HIDROLIKA (SIL 232) Dr. Ir. Yuli Suharnoto, MSc. Departemen Teknik Sipil dan Lingkungan Fakultas Teknolog Pertanian

Ukuran: px
Mulai penontonan dengan halaman:

Download "HIDROLIKA (SIL 232) Dr. Ir. Yuli Suharnoto, MSc. Departemen Teknik Sipil dan Lingkungan Fakultas Teknolog Pertanian"

Transkripsi

1 HIDROLIKA (SIL 232) Dr. Ir. Yuli Suharnoto, MSc. Dr Dr. Ir. Erizal, MAgr. Departemen Teknik Sipil dan Lingkungan Fakultas Teknolog Pertanian Institut Pertanian Bogor

2 MODUL 1 PRINSIP DASAR HIDROLIKA 1.1.PENDAHULUAN1 Hidrolika adalah bagian dari hidromekanika (hydro y mechanics) ) yang berhubungan dengan gerak air. Untuk mempelajari aliran saluran terbuka mahasiswa harus menempuh mata kuliah kalkulus dan mekanika fluida lebih dulu. Dengan bekal mata kuliah kalkulus dan mekanika fluida mahasiswa akan mampu memehami penurunan persamaan-persamaan dasar dan fenomena aliran yang pada prinsipnya merupakan fungsi dari tempat (x,y,z) dan waktu (t).

3 HUKUM / PRINSIP DASAR Hukum ketetapan massa, hukum ketetapan energi dan hukum ketetapan momentum, yang akan dinyatakan dalam persamaan kontinuitas, persamaan energi dan persamaan momentum. Penjelasan perbedaan prinsip antara aliran saluran tertutup dan aliran saluran terbuka. Jenis dan geometri saluran terbuka.

4 Agar mahasiswa memahami penggunaan atau penerapan persamaan persamaan dasar yang telah diturunkan maka di akhir bab ini mahasiswa diberi tugas untuk mengerjakan soal soal yang ada hubungannya dengan bangunan bangunan g air seperti bangunan air untuk irigasi dan/atau untuk drainase. Pada setiap soal diberi petunjuk agar mahasiswa dapat mengevaluasi sendiri apakah pekerjaannya sudah benar.

5 Setelah membaca modul ini, mahasiswa dapat memahami prinsip dasar hidrolika yang berhubungan dengan fenomena aliran saluran terbuka.

6 JADWAL KULIAH No. Pokok Bahasan Sub-Pokok Bahasan Dosen 1 Aliran Saluran Terbuka, 1. Tipe Aliran ERZ penggolongan dan sifatsifatnya 2. Jenis saluran terbuka 3. Geometri saluran Prinsip energy dan 1. Definisi Energi spesifik ERZ 2 momentum 2. Aliran Subkritis, kritis dan superkritis 3. Aksesibilitas dan kontrol 4. Aplikasi prinsip energi 5. Definisi Momentum spesifik 3 Konsep terjadinya aliran seragam 6. Loncatan hidrolik 1. Terbentuknya aliran seragam 2. Persamaan Chezy dan Manning 3. Estimasi koefisien kekasaran 4 Komputasi aliran seragam 1. Hantarandari suatu Penampang saluran 2. Faktor penampang dan eksponen hidrolis 3. Perhitungan kedalaman dan kecepatan normal 4. Penetuan kemiringan normal dan kemiringan kritis 5 Perencanaan Sl Saluran untuk 1. Sl Saluran tahan eorsi ERZ Aliran Seragam 2. Saluranpekaerosi 3. Saluran berumput 6 Teori dan Analisis Aliran Tak 1. Asumsi dasar ERZ Seragam 2. Persamaan dinamisi aliran tak seragam 7 Karakteristik dan Klasifikasi Aliran Tak Seragam ERZ 1. Ciri-ciri profil aliran 2. Penggolongan penampang aliran 3. Analisa Profil aliran ERZ ERZ

7 JADWAL KULIAH No. Pokok Bahasan Sub-Pokok Bahasan Dosen 10 Metode Perhitungan Aliran Tak 1. Metode integrasi grafis YSH Seragam 2. Metode Integrasi Langsung 3. Metode Tahapan Langsung 4. Mtd Metode th tahapan standar 11 Aliran Tak Mantab berubah bertahap 12 Aliran Tak-Mantab berubah Tibatiba Kontinuitas aliran tak mantab Persamaan dinamis aliran tak mantab Perambatan gelombang 1. Aliran seragam bertahap 2. Perpindahan loncatan hidrolis 3. Hempasan positif 4. Hempasan negative YSH YSH 13 Konsep Aliran dalam Pipa 1. Resistensi dalam aliran pipa bulat 2. Resistensi dalam aliran pipa tak bulat YSH 14 Analisa aliran dalam jaringan pipa Loop method YSH Node Method

