BAB II LANDASAN TORI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB II LANDASAN TORI"

Transkripsi

1 BAB II LANDASAN TORI Proses perancangan suatu alat ataupun yang mesin yang baik, diperlukan perencanaan yang cermat dalam perhitungan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu dijadikan landasan dalam proses merancang alat ataupun mesin, sehingga dapat menghasilkan rancangan alat ataupun mesin yang baik Energi Angin Angin merupakan udara yang bergerak disebabkan adanya perbedaan tekanan. Udara akan mengalir dari daerah bertekanan tinggi ke daerah bertekanan lebih rendah. Perbedaan tekanan udara dipengaruhi oleh sinar matahari. Daerah yang banyak terkena paparan sinar matahari akan memiliki temperatur yang lebih tinggi daripada daerah yang sedikit terkena paparan sinar matahari. Menurut hukum gas ideal, temperatur berbanding terbalik dengan tekanan, dimana temperatur yang tinggi akan memiliki tekanan yang rendah, dan sebaliknya. Kecepatan angin dipengaruhi oleh beberapa hal, diantaranya letak tempat dimana kecepatan angin di dekat khatulistiwa lebih cepat dari yang jauh dari garis khatulistiwa. 8

2 9 Semakin tinggi tempat, semakin kencang pula angin yang bertiup, hal ini disebabkan oleh pengaruh gaya gesekan yang menghambat laju udara. Di permukaan bumi, gunung, pohon, dan topografi yang tidak rata lainnya memberikan gaya gesekan yang besar. Semakin tinggi suatu tempat, gaya gesekan ini semakin kecil. Gambar 2.1 Peta potensi angin Indonesia sumber : ( 27 Desember 2014) Angin di wilayah Indonesia sebelah utara ekuator umumnya bertiup dari utaratimur laut, sedangkan diwilayah selatan ekuator umumnya bertiup dari arah barat daya barata laut dengan kecepatan angin berkisaran antara knots (09-36 km/jam). Kecepatan angin 15 knot ( 37 km/jam) : Laut Andaman

3 10 Samudera Hindia Barat Sumatra hingga Selatan Jawa Barat Laut Cina Selatan Laut Jawa bagian Timur Laut Sulu Laut flores 2.2. Kincir Angin Kincir angin adalah sebuah alat yang mampu memanfaatkan kekuatan angin untuk dirubah menjadi kekuatan mekanik. Dari proses itu memberikan kemudahan berbagai kegiatan manusia yang memerlukan tenaga yang besar seperti memompa air untuk mengairi sawah atau menggiling biji-bijian. Kincir angin modern adalah mesin yang digunakan untuk menghasilkan energi listrik, disebut juga dengan turbin angin. Berdasarkan posisi porosnya kincir angin di bagi menjadi 2 (dua), yaitu kincir angin poros vertical dan poros vertical dan kincir angin poros horizontal. Sedangkan tugas ini adalah perancangan kincir angin poros vertical Jenis jenis Kincir Angin Turbin angin dibagi menjadi dua kelompok utama berdasarkan arah sumbu : 1. Horizontal Turbin Angin Sumbu Horizontal (TASH) memiliki poros rotor utama dan generator listrik di puncak menara. Turbin berukuran kecil diarahkan oleh sebuah baling-baling angin (baling-baling cuaca) yang sederhana, sedangkan turbin berukuran besar pada umumnya menggunakan sebuah sensor angin yang

4 11 digandengkan ke sebuah servo motor. Sebagian besar memiliki sebuah gearbox yang mengubah perputaran kincir yang pelan menjadi lebih cepat berputar. Karena sebuah menara menghasilkan turbulensi di belakangnya, turbin biasanya diarahkan melawan arah anginnya menara. Bilah-bilah turbin dibuat kaku agar mereka tidak terdorong menuju menara oleh angin berkecepatan tinggi. Sebagai tambahan, bilah-bilah itu diletakkan di depan menara pada jarak tertentu dan sedikit dimiringkan. Karena turbulensi menyebabkan kerusakan struktur menara, dan realibilitas begitu penting, sebagian besar TASH merupakan mesin upwind (melawan arah angin). Meski memiliki permasalahan turbulensi, mesin downwind (menurut arah angin) dibuat karena tidak memerlukan mekanisme tambahan agar mereka tetap sejalan dengan angin, dan karena di saat angin berhembus sangat kencang, bilah-bilahnya bisa ditekuk sehingga mengurangi wilayah tiupan mereka dan dengan demikian juga mengurangi resintensi angin dari bilah-bilah itu. Kelebihan turbin angin sumbu horizontal Dasar menara yang tinggi membolehkan akses ke angin yang lebih kuat di tempat-tempat yang memiliki geseran angin (perbedaan antara laju dan arah angin) antara dua titik yang jaraknya relatif dekat di dalam atmosfir bumi. Di sejumlah lokasi geseran angin, setiap sepuluh meter ke atas, kecepatan angin meningkat sebesar 20%. Kekurangan turbin angin sumbu horizontal Menara yang tinggi serta bilah yang panjang sulit diangkut dan juga memerlukan biaya besar untuk pemasangannya, bisa mencapai 20% dari seluruh

5 12 biaya peralatan turbin angin. TASH yang tinggi sulit dipasang, membutuhkan derek yang yang sangat tinggi dan mahal serta para operator yang terampil. Konstruksi menara yang besar dibutuhkan untuk menyangga bilah-bilah yang berat, gearbox, dan generator. Ukurannya yang tinggi merintangi jangkauan pandangan dan mengganggu pemandangan. Berbagai varian downwind menderita kerusakan struktur yang disebabkan oleh turbulensi. Gambar 2.2 Turbin angin sumbu horizontal Sumber : ( fy6bqaecfzy/t_z3j45qrfi/aaaaaaaaar0/sg53sqmbn5m/s1600/turbi n+angin+sumbu+horisontal.jpg 27 Desember 2014 ) 2. Vertikal Kendala penggunaan turbin angin adalah kecepatan angin dan arah angin yang berubah-ubah sepanjang waktu. Oleh karena itu, turbin angin yang baik adalah turbin yang dapat menerima angin dari segala arah selain itu juga mampu bekerja pada angin dalam kecepatan yang rendah salah satunya Turbin Angin

