BAB II TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II TINJAUAN PUSTAKA"

Transkripsi

1 BAB II TINJAUAN PUSTAKA 2.1 Literature Review Dari studi literature yang dilakukan, semakin besar sudut kelengkungan turbin, maka semakin besar jari-jari turbin, akibatnya gaya hambat yang dialami turbin semakin besar sehingga kecepatan putar turbin berkurang. Kecepatan putar turbin bertambah sebanding dengan bertambahnya kecepatan angin. Semakin besar jari-jari turbin, semakin besar pula torsinya, namun putaran yang dihasilkan turbin semakin kecil[5]. Pembuatan turbin angin tipe rotor helix dengan sistem modul dapat diaplikasikan, dengan setiap sambungannya dengan menggunakan mekanisme baut, sehingga turbin angin tipe helix mudah ditransportasikan. Semakin tinggi kecepatan angin yang melintas di turbin angin tipe helix ini, baik yang bersudu lurus maupun yang bersudu setengah lingkaran, maka semakin tinggi daya yang dihasilkan oleh generator. Untuk menghasilkan daya minimum 300 Watt baik yang bersudu lurus atau pun yang bersudu setengah lingkaran, turbin angin menggunakan empat buah turbin angin dengan tipe yang sama dengan kecepatan angin rata-rata 4 m/s[6]. Semakin pendek ukuran lengan, putaran generator yang dihasilkan semakin besar. Semakin pendek ukuran lengan, daya yang dihasilkan semakin besar. Semakin besar rasio gear yang digunakan, semakin besar putaran generator yang dihasilkan[7]. 2.2 Turbin Angin Turbin angin merupakan sebuah alat yang digunakan dalam sistem konversi energi angin (SKEA). Turbin angin berfungsi merubah energi kinetik angin menjadi energi mekanik berupa putaran poros. Putaran poros tersebut kemudian digunakan untuk beberapa hal sesuai dengan kebutuhan seperti memutar dinamo atau generator untuk menghasilkan listrik atau untuk menggerakan pompa untuk

2 pengairan. Desain turbin angin yang ada saat ini terbagi menjadi dua, yaitu turbin angin sumbu mendatar (HAWT) dan turbin angin sumbu vertikal (VAWT)[8]. Bagian-bagian turbin angin dapat dilihat pada Gambar 2.1. Gambar 2.1. Konstruksi turbin angin[8] Keterangan gambar : 1. Arah angin pada HAWT tipe upwind 2. Diameter rotor 3. Hub height 4. Rotor blade 5. Gear box 6. Generator 7. Nacelle 8. Tower pada HAWT 9. Arah angin pada HAWT tipe downwind 10. Tinggi rotor 11. Tower pada VAWT 12. Equator height 13. Fixed-pitch rotor blade[8]

3 Pemanfaatan energi angin telah dilakukan sejak lama. Pertama kali digunakan untuk menggerakan perahu di sungai Nil sekitar 5000 tahun lalu SM. Penggunaan kincir sederhana sudah dimulai sejak permulaan abad ke-7 dan tersebar di berbagai negara seperti Persia, Mesir, dan Tiongkok dengan berbagai desain. Di Eropa, kincir angin mulai dikenal sekitar abad ke-11 dan berkembang pesat saat revolusi industri pada awal abad ke-19. Kini turbin angin lebih banyak digunakan untuk mengakomodasi kebutuhan listrik masyarakat, dengan menggunakan prinsip konversi energi dan menggunakan sumber daya alam yang dapat diperbaharui yaitu angin. Walaupun sampai saat ini pembangunan turbin angin masih belum dapat menyaingi pembangkit listrik konvensional (Contoh: PLTD,PLTU,dll), turbin angin masih lebih dikembangkan oleh para ilmuwan karena dalam waktu dekat manusia akan dihadapkan dengan masalah kekurangan sumber daya alam tak terbaharui (Contoh : batubara, minyak bumi) sebagai bahan dasar untuk membangkitkan listrik[8]. Salah satu komponen yang dapat meningkatkan safety dan efisiensi dari turbin angin adalah rotor. Rotor ini berfungsi sebagai perubah gerak linier angin menjadi gerak putar sudu turbin. Untuk klasifikasi berdasarkan fungsi gaya aerodinamisnya, merujuk pada gaya utama yang menyebabkan rotor berputar. Berdasarkan fungsi dari gaya aerodinamis, rotor terbagi menjadi dua, yaitu rotor tipe drag dan rotor tipe lift[9]. 1. Rotor tipe drag, memanfaatkan efek gaya hambat atau drag sebagai gaya penggerak rotor. 2. Rotor tipe lift, memanfaatkan efek gaya angkat sebagai gaya penggerak rotor. Gaya ini terjadi akibat angin yang melewati rotor. Turbin angin sumbu vertikal/tegak (VAWT) memiliki poros/sumbu rotor utama yang disusun tegak lurus. Kelebihan utama susunan ini adalah turbin tidak harus diarahkan ke angin agar menjadi efektif. Kelebihan ini sangat berguna di tempattempat yang arah anginnya sangat bervariasi. VAWT mampu mendayagunakan angin dari berbagai arah[9]. Dengan sumbu yang vertikal, generator serta gearbox bisa ditempatkan di atas tanah, jadi menara tidak perlu menyokongnya dan lebih mudah diakses untuk

4 keperluan perawatan/pemeliharaan. Tapi ini menyebabkan sejumlah desain menghasilkan tenaga putaran yang tidak stabil. Drag (gaya yang menahan pergerakan sebuah benda padat melalui fluida (zat cair atau gas) bisa saja tercipta saat kincir berputar. Karena sulit dipasang di atas menara, turbin sumbu tegak sering dipasang lebih dekat ke dasar tempat ia diletakkan, seperti tanah atau puncak atap sebuah bangunan. Kecepatan angin lebih pelan pada ketinggian yang rendah, sehingga tersedia energi angin yang sedikit. Jika tinggi puncak atap yang dipasangi menara turbin kira-kira 50% dari tinggi bangunan, ini merupakan titik optimal bagi energi angin yang maksimal dan turbulensi angin yang minimal[9]. Ada tiga tipe rotor pada turbin angin jenis ini, yaitu: Savonius, Darrieus, dan Helix rotor. Turbin Savonius memanfaatkan gaya drag sedangkan Darrieus dan Helix rotor memanfaatkan gaya lift. Turbin angin sumbu vertical dapat dilihat pada Gambar 2.2. Gambar 2.2. Turbin angin sumbu vertical[9] Teori Momentum Elementer Betz Albert Betz seorang aerodinamikawan Jerman, adalah orang pertama yang memperkenalkan teori tentang turbin angin. Dalam bukunya Die Windmuhlen imlichte neurer Forschung. Die Naturwissenschaft. (1927), ia mengasumsikan bahwa suatu turbin mempunyai sudu-sudu yang tak terhingga jumlahnya dan tanpa hambatan. Juga diasumsikan bahwa aliran udara di depan dan di belakang rotor memiliki kecepatan yang seragam (aliran laminar)[10]. Teori A. Betz digambarkan seperti yang terlihat pada Gambar 2.3.