8 PENILAIAN & PUSTAKA UTS : 30 % Praktikum : 30 % Ujian Akhir : 40 % Chow, Ven-te (1959) : Open Channel Hydraulics Henderson, F.M. (1966) : Open Channel Flow Vennard, John K. dan R.L. Street (195) : Elementary Fluid Mechanics Bakhmeteff, B.A. (1938) : Hydraulics of Open Channel

9

10 HYDROSTATICS HYDRO MECHANICS HYDRODYNAMICS HYDROLICS FLUID MECHANICS AEROSTATICS AERO MECHANICS THEOROTICAL AERODYNAMICS EXPERIMENTAL AERODYNAMICS

11 Ditinjau dari mekanika aliran, terdapat dua macam aliran yaitu aliran saluran tertutup dan aliran saluran terbuka. Dua macam aliran tersebut dalam banyak hal mempunyai kesamaan tetapi berbeda dalam satu ketentuan penting. Perbedaan tersebut adalah pada keberadaan permukaan bebas; aliran saluran terbuka mempunyai permukaan bebas, sedang aliran saluran tertutup tidak mempunyai permukaan bebas karena air mengisi seluruh penampang saluran.

12 Dengan demikian aliran saluran terbuka mempunyai permukaan yang berhubungan dengan atmosfer, sedang aliran saluran tertutup tidak mempunyai hubungan langsung dengan tekanan atmosfer. Di dalam modul ini yang dibahas adalah aliran saluran terbuka (open channel flow ) yang sangat erat hubungannya dengan teknik sipil.

13 Garisarusadalah d l hgaris menerus (continous) yang lurus atau melengkung di dalam cairan dimana garis singgung g pada setiap titiknya menunjukkan arah kecepatan gerak partikel cairan pada garis arus tersebut.

14 Contoh garis arus adalah seperti pada Gb.1.1 dibawah ini: y S Vy V Vx x Gambar Sket definisi i i garis arus

15 Pipa arus adalah sekumpulan garis garis arus yang diawali suatu lengkung tertutup dan diakhiri suatu lengkung tertutup. Gambar 1.2. Sket definisi pipa arus

16 adalah aliran yang terdiri dari banyak pipa arus yang mempunyai batas tetap seperti pada Gb.1.3. G b 1 3 K l i Gambar 1.3. Kumpulan pipa arus di antara batas tetap

17 Apabila ρ 1 adalah kerapatan cairan rata rata pada penampang 1 dan ρ 2 adalah kerapatan cairan rata rata pada penampang 2, maka besarnya massa per satuan waktu di dua penampang tersebut adalah : m = ρ. V. A dan ( 1.1) m = ρ V A 2

18 Dimana: m = jumlah massa cairan per satuan waktu (slug atau kg) V = kecepatan rata rata penampang (ft/s atau m/s) A = luas penampang (ft 2 atau m 2 ) ρ = kerapatan cairan (slug atau slug/ft 2 atau kg/m 3 ) indeks 1 dan 2 menunjukkan harga harga tersebut pada penampang 1 dan pada penampang 2.

19 Seperti yang harus diketahui, air mengalir dari hulu ke hilir (kecuali ada gaya yang menyebabkan aliran ke arah sebaliknya) sampai mencapai suatu elevasi permukaan air tertentu, misalnya: permukaan air di danau atau permukaan air di laut

20 Tendensi/kecenderungan ini ditunjukkan oleh aliran di saluran alam yaitu sungai. Perjalanan air dapat juga ditambah oleh bangunan bangunan yang dibuat oleh manusia, seperti : saluran irigasi pipa gorong gorong (culvert), dan saluran buatan yang lain atau kanal (canal).

21 Walaupun pada umumnya perencanaan saluran ditujukan untuk karakteristik saluran buatan, namun konsep hidrauliknya dapatjuga diterapkan samabaiknya pada saluran alam.