6 13 Sumbu Vertikal (TASV). Turbin ini memiliki efisiensi yang lebih kecil dibandingkan dengan turbin angin sumbu horizontal. Ada berbagai type TASV yang sering digunakan diantaranya adalah Tipe Savonius, Tipe Darrieus, dan Tipe H-Rotor. a. Tipe Savonius TASV seperti yang ditunjukkan pada gambar dibawah, diciptakan oleh seorang insinyur Finlandia SJ Savonius pada tahun Kincir TASV ini merupakan jenis yang paling sederhana dan menjadi versi besar dari anemometer. Kincir Savonius dapat berputar karena adanya gaya dorong dari angin, sehingga putaran rotorpun tidak akan melebihi kecepatan angin. Meskipun daya koefisien untuk jenis turbin angin bervariasi antara 30% sampai 45%, menurut banyak peneliti untuk jenis Savonius biasanya tidak lebih dari 25%. Jenis turbin ini cocok untuk aplikasi daya yang rendah dan biasanya digunakan pada kecepatan angin yang berbeda. b. Type Darrieus TASV ditemukan oleh seorang insinyur Perancis George Jeans Maria Darrieus yang dipatenkan pada tahun Ia memiliki 2 bentuk turbin yang digunakan diantaranya adalah Eggbeater/ Curved Bladed dan Straightbladed TASV. Sketsa dari kedua variasi konsep Darrieus ditunjukkan dalam gambar dibawah. Kincir angin Darrieus TASV mempunyai bilah sudu yang disusun dalam posisi simetri dengan sudu bilah yang diatur relatif terhadap poros. Pengaturan ini cukup efektif untuk menangkap berbagai arah angin. Berbeda dengan Savonius, kincir angin Darrieus bergerak dengan memanfaatkan gaya angkat yang terjadi ketika angin bertiup. Bilah sudu turbin Darrieus bergerak berputar mengelilingi sumbu.

7 14 c. Type H-rotor ditunjukkan pada gambar di atas, dikembangkan di Inggris melalui penelitian yang dilakukan selama an, diuraikan bahwa mekanisme yang digunakan pada pisau berbilah lurus (Straight-bladed) Darrieus TASV tidak diperlukan, ternyata ditemukan bahwa efek hambatan yang diciptakan oleh sebuah pisau akan membatasi kecepatan aliran angin. Oleh karena itu, H-rotor akan mengatur semua kecepatan angin untuk mencapai kecepatan putaran optimalnya. Kelebihan Turbin Angin Sumbu Vertikal Tidak membutuhkan struktur menara yang besar. Sebuah TASV bisa diletakkan lebih dekat ke tanah, membuat pemeliharaan bagian-bagiannya yang bergerak jadi lebih mudah. Memiliki sudut airfoil (bentuk bilah sebuah balingbaling yang terlihat secara melintang) yang lebih tinggi, memberikan keaerodinamisan yang tinggi sembari mengurangi drag pada tekanan yang rendah dan tinggi. Desain TASV berbilah lurus dengan potongan melintang berbentuk kotak atau empat persegi panjang memiliki wilayah tiupan yang lebih besar untuk diameter tertentu daripada wilayah tiupan berbentuk lingkarannya TASV. TASV memiliki kecepatan awal angin yang lebih rendah daripada TASH. Biasanya TASV mulai menghasilkan listrik pada 10 km/jam (6 m.p.h.) TASV biasanya memiliki tip speed ratio (perbandingan antara kecepatan putaran dari ujung sebuah bilah dengan laju sebenarnya angin) yang lebih rendah sehingga lebih kecil kemungkinannya rusak di saat angin berhembus sangat kencang. TASV bisa didirikan pada lokasi-lokasi dimana struktur yang lebih tinggi dilarang dibangun. TASV yang ditempatkan di dekat tanah bisa mengambil keuntungan dari berbagai lokasi yang menyalurkan angin serta

8 15 meningkatkan laju angin (seperti gunung atau bukit yang puncaknya datar dan puncak bukit). TASV tidak harus diubah posisinya jika arah angin berubah. Kekurangan Turbin Angin Vertikal Aksis Kebanyakan TASV memproduksi energi hanya 50% dari efisiensi TASH karena drag tambahan yang dimilikinya saat kincir berputar. TASV tidak mengambil keuntungan dari angin yang melaju lebih kencang di elevasi yang lebih tinggi. Kebanyakan TASV mempunyai torsi awal yang rendah, dan membutuhkan energi untuk mulai berputar. Sebuah TASV yang menggunakan kabel untuk menyanggahnya memberi tekanan pada bantalan dasar karena semua berat rotor dibebankan pada bantalan. Kabel yang dikaitkan ke puncak bantalan meningkatkan daya dorong ke bawah saat angin bertiup. Gambar 2.3 variasi turbin angin sumbu vertikal Sumber : ( 27 Desember 2014)

9 16 Keterangan gambar 2.3 : 1. Turbin angin vertikal tipe darius 2. Turbin angin vertical tipe h-darrieus 3. Turbin nagin vertical tipe savonius 2.3. Mekanika Fluida Mekanika fluida merupakan cabang dari mekanika terapan yang berkenaan dengan tingkah laku fluida dalam keadaan diam dan bergerak. Fluida merupakan zatzat yang mampu mengalir dan menyesuaikan diri dengan bentuk wadahnya. Fluida dapat digolongkan ke dalam cairan dan gas. Perbedaan-perbedaan utama diantara keduanya, yaitu: (1) cairan bersifat inkompresibel, dan gas bersifat kompresibel, (2) cairan mengisi volume tertentu, sedangkan gas dengan massa tertentu mengembang sampai mengisi seluruh bagian wadahnya. Secara umum fluida dibedakan menjadi dua bagian, yaitu fluida statik dan fluida dinamik. Fluida statik menyelidiki fluida dalam keadaan diam dimana berat fluida merupakan satu-satunya sifat yang penting. Sedangkan fluida dinamik menyelidiki fluida dalam keadaan bergerak (aliran fluida). Terdapat tiga konsep penting dalam fluida dinamik, yaitu: (1) prinsip kekentalan massa, menghasilkan persamaan kontinuitas, (2) prinsip energi kinetik, dan (3) prinsip momentum. Ada dua jenis aliran fluida yaitu aliran laminer dan aliran turbulen. Dalam aliran laminer partikel-partikel fluidanya bergerak di sepanjang lintasan-lintasan lurus dan tidak saling bersilangan. Sedangkan pada aliran turbulen partikel-partikel bergerak secara serampangan kesemua arah.