5 Gambar 2.3. Teori A. Betz[10] Dalam sistem konversi energi angin, energi mekanik turbin hanya dapat diperoleh dari energi kinetik yang tersimpan dalam aliran angin, berarti tanpa perubahan aliran massa udara, kecepatan angin di belakang turbin haruslah mengalami penurunan. Dan pada saat yang bersamaan luas penampang yang dilewati angin haruslah lebih besar, sesuai dengan persamaan kontinuitas. Jika kecepatan angin di depan rotor, V kecepatan angin saat melewati rotor, dan kecepatan angin di belakang rotor, maka daya mekanik turbin diperoleh dari selisih energi kinetik angin sebelum dan setelah melewati turbin, proil kecepatan angin melewati penampang rotor dapat dilihat pada Gambar 2.4[10]. Gambar 2.4. Profil kecepatan angin melewati penampang rotor[10] Rotor Bagian dari turbin angin yang mengumpulkan energi dari angin disebut dengan rotor (blade/baling-baling). Rotor biasanya terdiri dari dua atau lebih sudu yang terbuat dari kayu, fiberglass atau logam berkeliling sumbu (horizontal atau vertikal). Sudu-sudu dipasang pada naf (hub), yang menempel pada poros utama. Rotor didesain berdasarkan prinsip dasar drag dan lift[9]. Pada sudu jenis drag angin mendorong sudu keluar alurnya. Jenis drag ini biasanya dikenal dengan karakteristik putaran (rpm) lambat dan kapasitas torsi yang tinggi. Kegunaan jenis ini untuk memompa, pekerjaan menggergaji atau

6 menggerinda (di Belanda), pertanian (windmills). Sudu lift dikembangkan sama dengan prinsip dasar yang dimiliki pesawat, layangan dan burung untuk terbang. Sudu sebagai airfoil, atau sayap. Ketika udara melewati sudu, kecepatan angin dan perbedaan tekanan terjadi antara permukaan atas dan permukaan bawah sudu. Tekanan pada bagian bawah lebih besar dan mengakibatkan sudu terangkat. Ketika sudu-sudu dipasang pada sumbu utama, sama seperti baling-baling kincir angin, gaya angkat diubah menjadi putaran. Jenis lift ini memiliki putaran(rpm) yang lebih tinggi dari jenis drag[9]. Jumlah sudu rotor dan luas total yang ditutup sudu mempengaruhi performansi kincir angin. Untuk jenis baling-baling lift untuk mengefektifkan fungsinya, angin harus mengalir perlahan terhadap sudu. Untuk mencegah turbulen, ruang antara sudu harus lebih besar maka satu sudu tidak akan menghalangi aliran, aliran udara lemah disebabkan sudu telah dilewati sebelumnya[9] Turbin Angin Savonius Salah satu jenis turbin angin sumbu vertikal (VAWT) yang dapat digunakan pada angin dengan kecepatan rendah. Turbin ini ditemukan oleh sarjana Finlandia bernama Sigurd J. Savonius pada tahun Konstruksi turbin sangat sederhana, tersusun dari dua buah sudu setengah silinder[11]. Pada perkembangannya turbin Savonius ini banyak mengalami perubahan bentuk rotor, seperti yang terlihat pada Gambar 2.5. Gambar 2.5.Bentuk rotor[11]

7 2.3 Gerak dan Gaya Suatu benda dikatakan bergerak jika benda tersebut berubah kedudukannya setiap saat terhadap titik acuannya (titik asalnya). Sebuah benda dikatakan bergerak lurus atau melengkung, jika lintasan berubah kedudukannya dari titik asalnya berbentuk garis lurus atau melengkung[12]. Kinematika dan Dinamika, kinematika adalah ilmu yang mempelajari gerak tanpa mengindahkan penyebabnya, sedangkan dinamika adalah ilmu yang mempelajari gerak dan gaya-gaya penyebabnya[12] Hukum Newton Tentang Gerak. Bila penyebab gerak diperhatikan disebut dinamika, melibatkan besaranbesaran fisika yang disebut gaya. Gaya adalah suatu tarikan atau dorongan yang dapat menimbulkan perubahan gerak. Dengan demikian jika benda ditarik/didorong maka pada benda bekerja gaya dan keadaan gerak benda dapat berubah. Gaya adalah penyebab gerak. Gaya termasuk besaran vektor, karena gaya mempunyai besar dan arahnya [12]. Hukum I Newton. Sebagai contoh ketika kita naik kereta api dalam keadaan diam, tiba-tiba melaju kencang maka tubuh kita akan terdorong kebelakang. Jika resultan dari gaya-gaya yang bekerja pada sebuah benda sama dengan nol ( F=0) maka benda tersebut ; 1. Jika dalam keadaan diam akan tetap diam, atau 2. Jika dalam keadaan bergerak lurus beraturan akan tetap bergerak lurus beraturan[12] Gerak Melingkar Jika sebuah benda bergerak dengan kelajuan konstan pada suatu lingkaran (di sekeliling lingkaran), maka dikatakan bahwa benda tersebut melakukan gerak melingkar beraturan, seperti terlihat pada Gambar 2.6.[12]

8 Gambar 2.6. Gerak melingkar[12] Kecepatan pada gerak melingkar beraturan besarnya selalu tetap namun arahnya selalu berubah, arah kecepatan selalu menyinggung lingkaran, maka v selalu tegak lurus garis yang ditarik melalui pusat lingkaran ke sekeliling lingkaran tersebut terlihat pada Gambar 2.6.[12] Radian 1 (Satu) radian adalah besarnya sudut tengah lingkaran yang panjang busurnya sama dengan jari-jarinya. Besarnya sudut seperti diperlihatkan pada Gambar 2.7.[12] Gambar Ilustrasi radian[12] Frekuensi dan perioda dalam gerak melingkar beraturan Waktu yang diperlukan sebuah titik P untuk satu kali berputar mengelilingi lingkaran di sebut waktu edar atau perioda dan diberi notasi T. Banyaknya putaran per detik disebut frekuensi dan diberi notasi f. Satuan frekuensi ialah Hertz atau cps (cycle per second). Jadi antara f dantkita dapatkan hubungan [12]: xt= 1 atauf =. (2.1)

9 Kecepatan linier dan kecepatan sudut Jika dalam waktu T detik ditempuh lintasan sepanjang keliling lingkaran sebesar s= 2 R, maka kelajuan partikel P untuk mengelilingi lingkaran dapat dirumuskan: v = ecepatan ini disebut kecepatan linier dan diberi notasi v.[12] Kecepatan anguler (sudut) diberi notasi adalah perubahan dari perpindahan sudut persatuan waktu (setiap saat). Biasanya dinyatakan dalam radian/s, derajat per sekon, putaran per sekon (rps) atau putaran per menit (rpm). Bila benda melingkar beraturan dengan sudut rata-rata ( ) dalam radian per sekon, maka kecepatan sudut:[12] Untuk 1 (satu) putaran = rad/s... (2.2) Dimana: : kecepatan sudut (rad/s) T : waktu (s) [12] 2.4 Analisa Getaran Suatu peralatan yang berputar sebaiknya memiliki suatu nilai getaran standart dan batasan getaran yang diperbolehkan (dibuat oleh pabrik) sehingga apabila nilai getaran yang terjadi diluar batasan yang diizinkan maka peralatan tersebut harus menjalani tindakan perawatan. Semua mesin memiliki tiga sifat fundamental yang berhubungan untuk menentukan bagaimana mesin akan bereaksi terhadap kekuatan-kekuatan yang menyebabkan getaran-getaran, seperti sistem pegas-massa yaitu: [13] 1) Massa (m) : merupakan inersia untuk tetap dalam keadaan semula atau gerak. Sebuah gaya mencoba untuk membawa perubahan dalamkeadaan istirahat atau gerak, yang ditentang oleh massa dan satuannya dalam kg. 2) Kekakuan/stiffness (k) : ada kekuatan tertentu yang dipersyaratkan membengkokkan atau membelokkan struktur dengan jarak tertentu. Ini mengukur gaya yang diperlukan untuk memperoleh defleksi tertentu disebut kekakuan, satuannya dalam N / m. 3) Damping/redaman (c) : setelah memaksa setiap bagian atau struktur ke dalam gerakan, bagian atau struktur akan memiliki mekanisme inheren

