=0,4 dan γ=0,5. Dari parameter optimal tersebut didapat nilai MAPE sama dengan 7,0845%. Berikut adalah hasil plot dari nilai α dan γ yang optimal Data Aktual Data Ramalan 2400 Jumlah Pengunjung periode ke-t

24 Kesimpulan Proses untuk mendapatkan parameter α dan γ yang optimal dengan metode modifikasi Golden Section menghasilkan nilai α sama dengan 0, dan γ sama dengan 0, Dari nilai α dan γ optimal didapat nilai MAPE 7,09209%. Dengan cara memasukkan nilai parameter α dan γ secara acak menghasilkan nilai parameter yang optimal α sama dengan 0,4 dan γ sama dengan 0,5. Dari parameter optimal tersebut didapat nilai MAPE sama dengan 7,0845%. Nilai MAPE yang dihasilkan dari metode modifikasi Golden Section berada di bawah 10 %, itu menunjukkan bahwa metode ini menghasilkan sebuah model yang kinerjanya sangat bagus. Sehingga metode modifikasi Golden Section merupakan sebuah metode yang efektif untuk mendapatkan parameter α dan γ yang optimal pada metode pemulusan eksponensial ganda dua parameter dari Holt.

25 Saran Saran yang penulis berikan untuk penelitian berikutnya adalah pertimbangan yang dapat dipakai untuk pengembangan atau penelitian kedepan, yaitu obyek penelitian dapat dikembangkan pada metode pemulusan eksponensial tiga parameter dan metode nonlinear programming yang digunakan adalah metode untuk mencari nilai optimal dengan lebih dari dua variabel atau multivariabel.

26 DAFTAR PUSTAKA [1] Makridakis, S., Wheelwright S.C., dan McGee V.E. (1999). Metode dan Aplikasi Peramalan. Diterjemahkan oleh Suminto, H. Jakarta: Binarupa Aksara. [2] Makridakis, S., Wheelwright, S.C. (1989). Forecasting Methods for Management. 5 ed. John Wiley & Sons, Inc: New York [3] Nurhidayati, E. N. (2011). Aplikasi Algoritma Nonlinear Programming Untuk Mengoptimalkan Parameter Alfa Dalam metode Pemulusan Eksponensial Satu Parameter. Jurusan Matematika FMIPA ITS. [4] The Jin Ai. (1999). Optimasi Peramalan Pemulusan Eksponensial Satu Parameter Dengan Menggunakan Algoritma Nonlinear Programming. Jurnal Teknologi Industri, Vol. III, No. 3, hal [5] The Jin Ai. (2002). Penyelesaian Non-Linear Programming (NLP) yang berbentuk Maks/Min f(x) dengan Kendala a x d dengan Modifikasi Algoritma Golden Section. Jurnal Teknologi Industri, Vol. VI, No. 1, Januari 2002: [6] Zainun, N. Y. dan Majid, M. Z. A. (2003). Low Cost House Demand Predictor.universitas Teknologi Malaysia

PENGGUNAAN ALGORITMA NONLINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PARAMETER DALAM METODE PEMULUSAN EKSPONENSIAL SATU PARAMETER

PENGGUNAAN ALGORITMA NONLINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PARAMETER DALAM METODE PEMULUSAN EKSPONENSIAL SATU PARAMETER PENGGUNAAN ALGORITMA NONLINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PARAMETER DALAM METODE PEMULUSAN EKSPONENSIAL SATU PARAMETER Nama Mahasiswa : Eka Novi Nurhidayati NRP : 1208 100 040 Jurusan : Matematika

Lebih terperinci

UJIAN TUGAS AKHIR EKA NOVI NURHIDAYATI. Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember 2012

UJIAN TUGAS AKHIR EKA NOVI NURHIDAYATI. Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember 2012 UJIAN TUGAS AKHIR APLIKASI ALGORITMA NONLINEAR PROGRAMMING UNTUK MENGOPTIMALKAN PARAMETER α DALAM METODE PEMULUSAN EKSPONENSIAL SATU PARAMETER EKA NOVI NURHIDAYATI 1208 100 040 Jurusan Matematika Fakultas

Lebih terperinci

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT

APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING ABSTRACT ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 4, Tahun 2014, Halaman 605-614 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA

Lebih terperinci

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( )

PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati ( ) TUGAS AKHIR PERENCANAAN JUMLAH PRODUK MENGGUNAKAN METODE FUZZY MAMDANI BERDASARKAN PREDIKSI PERMINTAAN Oleh: Norma Endah Haryati (1207 100 031) Dosen Pembimbing: Drs. I G Ngurah Rai Usadha, M.Si Dra. Nuri

Lebih terperinci

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA

SKRIPSI APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING. Disusun oleh: DANI AL MAHKYA APLIKASI METODE GOLDEN SECTION UNTUK OPTIMASI PARAMETER PADA METODE EXPONENTIAL SMOOTHING SKRIPSI Disusun oleh: DANI AL MAHKYA 24010210141025 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

BAB 2 TINJAUAN TEORITIS

BAB 2 TINJAUAN TEORITIS BAB 2 TINJAUAN TEORITIS 2.1. Peramalan 2.1.1. Pengertian dan Kegunaan Peramalan Peramalan (forecasting) menurut Sofjan Assauri (1984) adalah kegiatan memperkirakan apa yang akan terjadi pada masa yang