10 17 Gambar 2.4 aliran fluida Sumber : ( 27 Desember 2014) 2.4. Rumus Perhitungan Berikut ini adalah beberapa rumus perhitungan yang mendukung perancangan dan pengujian kincir angin Energi Angin Energi yang terdapat pada angin merupakan energi kinetik, sehingga dapat dirumuskan sebagai berikut Ek = 0,5 x m x v 2... (2.1) Dimana : Ek = Enrgi kinetic (Joule) m = massa udara (kg)

11 18 v = Kecepatan Angin (m/s) dapat dituliskan : Sedangkan daya adalah energi per satuan waktu, maka dari persamaan (2.1) Pa = 0,5 x ṁ x v 2... (2.2) ṁ = x A x v... (2.3) Dimana : Pɑ = Daya angin (watt) ṁ = massa udara yang mengalir dalam waktu tertentu (kg/s) = massa jenis udara (kg/m 3 ) A = luas penampang melintang arus angin yang ditangkap oleh kincir (m 2 ) Dengan menggunakan persamaan (2.5), maka daya angin (Pa) dapat dirumuskan menjadi : Pa = 0,5 x ( x A x v) x v 2, disederhanakan menjadi : Pa = 0,5 x x A x v 3... (2.4) Bila diasumsikan besarnya masa jenis udara ( ) adalah 1,2 kg/m 3, maka dari persamaan (2.4) dapat disederhanakan menjadi : Pa = 0,6 x A x v 3... (2.5)

12 Perhitungan torsi dan daya Torsi Torsi adalah perkalian vector antara jarak sumbu putar dengan gaya yang bekerja pada titik yang berjarak pada sumbu pusat. Yang dapat dirumuskan sebagai berikut : T = r x F... (2.6) Dimana : T = torsi dinamis yang dihasilkan dari putaran poros (Nm) F = gaya pada poros akibat putaran (N) Daya kincir Perhitungan daya pada gerak melingkar pada umumnya dapat dituliskan sebagai berikut : P = T x... (2.7) Dimana : T = torsi dinamis (Nm) = kecepatan sudut (rad/s) Jika pada kincir angin besarnya kecepatan sudut ( ) dirumuskan sebagai : = 2 x π x n (2.8) Maka besarnya daya kincir berdasarkan persamaan (2.9) dapat dinyatakan dengan : Pk = T x

13 20 Pk = T x 2 x π x n 60 T x π x n Pk = (2.9) Dimana : Pk = daya poros kincir angin (watt) n = putaran poros per menit (rpm) Tip speed ratio (tsr) Tip speed ratio (tsr) adalah perbandingan antara kecepatan ujung sudu kincir angin yang berputar dengan kecepatan angin, dapat dirumuskan dengan : 2 x π x r x n tsr = 60 x v... (2.10) Dimana : r = jari jari kincir (m) n = putaran poros per menit (rpm) v = kecepatan angin (m/s) Koefisien Daya (Cp) Koefisien daya (Cp) adalah perbandingan antara daya yang dihasilkan oleh kincir (Pk) dengan daya yang dihasilkan oleh angin (Pɑ), dapat dirumuskan sebagai berikut : Cp = Pk Pɑ. 100%... (2.11) Dimana :

14 21 Cp = koefisien daya (%) Pk = daya yang dihasilkan oleh kincir (watt) Pɑ = daya yang dihasilkan oleh angin (watt)

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Proses perancangan suatu alat ataupun mesin yang baik, diperlukan perencanaan yang cermat dalam pendesainan dan ukuran. Teori teori yang berhubungan dengan alat yang dibuat perlu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Studi Literatur Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Bambang setioko (2007), Kenaikan harga BBM

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Turbin Angin Turbin angin adalah suatu sistem konversi energi angin untuk menghasilkan energi listrik dengan proses mengubah energi kinetik angin menjadi putaran mekanis rotor

Lebih terperinci

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo

PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENERBITAN ARTIKEL ILMIAH MAHASISWA Universitas Muhammadiyah Ponorogo PENGARUH VARIASI JUMLAH STAGE TERHADAP KINERJA TURBIN ANGIN SUMBU VERTIKAL SAVONIUS TIPE- L Krisna Slamet Rasyid, Sudarno, Wawan Trisnadi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin merupakan udara yang bergerak akibat adanya rotasi bumi dan juga karena adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Pengertian Angin Angin adalah gerakan udara yang terjadi di atas permukaan bumi. Angin terjadi karena adanya perbedaan tekanan udara, ketinggian dan temperatur. Semakin besar

Lebih terperinci

BAB I LANDASAN TEORI. 1.1 Fenomena angin

BAB I LANDASAN TEORI. 1.1 Fenomena angin BAB I LANDASAN TEORI 1.1 Fenomena angin Angin adalah udara yang bergerak akibat adanya perbedaan tekanan udara dengan arah aliran angin dari tempat yang memiliki tekanan lebih tinggi ke tempat yang bertekanan