10 untuk memperlambat gerak (kecepatan). Karakteristik ini untuk mengurangi kecepatan gerakan disebut redaman, satuannya dalam N /(m/s)[13]. Sebagaimana disebutkan di atas, efek gabungan untuk menahan pengaruh kekuatan karena massa, kekakuan dan redaman menentukan bagaimana suatu sistem akan merespon yang diberikan kekuatan eksternal. Sederhananya, cacat dalam mesin membawa gerakan getaran. Massa, kekakuan dan redaman mencoba untuk melawan getaran yang disebabkan oleh cacat. Jika getaran akibat cacat jauh lebih besar dari pada tiga karakteristik tersebut maka getaran yang dihasilkan akan lebih tinggi dan cacat dapat terdeteksi[13] Konsep Analisa Getaran Data getaran yang biasanya diperoleh dalam bentuk sinyal (analog) listrik yang kontinyu yang dihasilkan dari tranducer, dimana masing-masing sinyal analog tersebut menunjukan besar regangan, tegangan, gaya, atau parameter gerakan sesaat (displacement, velocity, dan acceleration ) sebagai fungsi waktu. Sinyal yang demikian disebut sebagai time history. Suatu sample data didefinisikan sebagai time history dari pengukuran getaran tunggal x(t) dalam durasi tertentu[14]. Getaran diartikan sebagai gerak osilatif disekitar posisi tertentu. Untuk getaran sebuah titik akibat operasi mesin, analisa getaran didasarkan pada peristiwa gerak osilatif yang periodik. Gerak periodik adalah suatu gerak gelombang yang berulang dalam selang waktu tertentu. Bentuk paling sederhana dari gerak periodik adalah gerak harmonik [14] Karakteristik Getaran Getaran secara teknik didefenisikan sebagai gerak osilasi dari suatu objek terhadap posisi objek awal/diam, seperti yang ditunjukkan pada gambar 2.8.

11 Gambar 2.8. Sistem Getaran Sederhana[15] Kondisi suatu mesin dan masalah-masalah mekanik yang terjadi dapat diketahui dengan mengukur karakteristik getaran pada mesin tersebut. Karakteristik getaran yang penting antara lain adalah:[15] 1) Frekuensi adalah jumlah siklus pada tiap satuan waktu. Besarnya dapat dinyatakan dengan siklus per detik (cycles per second/cps) atau siklus per menit (cycles per minute/cpm). Frekuensi juga bisa diartikan sebagai karakteristik dasar yang digunakan untuk mengukur dan menggambarkan getaran. Frekuensi getaran penting diketahui dalam analisis getaran mesin untuk menunjukkan masalah yang terjadi pada mesin tersebut. Dengan mengetahui frekuensi getaran, akan memungkinkan untuk dapat mengidentifikasikan bagian mesin yang salah (fault) dan masalah yang terjadi. 2) Perpindahan adalah gerakan suatu titik dari suatu tempat ke tempat lain yang mengacu pada suatu titik tertentu yang tidak bergerak (tetap). Dalam pengukuran getaran mesin, sebagai standar digunakan jarak perpindahan puncak ke puncak (peak to peak displacement). Perpindahan juga dapat mengindikasikan berapa jauh suatu objek bergetar. 3) Kecepatan merupakan perubahan jarak per satuan waktu. Kecepatan gerak mesin selalu dinyatakan dalam kecepatan puncak (peak velocity). Kecepatan puncak gerakan terjadi pada simpul gelombang. Dalam getaran, kecepatan merupakan parameter penting dan efektif, karena dari data kecepatan akan dapat diketahui tingkat getaran yang terjadi dan juga dapat mengindikasikan berapa cepat objek bergetar.

12 4) Percepatan adalah perubahan kecepatan per satuan waktu. Percepatan berhubungan erat dengan gaya. Gaya yang menyebabkan getaran pada bantalan mesin atau bagian-bagian lain dapat ditentukan dari besarnya getaran. Juga dapat mengindikasikan suatu objek bergetar terkait dengan gaya penyebab getaran. 5) Phase mengindikasikan bagaimana suatu bagian bergetar relatif terhadap bagian yang lain, atau untuk menentukan posisi suatu bagian yang bergetar pada suatu saat, terhadap suatu referensi atau terhadap bagian lain yang bergetar dengan frekuensi yang sama. Fasa menunjukkan perbedaan awal siklus terjadi. Hubungan fasa antara perpindahan, kecepatan, dan percepatan diilustrasikan pada Gambar 2.9. kecepatan puncak maju (peak forward velocity) terjadi pada 900 sebelum puncak perpindahan positif (peak positive displacement). Dengan kata lain, kecepatan mendahului 900 terhadap perpindahan, sedangkan percepatan tertinggal 1800 terhadap perpindahan[15]. Gambar 2.9. Beda fasa antara perpindahan, kecepatan, dan percepatan[15] Hubungan antara perpindahan dan waktu untuk gerak harmonic dapat dinyatakan secara matematik sebagai berikut :...(2.3) Dimana perpindahan maksimum diekspresikan sebagai A 0, yang juga disebut sebagai amplitudo, sedang ω adalah frekuensi angular yang umumnya dinyatakan dalam rad/det. Dalam analisa getaran dikenal pula definisi lain untuk frekuensi, yang diberi notasi f dan didefinisikan sebagai jumlah siklus per satuan waktu. Satuan yang umum digunakan untuk f adalah siklus per menit (cpm) atau siklus per detik (cps, Hz). Kecepatan dan percepatan gerak harmonik dapat diperoleh

13 dengan differensiasi. Dengan menggunakan notasi titik untuk turunannya, maka didapat : Kecepatan(Velocity) mm/s Percepatan (Acceleration) mm/s 2... (2.4)... (2.5) Dengan amplitudo maka dapat terbaca indikasi beratnya kerusakan pada mesin dan juga dapat digunakan untuk mengukur beberapa masalah getaran, yang menunjukkan Displacement dan Frequency. perpindahan kecepatan percepatan Gambar Hubungan phasa perpindahan, kecepatan, dan percepatan pada gerak harmonik[15] Standard Getaran (Vibrasi) Untuk Pompa Sentrifugal Sampai saat ini sangat sulit untuk mendapatkan standart vibrasi untuk pompa sentrifugal, bahkan pabrikan pembuat pompa tidak dapat memberikan standar vibrasi dari pompa buatannya. Demikian juga dengan vibrasi yang timbul akibat kesalahan perencanaan dan pengoperasian, seperti tinggi tekan dan kapasitas pompa jauh lebih besar dari tinggi tekan sistem atau instalasi. Sehingga pengoperasian yang dilakukan dengan mengatur secara paksa tinggi tekan dan kapasitas yang akan menimbulkan vibrasi yang besar. Berdasarkan standart ISO untuk standart vibrasi, memberikan batasan-batasan vibrasi berdasarkan kecepatan (velocity) yang dikategorikan dalam beberapa zona dan warna seperti ditunjukkan pada Gambar [16]