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan adalah alat bantu yang penting dalam perencanaan yang efektif dan efisien (Makridakis,1991). Peramalan merupakan studi terhadap data historis untuk menemukan

Lebih terperinci

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di:

ISSN: JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman Online di: ISSN: 2339-254 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 205, Halaman 957-966 Online di: http://ejournal-s.undip.ac.id/index.php/gaussian PREDIKSI NILAI KURS DOLLAR AMERIKA MENGGUNAKAN EXPONENTIAL SMOOTHING

Lebih terperinci

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI

PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL MERPATI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 251 258. PERBANDINGAN KEEFEKTIFAN METODE MOVING AVERAGE DAN EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH PENGUNJUNG HOTEL

Lebih terperinci

BAB. 1 PENDAHULUAN Latar Belakang

BAB. 1 PENDAHULUAN Latar Belakang 1 BAB. 1 PENDAHULUAN 1.1. Latar Belakang Kain adalah bahan mentah yang dapat dikelola menjadi suatu pakaian yang mempunyai nilai financial dan konsumtif dalam kehidupan, seperti pembuatan baju. Contohnya

Lebih terperinci

BAB I PENDAHULUAN. yang ada pada CV. Agung Jaya Cabang Pabean diperoleh dari supplier atau

BAB I PENDAHULUAN. yang ada pada CV. Agung Jaya Cabang Pabean diperoleh dari supplier atau BAB I PENDAHULUAN 1.1 Latar Belakang Masalah CV. Agung Jaya Cabang Pabean adalah cabang perusahaan CV. Agung Jaya Kalang Anyar Sedati. CV. Agung Jaya Cabang Pabean merupakan distributor alat tulis kantor

Lebih terperinci

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para

BAB I PENDAHULUAN. Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para 1 BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Sejak kondisi ekonomi dan bisnis selalu berubah setiap waktu, maka para pimpinan suatu perusahaan atau para pelaku bisnis harus menemukan cara untuk terus

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi

BAB 2 TINJAUAN TEORITIS. yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan terjadi BAB 2 TINJAUAN TEORITIS 2.1 Pengertian Peramalan Peramalan adalah kegiatan untuk memperkirakan apa yang akan terjadi pada masa yang akan datang. Ramalan adalah situasi dan kondisi yang diperkirakan akan

Lebih terperinci

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE

SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY KRIGING DENGAN TEKNIK JACKKNIFE ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 3, Nomor 3, Tahun 2014, Halaman 333-342 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian SIMULASI PENGUKURAN KETEPATAN MODEL VARIOGRAM PADA METODE ORDINARY

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Sedangkan ramalan adalah

Lebih terperinci

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA)

PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) PERAMALAN KUNJUNGAN WISATA DENGAN PENDEKATAN MODEL SARIMA (STUDI KASUS : KUSUMA AGROWISATA) Oleh : Nofinda Lestari 1208 100 039 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB 2 LANDASAN TEORITIS

BAB 2 LANDASAN TEORITIS BAB 2 LANDASAN TEORITIS 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksikan apa yang akan terjadi pada masa yang akan datang dengan waktu yang relative lama.

Lebih terperinci

RAMALAN PERMINTAAN PERSEDIAAN OPTIMAL DAGING IKAN MENGGUNAKAN MODEL P (PERIODIK REVIEW)

RAMALAN PERMINTAAN PERSEDIAAN OPTIMAL DAGING IKAN MENGGUNAKAN MODEL P (PERIODIK REVIEW) Jurnal Siliwangi Vol.. No.. November 06 ISSN 47789 RAMALAN PERMINTAAN PERSEDIAAN OPTIMAL DAGING IKAN MENGGUNAKAN MODEL P (PERIODIK REVIEW) Akik Hidayat, Ridwan Giri Prakoso, Rianto ), ) Departemen Ilmu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi merupakan suatu kegiatan yang dikerjakan untuk menambah nilai guna suatu benda baru sehingga lebih bermanfaat dalam memenuhi kebutuhan. Produksi jahe

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LADASA TEORI 2.1 Peramalan (forecasting) 2.1.1. Hubungan Forecast dengan Rencana Forecast adalah peramalan apa yang akan terjadi pada waktu yang akan datang, sedang rencana merupakan penentuan apa

Lebih terperinci

PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT

PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT SIG TUGAS AKHIR PERAMALAN PENJUALAN AVTUR DENGAN MEMPERTIMBANGKAN SPECIAL EVENT Siti Lukmatul Henifa (1210 100 064) Pembimbing: Dra. Nuri Wahyuningsih, M.Kes. Senin, 20 Januari 2014 Matematika - ITS Page

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan sering dipandang sebagai seni dan ilmu dalam memprediksikan kejadian yang mungkin dihadapi pada masa yang akan datang. Secara teoritis peramalan

Lebih terperinci

K NEAREST NEIGHBOR DALAM IMPUTASI MISSING DATA. Susanti, Shantika Martha, Evy Sulistianingsih INTISARI

K NEAREST NEIGHBOR DALAM IMPUTASI MISSING DATA. Susanti, Shantika Martha, Evy Sulistianingsih INTISARI Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 07, No. 1 (2018), hal 9-14. K NEAREST NEIGHBOR DALAM IMPUTASI MISSING DATA Susanti, Shantika Martha, Evy Sulistianingsih INTISARI Missing data