Lebih terperinci

KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK

KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK KAJIAN POTENSI ENERGI ANGIN DI DAERAH KAWASAN PESISIR PANTAI SERDANG BEDAGAI UNTUK MENGHASILKAN ENERGI LISTRIK Ilmi Abdullah 1, Jufrizal Nurdin 2*, Hasanuddin 3 1,2,3) Jurusan Teknik Mesin, Fakultas Teknologi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Blade Falon Dasar dari usulan penelitian ini adalah konsep turbin angin yang berdaya tinggi buatan Amerika yang diberi nama Blade Falon. Blade Falon merupakan desain sudu turbin

Lebih terperinci

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H

LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H LAPORAN TUGAS AKHIR RANCANG BANGUN PROTOTYPE TURBIN ANGIN VERTIKAL DARRIEUS TIPE H DISUSUN OLEH : Yos Hefianto Agung Prastyo 41311010005 PROGRAM STUDI TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS MERCU BUANA

Lebih terperinci

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI

PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI PERFORMANSI TURBIN ANGIN SAVONIUS DENGAN EMPAT SUDU UNTUK MENGGERAKKAN POMPA SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik ALVI SYUKRI 090421064 PROGRAM PENDIDIKAN

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN UJI EKSPERIMENTAL PENGARUH PROFIL DAN JUMLAH SUDU PADA VARIASI KECEPATAN ANGIN TERHADAP DAYA DAN PUTARAN TURBIN ANGIN SAVONIUS MENGGUNAKAN SUDU PENGARAH DENGAN LUAS SAPUAN ROTOR 0,90 M 2 SKRIPSI Skripsi

Lebih terperinci

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional

Gambar 2.1. Grafik hubungan TSR (α) terhadap efisiensi turbin (%) konvensional BAB II DASAR TEORI Bab ini berisi dasar teori yang berhubungan dengan perancangan skripsi antara lain daya angin, daya turbin angin, TSR (Tip Speed Ratio), aspect ratio, overlap ratio, BHP (Break Horse

Lebih terperinci

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA).

BAB II TEORI DASAR. sering disebut sebagai Sistem Konversi Energi Angin (SKEA). BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

Desain Turbin Angin Sumbu Horizontal

Desain Turbin Angin Sumbu Horizontal Desain Turbin Angin Sumbu Horizontal A. Pendahuluan Angin merupakan sumberdaya alam yang tidak akan habis.berbeda dengan sumber daya alam yang berasal dari fosil seperti gas dan minyak. Indonesia merupakan

Lebih terperinci

BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara

BAB II TEORI DASAR. Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara BAB II TEORI DASAR 2.1 Definisi Angin Angin adalah udara yang bergerak karena adanya perbedaan tekanan udara antara satu tempat dan tempat yang lain (Yusman, 2005). Adapun penyebab perbedaan tekanan udara

Lebih terperinci

Bab IV Analisis dan Pengujian

Bab IV Analisis dan Pengujian Bab IV Analisis dan Pengujian 4.1 Analisis Simulasi Aliran pada Profil Airfoil Simulasi aliran pada profil airfoil dimaskudkan untuk mencari nilai rasio lift/drag terhadap sudut pitch. Simulasi ini tidak

Lebih terperinci

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin

E =Fu... (1) F = ρav(v-u) BAB II TEORI DASAR. 2.1 Energi Angin. Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin BAB II TEORI DASAR 2.1 Energi Angin Menurut Kadir (1987) bahwa sebagaimana telah banyak diketahui, angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah.

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo

BAB I PENDAHULUAN Latar Belakang. Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo BAB I PENDAHULUAN 1.1. Latar Belakang Pulau Gili Ketapang Kecamatan Sumberasih Kabupaten Probolinggo adalah pulau kecil dengan pesona alam yang mengagumkan. Terletak disebelah utara Kota Probolinggo sekitar

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN digilib.uns.ac.id BAB IV HASIL DAN PEMBAHASAN 4.1. Hasil Pengujian Turbin Cross Flow Tanpa Sudu Pengarah Pengujian turbin angin tanpa sudu pengarah dijadikan sebagai dasar untuk membandingkan efisiensi

Lebih terperinci

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013

DEPARTEMEN TEKNIK MESIN FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN 2013 UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 4415 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Angin [4] Salah satu energi terbaru yang berkembang pesat di dunia saat ini adalah energi angin. Energi angin merupakan energi terbaru yang sangat fleksibel. Energi angin

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Turbin Angin Bila terdapat suatu mesin dengan sudu berputar yang dapat mengonversikan energi kinetik angin menjadi energi mekanik maka disebut juga turbin angin. Jika energi

Lebih terperinci

PERENCANAAN KINCIR ANGIN SAVONIUS TIPE L EMPAT SUDU SEBAGAI SUMBER ENERGI TERBARUKAN

PERENCANAAN KINCIR ANGIN SAVONIUS TIPE L EMPAT SUDU SEBAGAI SUMBER ENERGI TERBARUKAN PERENCANAAN KINCIR ANGIN SAVONIUS TIPE L EMPAT SUDU SEBAGAI SUMBER ENERGI TERBARUKAN Renal Marsa, Suryadimal, Iqbal Program Studi Teknik Mesin-Fakultas Teknologi Industri-Universitas Bung Hatta Jl. Gajah

Lebih terperinci

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL

PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL PRINSIP KERJA TENAGA ANGIN TURBIN SAVOUNIUS DI DEKAT PANTAI KOTA TEGAL Soebyakto Dosen Fakultas Teknik Universitas Pancasakti Tegal E-mail : soebyakto@gmail.com ABSTRAK Tenaga angin sering disebut sebagai

Lebih terperinci

BAB 2 DASAR TEORI 2.1 Energi Angin

BAB 2 DASAR TEORI 2.1 Energi Angin BAB DASAR TEORI.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis energi.