14 Gambar 2.11.ISO Untuk Vibrasi [16] Keterangan Gambar di atas sebagai berikut : 1. Zona A bewarna hijau, getaran dari mesin sangat baik dan di bawah getaran yang diijinkan. 2. Zona B bewarna hijau muda, getaran dari mesin baik dan dapat dioperasikan tanpa larangan. 3. Zona C bewarna kuning, getaran dari mesin dalam batas toleransi dan hanya dioperasikan dalam waktu terbatas. Zona D bewarna merah, getaran dari mesin dalam batas berbahaya dan dapat terjadi kerusakan sewaktu-waktu. 2.5 Modal Analisis (Mode Superposition Methods) Modal analisis adalah suatu proses penentuan karakteristik dinamik dari suatu sistem. Modal analisis menjadi dasar mangapa respon getaran suatu sistem dapat di ekspresikan sebagai kombinasi linier dari respon kordinat modalnya. Modal ini mencakup instrumentasi, pengolahan sinyal, estimasi parameter, dan analisis vibrasi [16]. Pengukuran vibrasi secara eksperimen pada umumnya memerlukan beberapa perangkat. Perangkat tersebut terdiri dari sumber eksitasi yang di sebut exciter untuk

15 menghasilkan input gaya pada struktur. Transducers berfungsi untuk mengkonversi gerakan mekanik pada struktur ke sinyal electric, signal conditioning. Amplifier untuk mencocokkan karakteristik transducers dengan input elektronik data digital, dan analyzer, di mana terdapat program komputer pemrosesan sinyal dan modal analisis. Skema penyusunan perangkat tersebut di ilustrasikan pada Gambar [17]. Gambar Skema Modal Testing [17] Getaran pada suatu sistem yang akan di tentukan secara eksperimen pada umumnya terdiri dari tiga mekanisme pengukuran : (1) mekanisme eksitasi; (2) mekanisme pembacaan; (3) mekanisme akuisisi data dan pengolahan. Mekanisme eksitasi di tentukan dari sistem yang menyediakan input gerakan terhadap struktur dalam analisis, umumnya berupa gaya yang di berikan pada koordinat tertentu. Mekanisme pembacaan pada dasarnya di gunakan sensing device yang di kenal sebagai force transduces. Banyak variasi dari alat tersebut dan biasanya di gunakan pada eksperimental modal analisys adalah piezoelectric transducers baik untuk mengujur eksitasi gaya (force transducers) atau mengukur respon percepatan (accelerometers) [17]. Data yang di dapat dari free vibration test yaitu respon percepatan struktur dalam domain waktu tersebut kemudian di tranformasi agar menjadi domain frekuensi dengan metode Fast Fourier Transform (FFT) dengan bantuan software. Data respon struktur hasil FFT tersebut sekarang menjadi dalam domain frekuensi atau yang disebut sebagai frequency response function (FRF). Dari FRF akan

16 terlihat frekuensi alami struktur setiap mode yang di asosiasikan dengan frekuensi nilai puncak. Periode getar struktur kemudian dapat ditentukan yang merupakan invers dari frekuensi alaminya terlihat pada Gambar [17]. Gambar Contoh respon jembatan akibat beban impuls dalam, (a) time domain; (b) frequency domain [17] Simpangan struktur total merupakan kontribusi dari respon setiap mode (modal displacement). Simpangan kontribusi setiap mode dapat dihitung dengan melalui integrasi numerik atas persamaan independen. Apabila simpangan untuk setiap mode pada massa tertentu sudah diperoleh maka simpangan total massa yang bersangkutan merupakan superposisi atau penjumlahan dari simpangan tiap-tiap mode tersebut. Simpangan massa yang lain dapat dicari dengan cara yang sama. Berikut contoh modal analisis dari sistem derajat kebebasan banyak (MDOF) yang di modelkan sebagai bangunan geser, dengan menggunakan program MatLab, seperti pada Gambar [17]. 2.6 MatLab (Matrix Laboratory) MATLAB atau yang kita sebut dengan (Matrix Laboratory) yaitu sebuah program untuk menganalisis dan mengkomputasi data numerik, dan MATLAB juga merupakan suatu bahasa pemrograman matematika lanjutan, yang dibentuk dengan dasar pemikiran yang menggunakan sifat dan bentuk matriks terlihat pada Gambar 2.14.

17 Gambar Contoh modal analisis dari sistem derajat kebebasan [17] Matlab yang merupakan singkatan dari Matrix Laboratory, merupakan bahasa pemrograman yang dikembangkan oleh The Mathwork Inc. yang hadir dengan fungsi dan karakteristik yang berbeda dengan bahasa pemrograman lain yang sudah ada lebih dahulu seperti Delphi, Basic maupun C++. Pada awalnya program aplikasi MATLAB ini merupakan suatu interface untuk koleksi rutin-rutin numerik dari proyek LINPACK dan EISPACK, dan dikembangkan dengan menggunakan bahasa FORTRAN, namun sekarang ini MATLAB merupakan produk komersial dari perusahaan Mathworks, Inc. Yang dalam perkembangan selanjutnya dikembangkan dengan menggunakan bahasa C++ dan assembler, (utamanya untuk fungsi-fungsi dasar MATLAB). MATLAB telah berkembang menjadi sebuah environment pemprograman yang canggih yang berisi fungsi-fungsi built-in untuk melakukan tugas pengolahan sinyal, aljabar linier, dan kalkulasi matematis lainnya. MATLAB juga menyediakan berbagai fungsi untuk menampilkan data, baik dalam bentuk dua dimensi maupun dalam bentuk tiga dimensi. MATLAB juga bersifat extensible, dalam arti bahwa seorang pengguna dapat menulis fungsi baru untuk menambahkan pada library, ketika fungsi-fungsi built-in yang tersedia tidak dapat melakukan tugas tertentu. Kemampuan pemrograman yang

18 dibutuhkan tidak terlalu sulit bila kita telah memiliki pengalaman dalam pemrograman bahasa lain seperti C, PASCAL, atau FORTRAN. MATLAB (Matrix Laboratory) yang juga merupakan bahasa pemrograman tingkat tinggi berbasis pada matriks, sering kita gunakan untuk teknik komputasi numerik, yang kita gunakan untuk menyelesaikan masalah-masalah yang melibatkan operasi matematika elemen, matrik, optimasi, aproksimasi dll [18]. 2.7 Analisa Vibrasi dengan Fast Fourier Transform(FFT) Analisa fourier terbagi atas dua yakni deret fourier untuk sinyal periodik dan trasformasi fourier untuk sinyal aperiodik. Setiap sinyal periodik dapat dinyatakan atas jumlah komponen-komponen sinyal sinusoidal dengan frekuensi yang berbeda (distinct). Jika ada sebuah fungsi f(t) yang kontinyu periodik dengan periode T yang bernilai tunggal terbatas pada suatu interval terbatas, dan memiliki diskontinyuitas yang terbatas jumlahnya dalam interval tersebut serta dapat diintegralkan secara mutlak, maka f(t) dapat dinyatakan dengan deret fourier. Dengan menggunakan software komputer, komputasi FFT menjadi lebih mudah dan cepat. Contoh sederhana FFT pada matlab sebuah fungsi f(t) dari time domain menjadi frequency domain diperlihatkan pada Gambar2.15. [19]. Gambar 2.15.Hasil FFT dari Data Vibrasi [19] FFT merupakan elemen pemrosesan sinyal pada pengukuran vibrasi. Pada pengukuran vibrasi ada empat tahapan untuk merubah sinyal vibrasi menjadi spektrumnya. Algoritma FFT untuk analisa vibrasi tersebut adalah sebagai berikut: Pengambilan data vibrasi dari tranduser yang dihubungkan dengan sistem akuisisi.