Lebih terperinci

BAB 1 PENDAHULUAN. Universitas Sumatera Utara

BAB 1 PENDAHULUAN. Universitas Sumatera Utara 13 BAB 1 PENDAHULUAN 1.1 Latar Belakang Era globalisasi saat ini, perkembangan zaman semankin maju dan berkembang pesat, di antaranya banyak pernikahan dini yang menyebabkan salah satu faktor bertambahnya

Lebih terperinci

PENGGUNAAN METODE EXPONENTIAL SMOOTHING UNTUK MERAMALKAN PERSEDIAAN BERAS PADA BULOG DIVRE ACEH

PENGGUNAAN METODE EXPONENTIAL SMOOTHING UNTUK MERAMALKAN PERSEDIAAN BERAS PADA BULOG DIVRE ACEH ISBN: 978-602-71798-1-3 PENGGUNAAN METODE EXPONENTIAL SMOOTHING UNTUK MERAMALKAN PERSEDIAAN BERAS PADA BULOG DIVRE ACEH Nurmaulidar, Asep Rusyana, Rizka Maqfirah 1 Fakultas MIPA, Universitas Syiah Kuala,

Lebih terperinci

ANALISIS PERAMALAN DENGAN MENGGUNAKAN METODE PEMULUSAN EKSPONENSIAL TUNGGAL ABSTRACT

ANALISIS PERAMALAN DENGAN MENGGUNAKAN METODE PEMULUSAN EKSPONENSIAL TUNGGAL ABSTRACT AALISIS PERAMALA DEGA MEGGUAKA METODE PEMULUSA EKSPOESIAL TUGGAL Annisa Rahmattia 1, Bustami 2, MDH.Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan Matematika Fakultas Matematika dan Ilmu

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1

JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 JURNAL TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 PEMBUATAN APLIKASI PERAMALAN JUMLAH PERMINTAAN PRODUK DENGAN METODE TIME SERIES EXPONENTIAL SMOOTHING HOLTS WINTER DI PT. TELEKOMUNIKASI INDONESIA Tbk.

Lebih terperinci

BAB IV METODE PENELITIAN

BAB IV METODE PENELITIAN BAB IV METODE PENELITIAN 4.1. Desain Penelitian Dari uraian latar belakang masalah, penelitian ini dikategorikan ke dalam penelitian kasus dan penelitian lapangan. Menurut Rianse dan Abdi dalam Surip (2012:33)

Lebih terperinci

METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU ABSTRACT

METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU ABSTRACT METODE PERAMALAN HOLT-WINTER UNTUK MEMPREDIKSI JUMLAH PENGUNJUNG PERPUSTAKAAN UNIVERSITAS RIAU Encik Rosalina 1, Sigit Sugiarto 2, M.D.H. Gamal 2 1 Mahasiswa Program Studi S1 Matematika 2 Dosen Jurusan

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013

BAB I PENDAHULUAN 1.1. Latar Belakang Vanissa Hapsari,2013 BAB I PENDAHULUAN 1.1. Latar Belakang Tingkat pencemaran udara di beberapa kota besar cenderung meningkat dari tahun ke tahun. Hal ini disebabkan oleh beberapa faktor diantaranya jumlah transportasi terus

Lebih terperinci

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31

JURNAL SAINS DAN SENI ITS Vol. 4, No.2, (2015) ( X Print) A-31 JURNAL SAINS DAN SENI ITS Vol 4, No2, (2015) 2337-3520 (2301-928X Print) A-31 Perbandingan Performansi Metode Peramalan Fuzzy Time Series yang Dimodifikasi dan Jaringan Syaraf Tiruan Backpropagation (Studi

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan

BAB 2 LANDASAN TEORI. Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan BAB 2 LADASA TEORI 2.1 Pengertian Peramalan (Forecasting) Peramalan (Forecasting) adalah suatu kegiatan untuk memperkirakan apa yang akan terjadi pada masa mendatang. Peramalan penjualan adalah peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan memperkirakan atau memprediksi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama. Sedangkan

Lebih terperinci

SEMINAR HASIL TUGAS AKHIR

SEMINAR HASIL TUGAS AKHIR SEMINAR HASIL TUGAS AKHIR Model Peramalan Konsumsi Energi Final dengan Menggunakan Metode Regresi Fuzzy Untuk Dataset Kecil (Studi Kasus: Indonesia) Oleh: Alfi Lailah (1207 100 065) Dosen Pembimbing: Dra.

Lebih terperinci

BAB I PENDAHULUAN. bagaimana iklim dapat berbeda pada suatu tempat dengan tempat lainya dan

BAB I PENDAHULUAN. bagaimana iklim dapat berbeda pada suatu tempat dengan tempat lainya dan BAB I PENDAHULUAN 1.1 Latar Belakang Klimatologi adalah ilmu yang membahas dan menerangkan tentang iklim, bagaimana iklim dapat berbeda pada suatu tempat dengan tempat lainya dan bagaimana kaitan antara

Lebih terperinci

IV HASIL DAN PEMBAHASAN

IV HASIL DAN PEMBAHASAN tersembunyi berkisar dari sampai dengan 4 neuron. 5. Pemilihan laju pembelajaran dan momentum Pemilihan laju pembelajaran dan momentum mempunyai peranan yang penting untuk struktur jaringan yang akan dibangun.