Lebih terperinci

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto

ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU. Muhammad Suprapto ANALISIS TURBIN ANGIN SUMBU VERTIKAL DENGAN 4, 6 DAN 8 SUDU Muhammad Suprapto Program Studi Teknik Mesin, Universitas Islam Kalimantan MAB Jl. Adhyaksa No.2 Kayutangi Banjarmasin Email : Muhammadsuprapto13@gmail.com

Lebih terperinci

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan

Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Pengujian Kincir Angin Horizontal Type di Kawasan Tambak sebagai Energi Listrik Alternatif untuk Penerangan Agus Sifa a, Casiman S b, Habib Rizqon H c a Jurusan Teknik Mesin,Politeknik Indramayu,Indramayu

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Definisi Energi Angin Angin adalah udara yang bergerak yang diakibatkan oleh rotasi bumi dan juga karena adanya perbedaan tekanan udara disekitarnya. Angin bergerak dari tempat

Lebih terperinci

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR

PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR PERANCANGAN DAN PEMBUATAN PROTOTIPE TURBIN ANGIN SUMBU VERTIKAL TIPE SAVONIUS TUGAS AKHIR Sebagai Salah Satu Syarat untuk Menyelesaikan Program Strata I pada Jurusan Teknik Elektro Fakultas TeknikUniversitas

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA.1 Energi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak jenis

Lebih terperinci

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L

UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L SNTMUT - 1 ISBN: 97--71-- UNJUK KERJA TURBIN ANGIN SAVONIUS DUA TINGKAT EMPAT SUDU LENGKUNG L Syamsul Bahri W 1), Taufan Arif Adlie 1), Hamdani ) 1) Jurusan Teknik Mesin Fakultas Teknik Universitas Samudra

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pemanfaatan energi angin di Indonesia masih sangat kecil, baik yang dimanfaatkan untuk membangkitkan energi listrik ataupun untuk menggerakkan peralatan mekanis seperti

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori Beberapa penelitian yang telah melakukan penelitian terkait ilmu yang menyangkut tentang turbin angin, antara lain: Kenaikan harga BBM mendorong masyarakat untuk

Lebih terperinci

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM

SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi Syarat Memperoleh Gelar Sarjana Teknik EKAWIRA K NAPITUPULU NIM UJI PERFORMANSI TURBIN ANGIN TIPE DARRIEUS-H DENGAN PROFIL SUDU NACA 0012 DAN ANALISA PERBANDINGAN EFISIENSI MENGGUNAKAN VARIASI JUMLAH SUDU DAN SUDUT PITCH SKRIPSI Skripsi Yang Diajukan Untuk Melengkapi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 1.1 Turbin Air Turbin air adalah turbin dengan media kerja air. Secara umum, turbin adalah alat mekanik yang terdiri dari poros dan sudu-sudu. Sudu tetap atau stationary blade, tidak

Lebih terperinci

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK

ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK ANALISA PEMANFAATAN POTENSI ANGIN PESISIR SEBAGAI PEMBANGKIT LISTRIK Ahmad Farid 1, Mustaqim 2, Hadi Wibowo 3 1,2,3 Dosen Teknik Mesin Fakultas Teknik Universitas Pancasakti Tegal Abstrak Kota Tegal dikenal

Lebih terperinci

yang umumnya berhembus dari barat yang dinamakan jet stream.

yang umumnya berhembus dari barat yang dinamakan jet stream. 7 BAB II TINJAUAN PUSTAKA 2.1. PENGENALAN ANGIN Angin merupakan massa udara yang bergerak. Pergerakan massa udara ini diakibatkan oleh perbedaan tekanan udara antara satu tempat dengan tempat yang lain,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Landasan Teori Kenaikan harga BBM mendorong masyarakat untuk mencari alternatif energi baru yang murah dan mudah didapat untuk mendapatkan tenaga listrik. Tenaga angin merupakan

Lebih terperinci

BAB III PERANCANGAN SISTEM

BAB III PERANCANGAN SISTEM BAB III PERANCANGAN SISTEM Pada bab ini akan dijelaskan perancangan sistem serta realisasi perangkat keras pada perancangan skripsi ini. 3.1. Gambaran Alat Alat yang akan direalisasikan adalah sebuah alat

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI digilib.uns.ac.id BAB II LANDASAN TEORI 2.1 Tinjauan Pustaka Denhas (2014) melakukan penelitian mengenai peningkatan unjuk kerja turbin angin vertikal axis savonius dengan cara menambahkan sudu pengarah

Lebih terperinci

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius

Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Studi Eksperimental tentang Karakteristik Turbin Angin Sumbu Vertikal Jenis Darrieus-Savonius Bambang Arip Dwiyantoro*, Vivien Suphandani dan Rahman Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt

PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR ANGIN 300 Watt Dinamika Teknik Mesin, Volume 4 No. 2 Juli 2014 jumlah Blade Sayoga, Wiratama, Mara, Agus Dwi Catur: Pengaruh Variasi PENGARUH VARIASI JUMLAH BLADE TERHADAP AERODINAMIK PERFORMAN PADA RANCANGAN KINCIR

Lebih terperinci

II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature

II. TINJAUAN PUSTAKA. 2.1 Pemodelan Matematika (Mathematical Modeling) (biasanya bertujuan untuk memahami realita tersebut) dan mempunyai feature II. TINJAUAN PUSTAKA 2.1 Pemodelan Matematika (Mathematical Modeling) Model adalah representasi penyederhanaan dari sebuah realita yang complex (biasanya bertujuan untuk memahami realita tersebut) dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 4 BAB II LANDASAN TEORI 2.1. Energi Angin Adanya perbedaan suhu antara wilayah yang satu dengan wilayah yang lain dipermukaan bumi ini menyebabkan timbulnya angin. Wilayah yang mempunyai suhu tinggi (daerah

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Sudu Sudu adalah baling baling pada turbin angin. Sudu pada turbin angin sendiri biasanya dihubungkan dengan rotor pada turbin angin. Sudu merupakan salah satu bagian dari turbin

Lebih terperinci

BAB III PERANCANGAN ALAT

BAB III PERANCANGAN ALAT BAB III PERANCANGAN ALAT 3.1 Prinsip Kerja Turbin Angin Prinsip kerja dari turbin angin adalah mengubah energi mekanis dari angin menjadi energi putar pada kincir. Lalu putaran kincir digunakan untuk memutar

Lebih terperinci

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA

PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA PERANCANGAN DAN PEMBUATAN KINCIR ANGIN TIPE HORIZONTAL AXIS WIND TURBINE (HAWT) UNTUK DAERAH PANTAI SELATAN JAWA TUGAS AKHIR Diajukan Guna Memenuhi Persyaratan Mencapai Derajat Strata-1 Fakultas Teknik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Energi Angin Energi angin berasal dari matahari melalui reaksi fusi nuklir hidrogen (H) menjadi helium (He) pada inti matahari. Reaksi ini menimbulkan panas dan radiasi elektromagnetik

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Pengertian dasar tentang turbin air Turbin berfungsi mengubah energi potensial fluida menjadi energi mekanik yang kemudian diubah lagi menjadi energi listrik pada generator.