19 Sistem akuisisi menghasilkan spektrum yang menunjukkan perbandingan waktu dengan percepatan. Hasil spektrum diolah menggunakan software lain dengan menggunakan Fast Fourier Transform. Hasil pengolahan menggunakan FFT akan berupa grafik perbandingan frekuensi dengan amplitudo yang menunjukkan jenis kerusakan dan tingkat kerusakan mesin [19]. 2.8 Diagnosa Kerusakan Mesin Melalui Spectrum Analysis Setiap bagian dari mesin yang berputar mempunyai tingkat vibrasi yang berbeda tergantung pada letaknya dan gaya yang diterima. Tingkat vibrasi inilah yang bisa dijadikan sebagai pendeteksi keadaan dari suatu kondisi mesin apakah ada kerusakan atau tidak. Kerusakan umum yang biasa terjadi pada pompa dan mesin-mesin berputar adalah ketidakseimbangan atau unbalance, misalingment, kerusakan bearing dan mechanical looseness. Kerusakan-kerusakan tersebut dapat dideteksi dari spektrum vibrasi. Kerusakan kerusakan yang sering terjadi pada mesin berputar yaitu : [19] a. Unbalance Unbalance adalah kondisi dimana pusat massa tidak sesumbu dengan sumbu rotasi sehingga rotor mengalami gaya vibrasi terhadap bearing yang menghasilkan gaya sentrifugal. Ada beberapa faktor yang menyebabkan terjadinya unbalance yakni: kesalahan saat proses pemesinan dan assembly, eksentrisitas komponen, adanya kotoran saat pengecoran, korosi dan keausan, distorsi geometri karena beban termal dan beban mekanik serta penumpukan material. Karakteristik dari unbalance ini dapat diketehui dengan adanya amplitudo yang tinggi pada 1 x RPM, seperti yang ditunjukkan gambar. Tetapi adanya amplitudo pada 1x RPM tidak selalu Unbalance, tanda lainnya adalah rasio amplitudo antara pengukuran arah horizontal dan vertikal kecil (H/V < 3). Ketika pada kondisi dominan unbalance, maka getaran radial (Horizontal dan Vertikal) akan secara normal jauh lebih tinggi dibandingkan axial. Pada pompa normal, getaran horizontal lebih tinggi dari vertical. Amplitudo di 1x RPM secara

20 normal 80% dari amplitudo keseluruhan ketika masalah dipastikan unbalance terlihat pada Gambar [19]. Gambar Pola Spektrum Vibrasi Unbalance [19] b. Misalignment Ketidaklurusan (misalignment) terjadi ketika frekuensi shaft yang berputar satu kali putaran atau dapat juga terjadi dua dan tiga kali putaran. Normalnya disebabkan adanya getaran yang tinggi pada axial dan radial. Misalignment terjadi saat getaran yang dihasilkan lebih besar dari keadaan normal di 2x RPM. Jika misalignment menjadi semakin buruk hal ini dapat disebabkan besarnya nilai harmonik dimana akan menghasilkan spektrum nampak seperti masalah looseness terlihat pada Gambar 2.17.[19]. Gambar 2.17.Pola Spektrum Vibrasi Misalignment [19] 2.9 Metode Lintasan Orbit (Pola Lissajous) Sebagai metode analisa tambahan kadang-kadang diterapkan analisa orbit (pola Lissajous) karena pada umumnya pada instalasi non-contact pickup untuk suatu pengukuran pada daerah bearing yang mendeteksi tingkat vibrasi pada arah

21 axial. Sehingga rekomendasi pengukuran yang lengkap dengan arah vibrasi axial tidak dapat dilakukan. Untuk non-contact pick up pada umumnya dipasang permanen untuk mendeteksi vibrasi langsung pada shaft mesin-mesin yang penggunaannya cukup kritis, instalasinya berupa probe pada arah radial (horizontal dan vertikal) yang keduanya dipisahkan oleh sudut 90 derajat [20]. Di sini analisa orbit dapat dilakukan, sebagai tambahan untuk analisa spektrum. Para praktisi telah melakukan penelitian mengenai kegunaan metoda orbit (pola Lissajous) dan berhasil mendapat kesimpulan terhadap bentuk bentuk orbit dalam membantu untuk mengidentifikasi status yang tidak normal termasuk tidak seimbangan (Unbalance), tidak sesumbu (misalignment), oil whirl dan oil whip. Bentuk karakteristik pola Lissajous sebagai berikut [20]. 1. Unbalance Suatu keadaan unbalance pada rotary machine ditunjukkan oleh pola Lissajous sebagai vibrasi yang besar pada frekuensi 1 X RPM dengan menganggap bahwa vibrasi pada frekuensi yang lain sangat kecil dan tidak berarti. Bentuknya dapat sedikit agak lonjong (elips) dan di dalam pola yang terbentuk akan terlihat satu bush spot yang menunjukkan bahwa vibrasi yang besar hanya terjadi pada frekuensi 1 X RPM. Gambar pola Lissajousnya dapat terlihat pada Gambar [20]. Gambar Pola Lissajous pada rotary machine yang unbalance[20] 2. Misalignment Misalignment yang terjadi pada rotary machine akan menyebabkan vibrasi yang utama pada frekuensi 1 X RPM yaitu sekitar yang diikuti dengan munculnya vibrasi pads 2 X RPM, 3 X RPM, dan harmonik yang lebih tinggi lagi. Di dalam

22 gambar pola Lissajousnya akan memberikan bentuk elips pipih seperti pisang atau bahkan bentuk pisang yang melengkung [20]. Bentuk elips pipih selain memberikan kemungkinan vibrasi yang disebabkan oleh keadaan misalignment, tetapi juga dapat disebabkan oleh kerusakan bearing atau kemungkinan terjadinya resonansi, dapat terlihat pada Gambar 2.19.[20]. Gambar Pola Lissajous pads rotary machine yang misalignment [20] 3. Oil Whirl Misalignment akan menyebabkan vibrasi yang utama pada frekuensi di bawah I X RPM. Di dalam gambar pola Lissajousnya akan memberikan bentuk dua buah lingkaran atau elips yang ditandai dengan adanya dua buah blank spot. Bahkan karena kejadian oil whirl yang di bawah 1 X RPM tidak persis 1/2 X RPM, maka lingkaran atau elips yang lebih kecil akan bergerak dan ditandai dengan bergeraknya blank spot yang ada pada lingkaran atau elips yang kecil, terlihat pada Gambar 2.20.[20]. Gambar Pola Lissajous pads rotary machine yang oil whirl [20]

23 4. Rubbing (Gesekan) Gambar Pola Lissajous pada rotary machine yang mengalami hit-andbounce rubbing [20] Pola semacam ini mirip dengan pola Lissajous yang terjadi pada peristiwa terjadinya oil whirl, hanya bedanya dengan peristiwa oil whirl maka di sini lingkaran yang berada di dalam tidak berputar-putar. Dengan semakin beratnya kondisi rubbing yang terjadi, yaitu yang dinamakan heavy rubbing atau full rubbing, dan ditambah lagi dengan frekuensi resonansi, frekuensi harmonik, serta random frekuensi non-syncronous, maka akan menghasilkan pola Lissajous yang sangat kompleks seperti ditunjukkan oleh Gambar [20]. Gambar Pola Lissajous pada rotary machine yang full rubbing atau heavy rubbing [20]

Kajian Lintasan Orbit pada Turbin Angin Savonius Tipe Rotor U dan Helix dengan Menggunakan Software MATLAB