Lebih terperinci

KAJIAN TEORITIS HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK UNTUK PERAMALAN DATA RUNTUN WAKTU

KAJIAN TEORITIS HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK UNTUK PERAMALAN DATA RUNTUN WAKTU Bimaster Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 02, No.3 (2013), hal 205-210 KAJIAN TEORITIS HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK UNTUK PERAMALAN DATA RUNTUN WAKTU Muhlasah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan teori-teori yang menjadi dasar dan landasan dalam penelitian sehingga membantu mempermudah pembahasan selanjutnya. Teori tersebut meliputi arti dan peranan

Lebih terperinci

JURNAL MATEMATIKA MANTIK Edisi: Oktober Vol. 02 No. 01 ISSN: E-ISSN:

JURNAL MATEMATIKA MANTIK Edisi: Oktober Vol. 02 No. 01 ISSN: E-ISSN: ISSN: 25273159 EISSN: 25273167 PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN JUMLAH KLAIM DI BPJS KESEHATAN PAMEKASAN Faisol 1, Sitti Aisah 2 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

METODE PEMULUSAN (SMOOTHING)

METODE PEMULUSAN (SMOOTHING) Logaritma Vol. III, No.01 Januari 2015 29 PERAMALAN JUMLAH MAHASISWA BARU JURUSAN TADRIS MATEMATIKA IAIN PADANGSIDIMPUAN DENGAN MENGGUNAKAN METODE PEMULUSAN (SMOOTHING) Oleh: Anita Adinda, M.Pd 1 Abstract

Lebih terperinci

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA

PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA SISTEM PENDUKUNG KEPUTUSAN PENERAPAN METODE EXPONENTIAL SMOOTHING UNTUK PERAMALAN PENGGUNAAN WAKTU TELEPON DI PT TELKOMSEL Divre 3 SURABAYA Alda Raharja - 5206 100 008! Wiwik Anggraeni, S.Si, M.Kom! Retno

Lebih terperinci

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing

Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential Smoothing Jurnal Ilmiah Teknologi dan Informasi ASIA (JITIKA) Vol.11, No.1, Februari 2017 ISSN: 0852-730X Peramalan Jumlah Penumpang Pada Siluet Tour And Travel Kota Malang Menggunakan Metode Triple Exponential

Lebih terperinci

III. LANDASAN TEORI A. TEKNIK HEURISTIK

III. LANDASAN TEORI A. TEKNIK HEURISTIK III. LANDASAN TEORI A. TEKNIK HEURISTIK Teknik heuristik adalah suatu cara mendekati permasalahan yang kompleks ke dalam komponen-komponen yang lebih sederhana untuk mendapatkan hubungan-hubungan dalam

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pengolahan buah dan sayuran menjadi produk siap saji memiliki nilai tambah tersendiri bagi pasar. Salah satunya adalah pengolahan buah dan sayuran menjadi makanan ringan

Lebih terperinci

PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER

PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT - WINTER PERAMALAN DATA TIME SERIES DENGAN METODE PENGHALUSAN EKSPONENSIAL HOLT WINTER Adi Suwandi 1, Annisa 2, Andi Kresna Jaya

Lebih terperinci

PERBANDINGAN METODE PEMULUSAN BROWN DAN HOLT PADA PERAMALAN GEMPA BUMI SE-JAWA BARAT-BANTEN IVONNE RENITA ARLEEN

PERBANDINGAN METODE PEMULUSAN BROWN DAN HOLT PADA PERAMALAN GEMPA BUMI SE-JAWA BARAT-BANTEN IVONNE RENITA ARLEEN PERBANDINGAN METODE PEMULUSAN BROWN DAN HOLT PADA PERAMALAN GEMPA BUMI SE-JAWA BARAT-BANTEN IVONNE RENITA ARLEEN DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR

Lebih terperinci

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit

BAB 2 LANDASAN TEORI. Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit BAB 2 LANDASAN TEORI 2.1 Pengertian Produksi Produksi jagung merupakan hasil bercocok tanam, dimana dilakukan penanaman bibit tanaman pada lahan yang telah disediakan, pemupukan dan perawatan sehingga

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 10 BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan (forecasting) adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang. Peramalan diperlukan karena adanya kesenjaan waktu

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Peramalan Peramalan (forecasting) merupakan upaya memperkirakan apa yang terjadi pada masa yang akan datang. Pada hakekatnya peramalan hanya merupakan suatu perkiraan (guess),

Lebih terperinci

Optimasi Jumlah Pelanggan Perusahaan Daerah Air Minum Surya Sembada Kota Surabaya Berdasarkan Jenis Pelanggan dengan Metode Fuzzy Goal Programming

Optimasi Jumlah Pelanggan Perusahaan Daerah Air Minum Surya Sembada Kota Surabaya Berdasarkan Jenis Pelanggan dengan Metode Fuzzy Goal Programming JURNAL SAINS DAN SENI POMITS Vol. 1, No. 1, (2013) 1-6 1 Optimasi Jumlah Pelanggan Perusahaan Daerah Air Minum Surya Sembada Kota Surabaya Berdasarkan Jenis Pelanggan Metode Fuzzy Goal Programming Rofiqoh