Lebih terperinci

START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi

START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN. PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi START STUDI LITERATUR MENGIDENTIFIKASI PERMASALAHAN PENGUMPULAN DATA : - Kecepatan Angin - Daya yang harus dipenuhi PENGGAMBARAN MODEL Pemilihan Pitch Propeller (0,2 ; 0,4 ; 0,6) SIMULASI CFD -Variasi

Lebih terperinci

TURBIN ANGIN 1. Energi Angin

TURBIN ANGIN 1. Energi Angin TURBIN ANGIN 1. Energi Angin Angin merupakan udara yang bergerak disebabkan beberapa adanya perbedaan tekanan pada atmosfer bumi (Napitupulu dkk, 2013: 49). Energi angin merupakan sumber energi penting

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: MULAI Studi Pustaka Pemilihan Judul Penelitian Penetapan Variabel

Lebih terperinci

BAB III METODOLOGI PENGUKURAN

BAB III METODOLOGI PENGUKURAN BAB III METODOLOGI PENGUKURAN Kincir angin merupakan salah satu mesin konversi energi yang dapat merubah energi kinetic dari gerakan angin menjadi energi listrik. Energi ini dibangkitkan oleh generator

Lebih terperinci

Prestasi Kincir Angin Savonius dengan Penambahan Buffle

Prestasi Kincir Angin Savonius dengan Penambahan Buffle Prestasi Kincir Angin Savonius dengan Penambahan Buffle Halim Widya Kusuma 1,*, Rengga Dwi Cahya Hidayat 1, Muh Hamdani 1, 1 1 Teknik Mesin S1, Fakultas Teknologi Industri, Institut Teknologi Nasional

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI.. Pengertian Angin Angin adalah udara yang bergerak dari tekanan udara yang lebih tinggi ke tekanan udara yang lebih rendah. Perbedaan tekanan udara disebabkan oleh perbedaan suhu

Lebih terperinci

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL

ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL ANALISIS KINERJA KINCIR ANGIN SEDERHANA DENGAN DUA SUDU POROS HORIZONTAL Yeni Yusuf Tonglolangi Fakultas Teknik, Program Studi Teknik Mesin, UKI Toraja email: yeni.y.tonglolangi@gmail.com Abstrak Pola

Lebih terperinci

BAB 4 PENGUJIAN, DATA DAN ANALISIS

BAB 4 PENGUJIAN, DATA DAN ANALISIS BAB 4 PENGUJIAN, DATA DAN ANALISIS 4.1 Pengujian Turbin Angin Turbin angin yang telah dirancang, dibuat, dan dirakit perlu diuji untuk mengetahui kinerja turbin angin tersebut. Pengujian yang dilakukan

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan data Pengambilan data dilakukan pada tanggal 11 Desember 212 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan angin (v) = 3

Lebih terperinci

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk

2. Tinjauan Pustaka. konversi dari energi kinetik angin. Turbin angin awalnya dibuat untuk 2. Tinjauan Pustaka 2.1 Turbin Angin Turbin angin adalah elemen utama dari sebuah pembangkit listrik tenaga angin dan digunakan untuk memproduksi energi listrik yang merupakan hasil konversi dari energi

Lebih terperinci

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012

STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 STUDI EKSPERIMEN PENGARUH SUDUT PITCH TERHADAP PERFORMA TURBIN ANGIN DARRIEUS-H SUMBU VERTIKAL NACA 0012 Nur Aklis, H mim Syafi i, Yunika Cahyo Prastiko, Bima Mega Sukmana Teknik Mesin, Universitas Muhammadiyah

Lebih terperinci

Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype Turbin Angin Vertical Axis Savonius

Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype Turbin Angin Vertical Axis Savonius TURBO Vol. 5 No. 2. 2016 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo Pengaruh Desain Sudu Terhadap Unjuk Kerja Prototype

Lebih terperinci

BAB II KAJIAN PUSTAKA. A. Kajian Teori dan Hasil Penelitian yang Relevan

BAB II KAJIAN PUSTAKA. A. Kajian Teori dan Hasil Penelitian yang Relevan BAB II KAJIAN PUSTAKA A. Kajian Teori dan Hasil Penelitian yang Relevan 1. Kajian Teori a. Energi Angin Angin adalah udara yang bergerak yang disebabkan akibat rotasi bumi dan akibat perbedaan tekanan,

Lebih terperinci

Antiremed Kelas 11 FISIKA

Antiremed Kelas 11 FISIKA Antiremed Kelas FISIKA Persiapan UAS - Latihan Soal Doc. Name: K3ARFIS0UAS Version : 205-02 halaman 0. Jika sebuah partikel bergerak dengan persamaan posisi r= 5t 2 +, maka kecepatan rata -rata antara

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN Metodologi perancangan merupakan langkah-langkah yang dijadikan pedoman dalam melakukan pengujian kincir angin vertikal tipe H-Darrieus untuk mendapatkan daya yang maksimum

Lebih terperinci

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR

TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR TURBIN ANGIN POROS VERTIKAL UNTUK PENGGERAK POMPA AIR Slamet Riyadi, Mustaqim, Ahmad Farid Progdi Teknik Mesin Fakultas Universitas Pancasakti Tegal Email: mesinftups@gmail.com ABSTRAK Angin merupakan