Kajian Lintasan Orbit pada Turbin Angin Savonius Tipe Rotor U dan Helix dengan Menggunakan Software MATLAB Kajian Lintasan Orbit pada Turbin Angin Savonius Tipe Rotor U dan Helix dengan Menggunakan Software MATLAB Panji Waskito 1, Ali Syahputra Hasibuan 2 1 Progam Studi S1 Teknik Mesin, Universitas Sumatera

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature

II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature II. TINJAUAN PUSTAKA 2.1 Pemodelan Matematika (Mathematical Modeling) Model adalah representasi penyederhanaan dari sebuah realita yang complex (biasanya bertujuan untuk memahami realita tersebut) dan

Lebih terperinci

Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi Kerusakan Akibat Kondisi Unbalance Sistem Poros Rotor

Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi Kerusakan Akibat Kondisi Unbalance Sistem Poros Rotor Seminar Nasional Maritim, Sains, dan Teknologi Terapan 2016 Vol. 01 Politeknik Perkapalan Negeri Surabaya, 21 November 2016 ISSN: 2548-1509 Analisis Getaran Struktur Mekanik pada Mesin Berputar untuk Memprediksi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM

Lebih terperinci

VIBRASI DAN JENIS KERUSAKAN POMPA AIR

VIBRASI DAN JENIS KERUSAKAN POMPA AIR LAPORAN RESMI PRAKTIKUM INSTRUMENTASI AKUSTIK DAN VIBRASI P1 VIBRASI DAN JENIS KERUSAKAN POMPA AIR Di Susun Oleh : Rizky Kurniasari Kusuma Pratiwi NRP. 2413 031 058 Asisten : Rio Asruleovito NRP. 2414

Lebih terperinci

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai

Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai JURNAL TEKNIK POMITS Vol, No, () -6 Studi dan Simulasi Getaran pada Turbin Vertikal Aksis Arus Sungai Anas Khoir, Yerri Susatio, Ridho Hantoro Teknik Fisika, Fakultas Teknologi Industri, Institut Teknologi

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

Uji Kompetensi Semester 1

Uji Kompetensi Semester 1 A. Pilihlah jawaban yang paling tepat! Uji Kompetensi Semester 1 1. Sebuah benda bergerak lurus sepanjang sumbu x dengan persamaan posisi r = (2t 2 + 6t + 8)i m. Kecepatan benda tersebut adalah. a. (-4t

Lebih terperinci

ANALISIS VIBRASI UNTUK KLASIFIKASI KERUSAKAN MOTOR DI PT PETROKIMIA GRESIK MENGGUNAKAN FAST FOURIER TRANSFORM DAN NEURAL NETWORK

ANALISIS VIBRASI UNTUK KLASIFIKASI KERUSAKAN MOTOR DI PT PETROKIMIA GRESIK MENGGUNAKAN FAST FOURIER TRANSFORM DAN NEURAL NETWORK ANALISIS VIBRASI UNTUK KLASIFIKASI KERUSAKAN MOTOR DI PT PETROKIMIA GRESIK MENGGUNAKAN FAST FOURIER TRANSFORM DAN NEURAL NETWORK Nirma Priatama NRP. 2210100159 Dosen Pembimbing : Dimas Anton Asfani, ST.,

Lebih terperinci

ALAT PENGUKUR GETARAN

ALAT PENGUKUR GETARAN ALAT PENGUKUR GETARAN Dalam pengambilan data suatu getaran agar supaya informasi mengenai data getaran tersebut mempunyai arti, maka kita harus mengenal dengan baik alat yang akan kita gunakan. Ada beberapa

Lebih terperinci

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik.

GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. GERAK LURUS Standar Kompetensi Menerapkan konsep dan prinsip dasar kinematika dan dinamika benda titik. Kompetensi Dasar Menganalisis besaran fisika pada gerak dengan kecepatan dan percepatan konstan.

Lebih terperinci

BAB II LANDASAN TORI

BAB II LANDASAN TORI BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

GERAK MELINGKAR. = S R radian

GERAK MELINGKAR. = S R radian GERAK MELINGKAR. Jika sebuah benda bergerak dengan kelajuan konstan pada suatu lingkaran (disekeliling lingkaran ), maka dikatakan bahwa benda tersebut melakukan gerak melingkar beraturan. Kecepatan pada

Lebih terperinci

iii Banda Aceh, Nopember 2008 Sabri, ST., MT

iii Banda Aceh, Nopember 2008 Sabri, ST., MT ii PRAKATA Buku ini menyajikan pembahasan dasar mengenai getaran mekanik dan ditulis untuk mereka yang baru belajar getaran. Getaran yang dibahas di sini adalah getaran linier, yaitu getaran yang persamaan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA Getaran banyak dipakai sebagai alat untuk melakukan analisis terhadap mesin-mesin, baik gerak rotasi maupun translasi. Pengetahuan akan getaran dan data-data yang dihasilkan sangat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin merupakan udara yang bergerak akibat adanya rotasi bumi dan juga karena adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Denhas (2014) melakukan penelitian mengenai peningkatan unjuk kerja turbin angin vertikal axis savonius dengan cara menambahkan sudu pengarah

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

PEMICU 1 29 SEPT 2015

PEMICU 1 29 SEPT 2015 PEMICU 1 9 SEPT 015 Kumpul 06 Okt 015 Diketahui: Data eksperimental hasil pengukuran sinyal vibrasi sesuai soal. Ditanya: a. Hitung persamaan karakteristiknya. b. Dapatkan putaran kritisnya c. Simulasikan

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam dunia industri, mesin rotari merupakan bagian yang sangat penting dalam proses produksi dan bantalan (bearing) mempunyai peran penting dalam menjaga performa

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas Soal Multiple Choise 1.(4 poin) Sebuah benda yang bergerak pada bidang dua dimensi mendapat gaya konstan. Setelah detik pertama, kelajuan benda menjadi 1/3 dari kelajuan awal benda. Dan setelah detik selanjutnya

Lebih terperinci

SASARAN PEMBELAJARAN

SASARAN PEMBELAJARAN OSILASI SASARAN PEMBELAJARAN Mahasiswa mengenal persamaan matematik osilasi harmonik sederhana. Mahasiswa mampu mencari besaranbesaran osilasi antara lain amplitudo, frekuensi, fasa awal. Syarat Kelulusan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB IV PERANGKAT PENGUJIAN GETARAN POROS-ROTOR

BAB IV PERANGKAT PENGUJIAN GETARAN POROS-ROTOR BAB IV PERANGKAT PENGUJIAN GETARAN POROS-ROTOR 4.1 Perangkat Uji Sistem Poros-rotor Perangkat uji sistem poros-rotor yang digunakan tersusun atas lima belas komponen utama, antara lain: landasan (base),

Lebih terperinci

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika.