Lebih terperinci

Evelina Padang, Gim Tarigan, Ujian Sinulingga

Evelina Padang, Gim Tarigan, Ujian Sinulingga Saintia Matematika Vol. 1, No. 2 (2013), pp. 161 174. PERAMALAN JUMLAH PENUMPANG KERETA API MEDAN-RANTAU PRAPAT DENGAN METODE PEMULUSAN EKSPONENSIAL HOLT-WINTERS Evelina Padang, Gim Tarigan, Ujian Sinulingga

Lebih terperinci

PENGGUNAAN METODE REGRESI BERGANDA UNTUK MERAMALKAN PERMINTAAN MOBIL DENGAN N VARIABEL INDEPENDEN ADAPTIF

PENGGUNAAN METODE REGRESI BERGANDA UNTUK MERAMALKAN PERMINTAAN MOBIL DENGAN N VARIABEL INDEPENDEN ADAPTIF PRESENTASI TUGAS AKHIR KS091336 PENGGUNAAN METODE REGRESI BERGANDA UNTUK MERAMALKAN PERMINTAAN MOBIL DENGAN N VARIABEL INDEPENDEN ADAPTIF Penyusun Tugas Akhir : Fitri Linawati (NRP : 5207.100.114) Dosen

Lebih terperinci

BAB 3 PENGOLAHAN DATA

BAB 3 PENGOLAHAN DATA BAB 3 PENGOLAHAN DATA 3.1 Pengertian Pengolahan Data Pengolahan data dapat diartikan sebagai penjabaran atas pengukuran data kuantitatif menjadi suatu penyajian yang lebih mudah dimengerti dan menguraikan

Lebih terperinci

Harwein et al., Peramalan Data Times Series Kebutuhan Tepung Terigu Sebagai Bahan Baku Pembuatan Roti...

Harwein et al., Peramalan Data Times Series Kebutuhan Tepung Terigu Sebagai Bahan Baku Pembuatan Roti... TEKNOLOGI HASIL PERTANIAN PERAMALAN DATA TIMES SERIES KEBUTUHAN TEPUNG TERIGU SEBAGAI BAHAN BAKU PEMBUATAN ROTI (Studi Kasus di PT. Inti Cakrawala Citra Jember Jawa Timur) FORECASTING OF WHEAT FLOUR AS

Lebih terperinci

PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK

PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK PERAMALAN PENJUALAN OBAT MENGGUNAKAN METODE SINGLE EXPONENTIAL SMOOTHING PADA TOKO OBAT BINTANG GEURUGOK Sayed Fachrurrazi, S.Si., M.Kom Program Studi Teknik Informatika, Universitas Malikussaleh Reuleut,

Lebih terperinci

PREDIKSI LUAS PANEN DAN PRODUKSI PADI DI KABUPATEN BANYUMAS MENGGUNAKAN METODE ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS)

PREDIKSI LUAS PANEN DAN PRODUKSI PADI DI KABUPATEN BANYUMAS MENGGUNAKAN METODE ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) PREDIKSI LUAS PANEN DAN PRODUKSI PADI DI KABUPATEN BANYUMAS MENGGUNAKAN METODE ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) Supriyanto 1, Sudjono 2, Desty Rakhmawati 3 ( 1,2. UNSOED Purwokerto, 3. STMIK

Lebih terperinci

TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI

TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI TUGAS AKHIR ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI (ALGORITHM OF MODIFIED BROYDEN-FLETCHER-GOLDFARB- SHANNO (MBFGS ) FOR OPTIMIZATION PROBLEM ) Oleh:

Lebih terperinci

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya

Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya. Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Aplikasi Sistem Informasi Forecasting pada PD. Maha Jaya Rudy Adipranata 1, Tanti Octavia 2, Andi Irawan 1 Teknik Informatika 1 Teknik Industri 2 Universitas Kristen Petra Surabaya Pendahuluan Pentingnya

Lebih terperinci

Dwi Puspitasari 1, Mustika Mentari 2, Wildan Ridho Faldiansyah 3

Dwi Puspitasari 1, Mustika Mentari 2, Wildan Ridho Faldiansyah 3 PENERAPAN METODE SINGLE EXPONENTIAL SMOOTHING MENGGUNAKAN PENDEKATAN ADAPTIF PADA PERAMALAN JUMLAH PELANGGAN DAN KEBUTUHAN AIR PADA PDAM KOTA PROBOLINGGO Dwi Puspitasari 1, Mustika Mentari 2, Wildan Ridho

Lebih terperinci

Perbandingan Analisis Trend dan Holt Double Eksponensial Smoothing dalam Meramalkan Angka Kematian Bayi di Jawa Timur

Perbandingan Analisis Trend dan Holt Double Eksponensial Smoothing dalam Meramalkan Angka Kematian Bayi di Jawa Timur Perbandingan Analisis Trend dan Holt Double Eksponensial Smoothing dalam Meramalkan Angka Kematian Bayi di Jawa Timur Mazro atul Qoyyimah dan Lutfi Agus Salim Fakultas Kesehatan Masyarakat Universitas

Lebih terperinci

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan

BAB 2 LANDASAN TEORI. Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan BAB 2 LANDASAN TEORI 2.1 Pengertian Peramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama ( assaury, 1991). Sedangkan ramalan

Lebih terperinci

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI

PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI PEMODELAN PERAMALAN PENJUALAN PAKAN UDANG PADA PT CENTRAL PROTEINA PRIMA, TBK DENGAN METODE PEMULUSAN EKSPONENSIAL (EXPONENTIAL SMOOTHING) SKRIPSI HERRIJUNIANTO PURBA 130823002 DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event

Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event Peramalan Penjualan Avtur dengan Mempertimbangkan Special Event Siti Lukmatul Henifa, Dra. Nuri Wahyuningsih, M.Kes. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam (MIPA), Institut Teknologi

Lebih terperinci

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK

BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK BAB III METODE PEMULUSAN EKSPONENSIAL HOLT-WINTER DAN METODE DEKOMPOSISI KLASIK 3.1 Metode Pemulusan Eksponensial Holt-Winter Metode rata-rata bergerak dan pemulusan Eksponensial dapat digunakan untuk

Lebih terperinci

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN

MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN MATHunesa Jurnal Ilmiah Matematika Volume 3 No.6 Tahun 2017 ISSN 2301-9115 FORECASTING FITNESS GYM MEMBERSHIP PADA PUSAT KEBUGARAN THE BODY ART FITNESS, AEROBIC & POOL MENGGUNAKAN METODE EXPONENTIAL SMOOTHING

Lebih terperinci

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut :

BAB V ANALISA HASIL Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type. menganalisa produk MC Tire IRC Tube Type, sebagai berikut : BAB V ANALISA HASIL 5.1. Perbandingan Akurasi Hasil Peramalan MC Tire IRC Tube Type Berdasarkan hasil pengolahan data, maka dapat dibandingkan seluruh ukuran kesalahan peramalan atas metode peramalan yang

Lebih terperinci

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

BAB 2 LANDASAN TEORI. datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan 18 BAB 2 LANDASAN TEORI 2.1 Pengertian Ramalan Peramalan adalah kegiatan mengestimasi apa yang akan terjadi pada masa yang akan datang dengan waktu yang relatif lama (assaury, 1991). Secara teoritis peramalan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Uji Kecukupan Sampel Dalam melakukan penelitian terhadap populasi yang sangat besar, kita perlu melakukan suatu penarikan sampel. Hal ini dikarenakan tidak selamanya kita dapat

Lebih terperinci

DAFTAR ISI. ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... viii DAFTAR GAMBAR...

DAFTAR ISI. ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... DAFTAR TABEL... viii DAFTAR GAMBAR... DAFTAR ISI ABSTRAK... i ABSTRACT... KATA PENGANTAR... UCAPAN TERIMA KASIH... DAFTAR ISI... ii iii iv vi DAFTAR TABEL... viii DAFTAR GAMBAR... ix BAB I PENDAHULUAN... 1 1.1 Latar Belakang... 1 1.2 Rumusan

Lebih terperinci

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap

GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : Genap Berlaku mulai: Genap/2010 MATA KULIAH : TEKNIK PERAMALAN KODE MATA KULIAH/ SKS : 410103096 / 3 SKS MATA KULIAH PRASYARAT

Lebih terperinci

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto

BAB 2 TINJAUAN TEORITIS. 2.1 Produk Domestik Regional Bruto 18 BAB 2 TINJAUAN TEORITIS 2.1 Produk Domestik Regional Bruto Dalam menghitung pendapatan regional, dipakai konsep domestik. Berarti seluruh nilai tambah yang ditimbulkan oleh berbagai sektor atau lapangan

Lebih terperinci

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG

PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG PENGENDALIAN PERSEDIAAN BAHAN BAKU BAJA MS DI DIREKTORAT PRODUKSI ATMI CIKARANG Siti Rohana Nasution 1, Temotius Agung Lukito 2 1,2) Jurusan Teknik Industri Fakultas Teknik Universitas Pancasila 1) nasutionana@yahoo.co.id,

Lebih terperinci

PENERAPAN METODE DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PRODUKSI TANAMAN PANGAN

PENERAPAN METODE DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PRODUKSI TANAMAN PANGAN Jurnal Informatika Polinema ISSN: 2407-070X PENERAPAN METODE DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PRODUKSI TANAMAN PANGAN Rudy Ariyanto 1, Dwi Puspitasari 2, Fifi Ericawati 3 1,2,3 Program Studi

Lebih terperinci

Kata kunci: Analisis Pengendalian Persediaan, Metode Peramalan.

Kata kunci: Analisis Pengendalian Persediaan, Metode Peramalan. PENGENDALIAN PERSEDIAAN BAHAN BAKU PADA PT. X Indra Dwiharto, Moses L. Singgih Magister Manajemen Teknologi Institut Teknologi Sepuluh November Surabaya ABSTRAK PT. X merupakan perusahaan yang bergerak

Lebih terperinci

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI

LULIK PRESDITA W APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI LULIK PRESDITA W 1207 100 002 APLIKASI MODEL ARCH- GARCH DALAM PERAMALAN TINGKAT INFLASI 1 Pembimbing : Dra. Nuri Wahyuningsih, M.Kes BAB I PENDAHULUAN 2 LATAR BELAKANG 1. Stabilitas ekonomi dapat dilihat

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 1 BAB 2 LANDASAN TEORI Bab ini membahas tentang teori penunjang dan penelitian sebelumnya yang berhubungan dengan metode ARIMA box jenkins untuk meramalkan kebutuhan bahan baku. 2.1. Peramalan Peramalan

Lebih terperinci

JURNAL PENERAPAN METODE SINGLE EXPONENTIAL SMOOTHING DAN DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PENJUALAN PAKAIAN