22 Apabila saluran terbuka terhadap atmosfer, seperti sungai, kanal, gorong gorong, maka alirannya disebut aliran saluran terbuka (open channel flow) atau aliran permukaan bebas (freesurface flow). Apabila aliran mempunyai penampang penuh seperti aliran melalui suatu pipa, disebut aliran saluran tertutup atau aliran penuh (full flow).

23 Luas penampang (area) Lebar Permukaan (top width) Keliling Basah (Wetted Parimeter) ) dan Jari-jari Hydraulik (Hydraulic y Radius). ) Yang dimaksud dengan penampang saluran (channel cross section) adalah penampang yang diambil tegak lurus arah aliran, sedang penampang p yang diambil vertical disebut penampang vertikal (vertical section).

24 Dengan demikian apabila dasar saluran terletak horizontal maka penampang saluran akan sama dengan penampang vertikal. Saluran buatan biasanya direncanakan dengan penampang beraturan menurut bentuk geometri yang biasa digunakan,

25

26 Bentuk penampang trapesium adalah bentuk yang biasa digunakan untuk saluran saluran irigasi atau saluran saluran drainase karena menyerupai bentuk saluran alam, dimana kemiringan tebingnya menyesuaikan dengan sudut lereng alam dari tanah yang digunakan untuk saluran tersebut.

27 Bentuk penampang persegi empat atau segitiga merupakan penyederhanaan dari bentuk trapesium yang biasanya digunakan untuk saluran saluran drainase yang melalui lahanlahan yang sempit. Bentuk penampang lingkaran biasanya digunakan pada perlintasan dengan jalan; saluran ini disebut gorong gorong (culvert).

28 Elemen geometri penampang memanjang saluran terbuka dapat dilihat pada Gb.1.4 berikut ini: y d Penampang melintang Datum θ Datum Gambar 1.4 Penampang memanjang dan penampang melintang aliran saluran terbuka

29 dengan notasi d adalah kedalaman dari penampang aliran, sedang kedalaman y adalah kedalaman vertikal (lihat Gb.1.4), dalam hal sudut kemiringan dasar saluran sama dengan θ maka : d = y cosθ atau d y = cosθ ( 1.2)

30 adalah elevasi atau jarak vertikal dari permukaan air di atas suatu datum (bidang persamaan). adalah lebar penampang saluran pada permukaan bebas (lihat Gb.1.5). Notasi atau simbol yang digunakan untuk lebar permukaan adalah T, dan satuannya adalah satuan panjang.

31 mengacu pada luas penampang melintang dari aliran di dalam saluran. Notasi atau simbol yang digunakan untuk luas penampang ini adalah A, dan satuannya adalah satuan luas. suatu penampang aliran didefinisikan sebagai bagian/porsi dari parameter penampang aliran yang bersentuhan (kontak) dengan batas benda padat yaitu dasar dan/atau dinding saluran.

32 Dalam hal aliran di dalam saluran terbuka batas tersebut adalah dlhdasar dan dinding/tebing saluran seperti yang tampak pada Gb. 1.4 di bawah ini. Notasi atau simbol yang digunakan untuk keliling basah hini iadalah dlhp, dan satuannya adalah satuan panjang.

33 T Luas penampang B Keliling basah Gambar 1.5. Parameter Lebar Permukaan (T), Lebar Dasar (B), Luas Penampang dan Keliling basah suatu aliran

34 dari suatu penampang aliran bukan merupakan karakteristik yang dapat diukur langsung, tetapi sering sekali digunakan didalam perhitungan. Definisi dari jari jari hydraulik adalah luas penampang dibagi keliling basah, dan oleh karena itu mempunyai satuan panjang; notasi atau simbul yang digunakan adalah R, dan satuannya adalah dlhsatuan panjang.

35 Untuk kondisi aliran yang spesifik, jari jari hydraulik sering kali dapat dihubungkan langsung dengan parameter geometrik dari saluran. Misalnya, jari jari hydraulik dari suatu aliran penuh di dalam pipa (penampang lingkaran dengan diameter D) dapat dihitung besarnya jari jari hydraulik sebagai berikut:

36 R = A P. D 4 R = π = lingkaran π.dd w 2 D 4 ( 1.3) Dimana: R = Jari-jari hydraulik (ft/m) A = Luas penampang (ft2 atau m2) Pw = Keliling basah (ft atau m) D = Diameter pipa (ft atau m)

37 dari suatu penampang aliran adalah luas penampang dibagii lb lebar permukaan, dan oleh karena itu mempunyai satuan panjang. Simbul atau notasi yang digunakan adalah dlhd. A D = ( 1.4) T

38 (1.5) Z = A = A D A T adalah perkalian dari luas penampang aliran A dan akar dari kedalaman hydraulik D. Simbol atau notasi yang digunakan adalah Z.