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika. MATA KULIAH : FISIKA DASAR TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika. POKOK BAHASAN: Pendahuluan Fisika, Pengukuran Dan Pengenalan Vektor

Lebih terperinci

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN

Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu GERAK MELINGKAR BERATURAN 3 GEAK MELINGKA BEATUAN Kincir raksasa melakukan gerak melingkar. Sumber: Kompas, 20 Juli 2006 Berdasarkan lintasannya, benda bergerak dibedakan menjadi tiga yaitu benda bergerak pada garis lurus, gerak

Lebih terperinci

LAPORAN TUGAS AKHIR. Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun oleh:

LAPORAN TUGAS AKHIR. Diajukan Guna Memenuhi Syarat Kelulusan Mata Kuliah Tugas Akhir Pada Program Sarjana Strata Satu (S1) Disusun oleh: LAPORAN TUGAS AKHIR Analisa Kerusakan Pompa Sentrifugal One Stage type Ebara Pump 37KW Pada Water Treatment Plant (WTP) Dengan Metode FFT Analyzer Studi Kasus Mall Senayan City Diajukan Guna Memenuhi Syarat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Pompa Pompa adalah peralatan mekanis yang digunakan untuk menaikkan cairan dari dataran rendah ke dataran tinggi atau untuk mengalirkan cairan dari daerah bertekanan

Lebih terperinci

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O

5. Tentukanlah besar dan arah momen gaya yang bekerja pada batang AC dan batang AB berikut ini, jika poros putar terletak di titik A, B, C dan O 1 1. Empat buah partikel dihubungkan dengan batang kaku yang ringan dan massanya dapat diabaikan seperti pada gambar berikut: Jika jarak antar partikel sama yaitu 40 cm, hitunglah momen inersia sistem

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Analisa Getaran Perawatan mesin tradisional, skedul overhaul perbaikan biasanya sulit dibuat karena kebutuhan perbaikan tidak dapat ditentukan secara pasti, tanpa membongkar mesin

Lebih terperinci

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut:

BAB II DASAR TEORI. c) Untuk mencari torsi dapat dirumuskan sebagai berikut: BAB II DASAR TEORI 2.1 Daya Penggerak Secara umum daya diartikan sebagai suatu kemampuan yang dibutuhkan untuk melakukan sebuah kerja, yang dinyatakan dalam satuan Watt ataupun HP. Penentuan besar daya

Lebih terperinci

BAB III PEMODELAN SISTEM POROS-ROTOR

BAB III PEMODELAN SISTEM POROS-ROTOR BAB III PEMODELAN SISTEM POROS-ROTOR 3.1 Pendahuluan Pemodelan sistem poros-rotor telah dikembangkan oleh beberapa peneliti. Adam [2] telah menggunakan formulasi Jeffcot rotor dalam pemodelan sistem poros-rotor,

Lebih terperinci

BAB I LANDASAN TEORI. 1.1 Fenomena angin

BAB I LANDASAN TEORI. 1.1 Fenomena angin BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k

r = r = xi + yj + zk r = (x 2 - x 1 ) i + (y 2 - y 1 ) j + (z 2 - z 1 ) k atau r = x i + y j + z k Kompetensi Dasar Y Menganalisis gerak parabola dan gerak melingkar dengan menggunakan vektor. P Uraian Materi Pokok r Kinematika gerak translasi, terdiri dari : persamaan posisi benda, persamaan kecepatan,

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI

DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI DETEKSI KERUSAKAN BEARING PADA CONDENSATE PUMP DENGAN ANALISIS SINYAL VIBRASI Ganong Zainal Abidin, I Wayan Sujana Program Studi Teknik Mesin, Institut Teknologi Nasional Malang Email : ganongzainal@outlook.com

Lebih terperinci

Abstrak. Kata kunci : balance performance, massa unbalance, balancing roda mobil, metoda sudut fasa

Abstrak. Kata kunci : balance performance, massa unbalance, balancing roda mobil, metoda sudut fasa STUDI EKSPERIMENTAL PENGARUH BERAT RODA PADA PROSENTASE UNJUK KERJA BALANCING RODA MOBIL Harie Satiyadi Jaya *, Suhardjono ** Laboratorium Mesin Perkakas, Jurusan Teknik Mesin FTI ITS, Surabaya. E-mail:

Lebih terperinci

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH)

II. TINJAUAN PUSTAKA. A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) 6 II. TINJAUAN PUSTAKA A. Pengertian Pembangkit Listrik Tenaga Mikro Hidro (PLTMH) Pembangkit Listrik Tenaga Mikrohidro (PLTMH), adalah suatu pembangkit listrik skala kecil yang menggunakan tenaga air

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

Besaran Fisika pada Gerak Melingkar

Besaran Fisika pada Gerak Melingkar MATERI POKOK BESARAN FISIKA PADA GERAK MELINGKAR I. Kompetensi Dasar Menganalisis besaran fisika pada gerak melingkar dengan laju konstan II. Indikator Hasil Belajar Siswa dapat : 1. Mengetahui pengertian

Lebih terperinci

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah.

FISIKA IPA SMA/MA 1 D Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. 1 D49 1. Suatu pipa diukur diameter dalamnya menggunakan jangka sorong diperlihatkan pada gambar di bawah. Hasil pengukuran adalah. A. 4,18 cm B. 4,13 cm C. 3,88 cm D. 3,81 cm E. 3,78 cm 2. Ayu melakukan

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

menganalisis suatu gerak periodik tertentu

menganalisis suatu gerak periodik tertentu Gerak Harmonik Sederhana GETARAN Gerak harmonik sederhana Gerak periodik adalah gerak berulang/berosilasi melalui titik setimbang dalam interval waktu tetap. Gerak harmonik sederhana (GHS) adalah gerak

Lebih terperinci

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L SNTMUT - 1 ISBN: 97--71-- UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L Syamsul Bahri W 1), Taufan Arif Adlie 1), Hamdani ) 1) Jurusan Teknik Mesin Fakultas Teknik Universitas Samudra

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1)

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1) Bab Dasar Teori.1. Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan E = 1 mv (.1) dimana: m : massa udara yang bergerak (kg) v : adalah kecepatan angin (m/s).

Lebih terperinci

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Fluida Fluida diartikan sebagai suatu zat yang dapat mengalir. Istilah fluida mencakup zat cair dan gas karena zat cair seperti air atau zat gas seperti udara dapat mengalir.

Lebih terperinci

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Agus Sifa a, Casiman S b, Habib Rizqon H c a Jurusan Teknik Mesin,Politeknik Indramayu,Indramayu

Lebih terperinci

SILABUS : : : : Menggunakan alat ukur besaran panjang, massa, dan waktu dengan beberapa jenis alat ukur.

SILABUS : : : : Menggunakan alat ukur besaran panjang, massa, dan waktu dengan beberapa jenis alat ukur. SILABUS Satuan Pendidikan Mata Pelajaran Kelas Semester SMA Dwija Praja Pekalongan FISIKA X (Sepuluh) 1 (Satu) Standar Kompetensi 1. Menerapkan konsep besaran fisika dan pengukurannya. Kompetensi 1.1 Mengukur

Lebih terperinci

PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN

PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN PEMODELAN NUMERIK RESPON DINAMIK STRUKTUR TURBIN ANGIN AKIBAT PEMBEBANAN GELOMBANG AIR DAN ANGIN Medianto NRP : 0321050 Pembimbing : Olga Pattipawaej, Ph.D FAKULTAS TEKNIK JURUSAN TEKNIK SIPIL UNIVERSITAS

Lebih terperinci

PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK

PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK PENGGUNAAN KINCIR ANGIN SAVONIUS sebagai SUMBER ENERGI LISTRIK Dosen Pengampu : Drs. Purwandari Disusun Oleh : Rizcy Dwi Prastikasari (09421.127) Septya Sri Ekawaty (09421.135) PROGRAM STUDI PENDIDIKAN

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Blade Falon Dasar dari usulan penelitian ini adalah konsep turbin angin yang berdaya tinggi buatan Amerika yang diberi nama Blade Falon. Blade Falon merupakan desain sudu turbin