JURNAL PENERAPAN METODE SINGLE EXPONENTIAL SMOOTHING DAN DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PENJUALAN PAKAIAN JURNAL PENERAPAN METODE SINGLE EXPONENTIAL SMOOTHING DAN DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN PENJUALAN PAKAIAN APLICATIONS OF THE SINGLE EXPONENTIAL SMOOTHING METHOD AND DOUBLE DOUBLE EXPONENTIAL

Lebih terperinci

BAB 3 LANGKAH PEMECAHAN MASALAH

BAB 3 LANGKAH PEMECAHAN MASALAH 49 BAB 3 LANGKAH PEMECAHAN MASALAH 3.1 Penetapan Standar Optimasi Dasar evaluasi untuk mengoptimalkan supply chain management pada Honda Tebet (PT. Setianita Megah Motor) dari proses bisnis perusahaan

Lebih terperinci

BAB 5 KESIMPULAN, KEKURANGAN PENELITIAN DAN SARAN. Dari hasil pengujian peramalan dengan menggunakan metode Fuzzy Mamdani

BAB 5 KESIMPULAN, KEKURANGAN PENELITIAN DAN SARAN. Dari hasil pengujian peramalan dengan menggunakan metode Fuzzy Mamdani BAB 5 KESIMPULAN, KEKURANGAN PENELITIAN DAN SARAN 5. 1 Kesimpulan Dari hasil pengujian peramalan dengan menggunakan metode Fuzzy Mamdani dan bantuan software Matlab, dapat diambil beberapa kesimpulan sebagai

Lebih terperinci

MODEL PERAMALAN PASOKAN ENERGI PRIMER DENGAN PENDEKATAN METODE FUZZY LINEAR REGRESSION (FLR)

MODEL PERAMALAN PASOKAN ENERGI PRIMER DENGAN PENDEKATAN METODE FUZZY LINEAR REGRESSION (FLR) JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER SURABAYA 2012 SIDANG TUGAS AKHIR MODEL PERAMALAN PASOKAN ENERGI PRIMER DENGAN PENDEKATAN METODE FUZZY

Lebih terperinci

PERBANDINGAN METODE FUZZY TIME SERIES DAN HOLT DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN JUMLAH MAHASISWA BARU INSTITUT PERTANIAN BOGOR STEVEN

PERBANDINGAN METODE FUZZY TIME SERIES DAN HOLT DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN JUMLAH MAHASISWA BARU INSTITUT PERTANIAN BOGOR STEVEN PERBANDINGAN METODE FUZZY TIME SERIES DAN HOLT DOUBLE EXPONENTIAL SMOOTHING PADA PERAMALAN JUMLAH MAHASISWA BARU INSTITUT PERTANIAN BOGOR STEVEN DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Peramalan merupakan studi terhadap data historis untuk menemukan hubungan, kecenderungan dan pola data yang sistematis (Makridakis, 1999). Peramalan menggunakan pendekatan

Lebih terperinci

MENENTUKAN PENJUALAN PRODUK TERBAIK DI PERUSAHAAN X DENGAN METODE WINTER EKSPONENSIAL SMOOTHING DAN METODE EVENT BASED

MENENTUKAN PENJUALAN PRODUK TERBAIK DI PERUSAHAAN X DENGAN METODE WINTER EKSPONENSIAL SMOOTHING DAN METODE EVENT BASED J. Math. and Its Appl. E-ISS: 2579-8936 P-ISS: 1829-605X Vol. 14, o. 1, Mei 2017, 25 35 MEETUKA PEJUALA PRODUK TERBAIK DI PERUSAHAA X DEGA METODE WITER EKSPOESIAL SMOOTHIG DA METODE EVET BASED Farida Agustini

Lebih terperinci

Membuat keputusan yang baik

Membuat keputusan yang baik Membuat keputusan yang baik Apakah yang dapat membuat suatu perusahaan sukses? Keputusan yang dibuat baik Bagaimana kita dapat yakin bahwa keputusan yang dibuat baik? Akurasi prediksi masa yang akan datang

Lebih terperinci

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS Saintia Matematika ISSN: 2337-9197 Vol. 02, No. 03 (2014), pp. 253 266. PERAMALAN PENJUALAN PRODUKSI TEH BOTOL SOSRO PADA PT. SINAR SOSRO SUMATERA BAGIAN UTARA TAHUN 2014 DENGAN METODE ARIMA BOX-JENKINS

Lebih terperinci

PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU

PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU PENGGUNAAN METODE SMOOTHING EKSPONENSIAL DALAM MERAMAL PERGERAKAN INFLASI KOTA PALU Romy Biri ), Yohanes A.R. Langi ), Marline S. Paendong ) ) Program Studi Matematika FMIPA Universitas Sam Ratulangi Jl.