Lebih terperinci

KARAKTERISTIK KINCIR ANGIN MAGWIND 5 SUDU

KARAKTERISTIK KINCIR ANGIN MAGWIND 5 SUDU KARAKTERISTIK KINCIR ANGIN MAGWIND 5 SUDU TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi Teknik Mesin Oleh : Prambudi Dangu Nugroho NIM : 085214029

Lebih terperinci

SOAL DINAMIKA ROTASI

SOAL DINAMIKA ROTASI SOAL DINAMIKA ROTASI A. Pilihan Ganda Pilihlah jawaban yang paling tepat! 1. Sistem yang terdiri atas bola A, B, dan C yang posisinya seperti tampak pada gambar, mengalami gerak rotasi. Massa bola A, B,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN USTAKA 2.1. engertian Dasar Tentang Turbin Air Kata turbin ditemukan oleh seorang insinyur yang bernama Claude Bourdin pada awal abad 19, yang diambil dari terjemahan bahasa latin dari

Lebih terperinci

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º NASKAH PUBLIKASI TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar

Lebih terperinci

UNJUK KERJA MODEL KINCIR ANGIN PROPELER TIGA SUDU DATAR DARI BAHAN TRIPLEK DENGAN SUDUT PATAHAN 10 LEBAR 10,5 CM DENGAN EMPAT VARIASI PERMUKAAN SUDU

UNJUK KERJA MODEL KINCIR ANGIN PROPELER TIGA SUDU DATAR DARI BAHAN TRIPLEK DENGAN SUDUT PATAHAN 10 LEBAR 10,5 CM DENGAN EMPAT VARIASI PERMUKAAN SUDU UNJUK KERJA MODEL KINCIR ANGIN PROPELER TIGA SUDU DATAR DARI BAHAN TRIPLEK DENGAN SUDUT PATAHAN 10 LEBAR 10,5 CM DENGAN EMPAT VARIASI PERMUKAAN SUDU TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

BAB II DASAR TEORI 2.1. Tinjauan Pustaka

BAB II DASAR TEORI 2.1. Tinjauan Pustaka BAB II DASAR TEORI 2.1. Tinjauan Pustaka Chen, dkk (2013) meneliti tentang Vertical Axis Water Turbine (VAWT) yang diaplikasikan untuk menggerakkan power generation untuk aliran air dalam pipa. Tujuannya

Lebih terperinci

BAB IV ANALISA DATA DAN PERHITUNGAN

BAB IV ANALISA DATA DAN PERHITUNGAN BAB IV ANALISA DATA DAN PERHITUNGAN 4.1 Pengambilan Data Pengambilan data dilakukan pada tanggal 11 Desember 2012 Januari 2013 di Laboratorium Proses Produksi dengan data sebagai berikut : 1. Kecepatan

Lebih terperinci

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU

OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Optimasi Daya Turbin Angin Savonius dengan Variasi Celah (Farid) OPTIMASI DAYA TURBIN ANGIN SAVONIUS DENGAN VARIASI CELAH DAN PERUBAHAN JUMLAH SUDU Ahmad Farid Prodi. Teknik Mesin, Universitas Pancasakti

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Diagram Alir Penelitian Urutan langkah-langkah pengujian turbin Savonius mengacu pada diagram dibawah ini: Gambar 3.1 Diagram alir penelitian Gambar 3.2 Diagram alir penelitian

Lebih terperinci

USAHA, ENERGI & DAYA

USAHA, ENERGI & DAYA USAHA, ENERGI & DAYA (Rumus) Gaya dan Usaha F = gaya s = perpindahan W = usaha Θ = sudut Total Gaya yang Berlawanan Arah Total Gaya yang Searah Energi Kinetik Energi Potensial Energi Mekanik Daya Effisiensi

Lebih terperinci

RANCANG BANGUN TURBIN ANGIN TIPE-H DENGAN BENTUK AIRFOIL NACA MODIFIKASI

RANCANG BANGUN TURBIN ANGIN TIPE-H DENGAN BENTUK AIRFOIL NACA MODIFIKASI TUGAS AKHIR RANCANG BANGUN TURBIN ANGIN TIPE-H DENGAN BENTUK AIRFOIL NACA 0015-52 MODIFIKASI Disusun Oleh : FENDI SUTRISNO NIM: D200.06.0103 NIRM : 06.6.106.03030.50103 JURUSAN TEKNIK MESIN FAKULTAS TEKNIK

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Universitas Sumatera Utara

Universitas Sumatera Utara BAB II TINJAUAN PUSTAKA 2.1 Potensi Angin Energi merupakan suatu kekuatan yang dimiliki oleh suatu zat sehingga zat tersebut mempunyai pengaruh pada keadaan sekitarnya. Menurut mediumnya dikenal banyak

Lebih terperinci

BAB IV ANALISA DAN PEMBAHASAN

BAB IV ANALISA DAN PEMBAHASAN BAB IV ANALISA DAN PEMBAHASAN 4.1. Proses Pengambilan dan Pengolahan Data Berdasarkan pembelajaran mengenai pembangkit energi tenaga angin yang telah ada maka berdasar dengan fungsi dan kegunaan maka dapat

Lebih terperinci

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN

RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN PENGUJIAN BENTUK SUDU TERHADAP TORSI DAN DAYA TURBIN YANG DIHASILKAN TURBO Vol. 6 No. 1. 2017 p-issn: 2301-6663, e-issn: 2477-250X Jurnal Teknik Mesin Univ. Muhammadiyah Metro URL: http://ojs.ummetro.ac.id/index.php/turbo RANCANG BANGUN ALAT PRAKTIKUM TURBIN AIR DENGAN

Lebih terperinci

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU

PERANCANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU EKSERGI Jurnal Teknik Energi Vol No. Mei 05; 4-46 ERANANGAN TURBIN STRAIGHT BLADE DARRIEUS DENGAN TIGA SUDU Supriyo rogram Studi Teknik Konversi Energi oliteknik Negeri Semarang Jl. rof. H. Sudarto, S.H.,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka 2.1.1 Energi Alternatif Berdasarkan UU Republik Indonesia no. 30 tahun 2007, energi alternatif adalah energi yang dapat digunakan sebagai pengganti energi yang