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

= x 125% = 200 x 125 % = 250 Watt

= x 125% = 200 x 125 % = 250 Watt BAB IV PERHITUNGAN DAN PEMBAHASAN 4.1 Perhitungan 4.1.1. Dasar Pemilihan Jenis Kincir Angin Kincir angin merupakan salah satu jenis energi terbarukan yang ramah lingkungan yang dapat dipakai untuk memasok

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS 5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik

Lebih terperinci

Pemodelan dan Analisis Pengaruh Kenaikan Putaran Kerja Terhadap Respon Dinamis, Kasus Unbalance Rotor Steam Turbine Unit 1 PLTU Amurang 2x25MW

Pemodelan dan Analisis Pengaruh Kenaikan Putaran Kerja Terhadap Respon Dinamis, Kasus Unbalance Rotor Steam Turbine Unit 1 PLTU Amurang 2x25MW JURNAL TEKNIK ITS Vol. 6, No. 1, (2017) ISSN: 2337-3539 (2301-9271 Print) F 120 Pemodelan dan Analisis Pengaruh Kenaikan Putaran Kerja Terhadap Respon Dinamis, Kasus Unbalance Rotor Steam Turbine Unit

Lebih terperinci

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

Prestasi Kincir Angin Savonius dengan Penambahan Buffle Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

KAJIAN VIBRASI UNTUK MENDETEKSI KEGAGALAN AWAL PADA MESIN ROTASI DENGAN KASUS MESIN POMPA Arvin Ekoputranto *, Otong Nurhilal, Ahmad Taufik.

KAJIAN VIBRASI UNTUK MENDETEKSI KEGAGALAN AWAL PADA MESIN ROTASI DENGAN KASUS MESIN POMPA Arvin Ekoputranto *, Otong Nurhilal, Ahmad Taufik. Proseding Seminar Nasional Fisika dan Aplikasinya Sabtu, 21 November 2015 Bale Sawala Kampus Universitas Padjadjaran, Jatinangor KAJIAN VIBRASI UNTUK MENDETEKSI KEGAGALAN AWAL PADA MESIN ROTASI DENGAN

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

Pelatihan Ulangan Semester Gasal

Pelatihan Ulangan Semester Gasal Pelatihan Ulangan Semester Gasal A. Pilihlah jawaban yang benar dengan menuliskan huruf a, b, c, d, atau e di dalam buku tugas Anda!. Perhatikan gambar di samping! Jarak yang ditempuh benda setelah bergerak

Lebih terperinci

TUGAS GETARAN MEKANIK ALAT UKUR GETARAN. Oleh : Opi Sumardi

TUGAS GETARAN MEKANIK ALAT UKUR GETARAN. Oleh : Opi Sumardi TUGAS GETARAN MEKANIK ALAT UKUR GETARAN Oleh : Opi Sumardi 1215021064 TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS LAMPUNG 2015 Dalam pengambilan data suatu getaran agar supaya informasi mengenai data getaran

Lebih terperinci

DAFTAR GAMBAR Gambar 1.1 Konsumsi tenaga listrik Indonesia... 1 Gambar 2.1 Klasifikasi aliran fluida... 6 Gambar 2.2 Daerah aliran inviscid dan aliran viscous... 7 Gambar 2.3 Roda air kuno... 10 Gambar

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 15 BAB II TINJAUAN PUSTAKA Kompresor merupakan suatu komponen utama dalam sebuah instalasi turbin gas. Sistem utama sebuah instalasi turbin gas pembangkit tenaga listrik, terdiri dari empat komponen utama,

Lebih terperinci

MODUL POMPA AIR IRIGASI (Irrigation Pump)

MODUL POMPA AIR IRIGASI (Irrigation Pump) MODUL POMPA AIR IRIGASI (Irrigation Pump) Diklat Teknis Kedelai Bagi Penyuluh Dalam Rangka Upaya Khusus (UPSUS) Peningkatan Produksi Kedelai Pertanian dan BABINSA KEMENTERIAN PERTANIAN BADAN PENYULUHAN

Lebih terperinci

APLIKASI METODE FUNGSI TRANSFER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA

APLIKASI METODE FUNGSI TRANSFER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA APLIKASI METODE UNGSI TRANSER PADA ANALISIS KARAKTERISTIK GETARAN BALOK KOMPOSIT (BAJA DAN ALUMINIUM) DENGAN SISTEM TUMPUAN SEDERHANA Naharuddin, Abdul Muis Laboratorium Bahan Teknik, Jurusan Teknik Mesin

Lebih terperinci

TEST KEMAMPUAN DASAR FISIKA

TEST KEMAMPUAN DASAR FISIKA TEST KEMAMPUAN DASAR FISIKA Jawablah pertanyaan-pertanyaan di bawah ini dengan pernyataan BENAR atau SALAH. Jika jawaban anda BENAR, pilihlah alasannya yang cocok dengan jawaban anda. Begitu pula jika

Lebih terperinci

Osilasi Harmonis Sederhana: Beban Massa pada Pegas

Osilasi Harmonis Sederhana: Beban Massa pada Pegas OSILASI Osilasi Osilasi terjadi bila sebuah sistem diganggu dari posisi kesetimbangannya. Karakteristik gerak osilasi yang paling dikenal adalah gerak tersebut bersifat periodik, yaitu berulang-ulang.

Lebih terperinci

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN

Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN Kegiatan Belajar 3 MATERI POKOK : JARAK, KECEPATAN DAN PERCEPATAN A. URAIAN MATERI: Suatu benda dikatakan bergerak jika benda tersebut kedudukannya berubah setiap saat terhadap titik acuannya (titik asalnya).

Lebih terperinci

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan

Kata Pengantar. sempurna. Oleh sebab itu, kami berharap adanya kritik, saran dan usulan demi perbaikan Kata Pengantar Puji syukur kami panjatkan kehadirat Tuhan Yang Maha Esa karena dengan rahmat, karunia, serta taufik dan hidayah-nya kami dapat menyelesaikan makalah tentang turbin uap ini dengan baik meskipun

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

K13 Revisi Antiremed Kelas 10 Fisika

K13 Revisi Antiremed Kelas 10 Fisika K13 evisi Antiremed Kelas 10 Fisika Persiapan PTS Semester Genap Doc. Name: K13A10FIS0PTS Version: 017-03 Halaman 1 01. Pada benda bermassa m, bekerja gaya F yang menimbulkan percepatan a. Jika gaya dijadikan

Lebih terperinci

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA.

BAB II. 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro. lebih kecil. Menggunakan turbin, generator yang kecil yang sama seperti halnya PLTA. BAB II LANDASAN TEORI 2.1 Pengertian Pembangkit Listrik Tenaga Mikrohydro Pembangkit Listrik Tenaga Mikrohydro atau biasa disebut PLTMH adalah pembangkit listrik tenaga air sama halnya dengan PLTA, hanya

Lebih terperinci

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI

PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI PENGARUH VARIASI GAYA TRANSMISI V-BELT TERHADAP PRILAKU GETARAN POROS DEPERICARPER FAN TYPE 2 SWSI SKRIPSI MEKANIKA KEKUATAN BAHAN Skripsi Yang Diajukan Untuk Memenuhi Syarat Memperoleh Gelar Sarjana Teknik

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

SILABUS MATA KULIAH FISIKA DASAR

SILABUS MATA KULIAH FISIKA DASAR LAMPIRAN TUGAS Mata Kuliah Progran Studi Dosen Pengasuh : Fisika Dasar : Teknik Komputer (TK) : Fandi Susanto, S. Si Tugas ke Pertemuan Kompetensi Dasar / Indikator Soal Tugas 1 1-6 1. Menggunakan konsep

Lebih terperinci