Lebih terperinci

Peramalan Menggunakan Metode Fuzzy Time Series Cheng. Forecasting Using Fuzzy Time Series Cheng Method

Peramalan Menggunakan Metode Fuzzy Time Series Cheng. Forecasting Using Fuzzy Time Series Cheng Method Jurnal EKSPONENSIAL Volume 8, Nomor, Mei 07 ISSN 085-789 Peramalan Menggunakan Metode Fuzzy Time Series Cheng Forecasting Using Fuzzy Time Series Cheng Method Sumartini, Memi Nor Hayati, dan Sri Wahyuningsih

Lebih terperinci

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN

PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN PENERAPAN ALGORITMA FORECASTING UNTUK PREDIKSI PENDERITA DEMAM BERDARAH DENGUE DI KABUPATEN SRAGEN Ryan Putranda Kristianto 1), Ema Utami 2), Emha Taufiq Lutfi 3) 1, 2,3) Magister Teknik informatika STMIK

Lebih terperinci

JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: A-403

JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: A-403 JURNAL TEKNIK ITS Vol. 1, (Sept, 2012) ISSN: 201-9271 A-0 Implementasi Fuzzy Neural Network untuk Memperkirakan Jumlah Kunjungan Pasien Poli Bedah di Rumah Sakit Onkologi Surabaya Ani Rahmadiani dan Wiwik

Lebih terperinci

BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah

BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Kemajuan ilmu pengetahuan telah meningkatkan pengertian mengenai berbagai aspek lingkungan dan akibatnya banyak peristiwa yang dapat diramalkan. Peramalan

Lebih terperinci

BAB III TINJAUAN PUSTAKA

BAB III TINJAUAN PUSTAKA BAB III TINJAUAN PUSTAKA 3.1 Teori Dunia industri biasanya tak lepas dari suatu peramalan, hal ini disebabkan bahwa peramalan dapat memprediksi kejadian di masa yang akan datang untuk mengambil keputusan

Lebih terperinci

(FORECASTING ANALYSIS):

(FORECASTING ANALYSIS): ANALISIS KUANTITATIF ANALISIS PERAMALAN Hand-out ke-3 ANALISIS PERAMALAN (FORECASTING ANALYSIS): Contoh-contoh sederhana PRODI AGRIBISNIS UNEJ, 2017 PROF DR IR RUDI WIBOWO, MS Contoh aplikasi tehnik peramalan

Lebih terperinci

ESTIMASI PARAMETER MODEL HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK PADA HASIL PENGUKURAN MEAN SEA LEVEL SATELIT ALTIMETRI JASON 2

ESTIMASI PARAMETER MODEL HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK PADA HASIL PENGUKURAN MEAN SEA LEVEL SATELIT ALTIMETRI JASON 2 Vol. 7, No. 2, Desember 2012 ESTIMASI PARAMETER MODEL HYBRIDIZING EXPONENTIAL SMOOTHING DAN NEURAL NETWORK PADA HASIL PENGUKURAN MEAN SEA LEVEL SATELIT ALTIMETRI JASON 2 Novi Mara KODE ARTIKEL : 117-2-12

Lebih terperinci

Program Studi Matematika, Institut Teknologi Kalimantan, Balikpapan

Program Studi Matematika, Institut Teknologi Kalimantan, Balikpapan J. Math. and Its Appl. E-ISSN: 2579-8936 P-ISSN: 1829-605X Vol. 14, No. 2, Desember 2017, 25-37 Perbandingan Metode ARIMA dan Double Exponential Smoothing pada Peramalan Harga Saham LQ45 Tiga Perusahaan

Lebih terperinci

Key words: Artificial Neural Network, Exponential Smoothing, Prediction, Electrical Energy Need.

Key words: Artificial Neural Network, Exponential Smoothing, Prediction, Electrical Energy Need. PREDIKSI KEBUTUHAN ENERGI LISTRIK SULAWESI UTARA MENGGUNAKAN ARTIFICIAL NEURAL NETWORK DAN METODE EXPONENTIAL SMOOTHING Febry Hontong 1), Tritiya Arungpadang 2), Johan Neyland 3) Jurusan Teknik Mesin Universitas

Lebih terperinci

PERAMALAN PRODUK DOMESTIK REGIONAL BRUTO (PDRB) PROVINSI BALI DENGAN MENGGUNAKAN METODE FUZZY TIME SERIES

PERAMALAN PRODUK DOMESTIK REGIONAL BRUTO (PDRB) PROVINSI BALI DENGAN MENGGUNAKAN METODE FUZZY TIME SERIES e-jurnal Matematika Vol. 1 No. 1 Agustus 2012, 12-19 PERAMALAN PRODUK DOMESTIK REGIONAL BRUTO (PDRB) PROVINSI BALI DENGAN MENGGUNAKAN METODE FUZZY TIME SERIES I GUSTI NGURAH ARYA WANAYASA 1, I PUTU EKA

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Matematika memegang peranan penting dalam kehidupan. Selain sebagai salah satu kajian ilmu utama dalam pendidikan, matematika juga berperan untuk menunjang ilmu-ilmu

Lebih terperinci

BAB IV ANALISIS HASIL PENGOLAHAN DATA

BAB IV ANALISIS HASIL PENGOLAHAN DATA BAB IV ANALISIS HASIL PENGOLAHAN DATA 4.1 Pola Dasar Permintaan Dari hasil pengumpulan data aktual yang telah dilakukan mengenai pertumbuhan jumlah kartu kredit BCA yang dimiliki oleh cardholder BCA Cabang

Lebih terperinci

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA

FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA FORECASTING INDEKS HARGA SAHAM GABUNGAN (IHSG) DENGAN MENGGUNAKAN METODE ARIMA 1) Nurul Latifa Hadi 2) Artanti Indrasetianingsih 1) S1 Program Statistika, FMIPA, Universitas PGRI Adi Buana Surabaya 2)

Lebih terperinci