Lebih terperinci

HALAMAN JUDUL UNJUK KERJA KINCIR ANGIN POROS VERTIKAL MODEL WePOWER SKRIPSI

HALAMAN JUDUL UNJUK KERJA KINCIR ANGIN POROS VERTIKAL MODEL WePOWER SKRIPSI HALAMAN JUDUL UNJUK KERJA KINCIR ANGIN POROS VERTIKAL MODEL WePOWER SKRIPSI Untuk memenuhi sebagian persyaratan Mencapai derajat sarjana S-1 Teknik Mesin Disusun oleh YOSEF CAFASSO AMARA SEKAR PRABHADHANU

Lebih terperinci

RANCANG BANGUN TURBIN ANGIN SAVONIUS 200 WATT

RANCANG BANGUN TURBIN ANGIN SAVONIUS 200 WATT Seminar SENATIK Nasional Vol. II, 26 Teknologi November Informasi 2016, ISSN: dan 2528-1666 Kedirgantaraan (SENATIK) Vol. II, 26 November 2016, ISSN: 2528-1666 KoE- 71 RANCANG BANGUN TURBIN ANGIN SAVONIUS

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Angin adalah salah satu bentuk energi yang tersedia di alam dan tidak akan pernah habis. Pada dasarnya angin terjadi karena ada perbedaan suhu antara lokasi

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Mesin Fluida Mesin fluida adalah mesin yang berfungsi untuk mengubah energi mekanis poros menjadi energi potensial fluida, atau sebaliknya mengubah energi fluida (energi potensial

Lebih terperinci

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS

PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS 5 PENGGUNAAN BENTUK SUDU SETENGAH SILINDER ELLIPTIK UNTUK MENINGKATKAN EFISIENSI TURBIN SAVONIUS Muhammad Irsyad Jurusan Teknik Mesin Universitas Lampung Keywords : Turbin Angin Savonius Sudu Elliptik

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Sebagai Sumber angin telah dimanfaatkan oleh manusaia sejak dahulu, yaitu untuk transportasi, misalnya perahu layar, untuk industri dan pertanian, misalnya kincir angin untuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang 1 BAB I PENDAHULUAN 1.1 Latar Belakang Meningkatnya konsumsi bahan bakar khususnya bahan bakar fosil sangat mempengaruhi peningkatan harga jual bahan bakar tersebut. Sehingga pemerintah berupaya mencari

Lebih terperinci

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel

Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Konsep Aliran Fluida Masalah aliran fluida dalam PIPA : Sistem Terbuka (Open channel) Sistem Tertutup Sistem Seri Sistem Parlel Hal-hal yang diperhatikan : Sifat Fisis Fluida : Tekanan, Temperatur, Masa

Lebih terperinci

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1)

Bab 2 Dasar Teori Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan (2.1) Bab Dasar Teori.1. Prinsip Konversi Energi Angin Energi kinetik dalam benda bergerak dirumuskan dengan persamaan E = 1 mv (.1) dimana: m : massa udara yang bergerak (kg) v : adalah kecepatan angin (m/s).

Lebih terperinci

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT

PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT PENGARUH VARIASI SUDUT BLADE AIRFOIL CLARK-Y FLAT BOTTOM PADA UNJUK KERJA KINCIR ANGIN Horizontal Axis Wind Turbine (HAWT) DENGAN KAPASITAS 500 WATT Novi Caroko 1,a, Wahyudi 1,b, Aditya Ivanda 1,c Universitas

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI KINCIR ANGIN MODEL AMERICAN MULTI-BLADE DELAPAN SUDU DARI BAHAN ALUMINIUM DENGAN TIGA VARIASI PITCH ANGLE TUGAS AKHIR Diajukan untuk memenuhi sebagian persyaratan mencapai derajat Sarjana S-1 Program Studi

Lebih terperinci

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar

Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Analisa Efisiensi Turbin Vortex Dengan Casing Berpenampang Lingkaran Pada Sudu Berdiameter 56 Cm Untuk 3 Variasi Jarak Sudu Dengan Saluran Keluar Ray Posdam J Sihombing 1, Syahril Gultom 2 1,2 Departemen

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI UNJUK KERJA KINCIR ANGIN PROPELER DUA SUDU MENGERUCUT BERBAHAN DASAR TRIPLEK DENGAN PERLAKUAN VARIASI LAPISAN PERMUKAAN SUDU BERLAPIS SENG, BERLAPIS ANYAMAN BAMBU DAN TANPA LAPISAN SKRIPSI Untuk memenuhi

Lebih terperinci

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º

Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º TUGAS AKHIR Studi Kinerja Turbin Angin Sumbu Horizontal NACA 4412 Dengan Modifikasi Sudu Tipe Flat Pada Variasi Sudut Kemiringan 0 º, 10 º, 15 º Disusun Sebagai Syarat Untuk Mencapai Gelar Sarjana Teknik

Lebih terperinci

TINJAUAN LITERATUR. padi dan sebagainya. Di daerah daerah terpencil, misalnya terbuat dari bambu

TINJAUAN LITERATUR. padi dan sebagainya. Di daerah daerah terpencil, misalnya terbuat dari bambu TINJAUAN LITERATUR Kincir Air Ribuan tahun yang lalu manusia telah memanfaatkan tenaga air untuk beberapa keperluan, misalnya untuk menaikkan air keperluan irigasi, menggiling padi dan sebagainya. Di daerah

Lebih terperinci

PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK

PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK PERANCANGAN ELECTRIC ENERGY RECOVERY SYSTEM PADA SEPEDA LISTRIK ANDHIKA IFFASALAM 2105.100.080 Jurusan Teknik Mesin Fakultas TeknologiIndustri Institut TeknologiSepuluhNopember Surabaya 2012 LATAR BELAKANG

Lebih terperinci