39 adalah perkalian dari luas penampang p galiran A dan pangkat 2/3 dari jari jari hydraulik : AR 2/3 Persamaan / rumus elemen berbagai bentuk penampang dilihat pada table geometri dari aliran dapat

40 Tabel 1.1. Unsur-unsur geometris penampang saluran

41 adalah suatu penampang p saluran terbuka yang lebar sekali dimana berlaku pendekatan sebagai saluran terbuka berpenampang persegi empat dengan lebar yang jauh lebih besar daripada kedalaman aliran B >> y, dan keliling basah P disamakan dengan lebar saluran B. Dengan demikian maka luas penampang p A = B. y; P = B sehingga : R = A P = B B y = y

42 C. Debit aliran (discharge) Debit aliran adalah volume air yang mengalir melalui suatu penampang tiap satuan waktu, simbol/notasi yang digunakan adalah Q. Apabila hukum ketetapan massa diterapkan untuk aliran diantara dua penampang seperti pada Gb.1.3 dan dengan menggunakan Pers.1.1.

43 maka didapat persamaan sebagai berikut: m1 = ρ1 A1V1 = m2 = ρ2 A2V2 untuk kerapatan tetap ρ1 = ρ2, sehingga persamaan tersebut menjadi : A1V1 = A2V2 = Q (1.6) Persamaan (1.6) tersebut di atas disebut ( ) persamaan kontinuitas.

44 D. Kecepatan (velocity) Kecepatan aliran (V) dari suatu penampang aliran tidak sama diseluruh penampang aliran, tetapi bervariasi menurut tempatnya. Apabila cairan bersentuhan dengan batasnya (didasar dan dinding saluran) kecepatan alirannya adalah nol Hal ini seringkali membuat kompleksnya g p y analisis, oleh karena itu untuk keperluan praktis biasanya digunakan harga rata-rata dari kecepatan di suatu penampang aliran

45 Kecepatan rata rata ini didefinisikan sebagai debit aliran dibagi luas penampang aliran, dan oleh karena itu satuannya adalah panjang per satuan waktu. Q V = (1.7) A Dimana: V = Kecepatan rata rata aliran (ft/s atau m/s) Q = Debit aliran (ft 3 /s atau m 3 /s ) A = Luas penampang aliran (ft 2 atau m 2 )

46 Gambar 1.6 menunjukkan pembagian kecepatan Gambar 1.6. diarah vertical dengan Pembagian kecepatan kecepatan maksimum di permukaan air (velocity dan kecepatan distribution) noldi pada dasar. arah vertikal

47 Misalnya kecepatan aliran di suatu titik adalah v dan kecepatan rata rata aliran adalah dlhv maka debit aliran adalah : = Q = V. A v. da (1.8) A Kecepatan rata-rata dapat ditentukan dari Pers.(1.8) tersebut diatas V = A v. da A (1.9)

48 E. Kriteria aliran Aliran tetap (steady flow) merupakan salah satu jenis aliran; kt kata tetap t menunjukkan bahwa di seluruh analisis aliran diambil asumsi bahwa debit alirannya tetap. Apabila aliran melalui saluran prismatis maka kecepatan aliran V juga tetap, atau kecepatan aliran tidak berubah menurut waktu. V V t = 0

49 sebaliknya blik apabila kecepatan aliran berubah menurut waktu, aliran disebut aliran tidak tt tetap (unsteadyt d flow) ) V t 0

50 Aliran seragam (uniform flow) merupakan jenis aliran yang lain; kata seragam menunjukkan bahwa kecepatan aliran disepanjang saluran adalah tetap, dalam hal kecepatan aliran tidak tergantung pada tempat atau tidak berubah menurut tempatnya. V ss = 0

51 sebaliknya apabila kecepatan berubah menurut tempat makaaliran disebut aliran tidak seragam (nonuniform flow). V V s 0

52 Aliran seragan dan tetap disebut aliran beraturan V t = 0 dan V s = 0 Aliran tidak seragam dapat dibagi menjadi : o aliran berubah lambat laun (gradually varied flow) o aliran berubah dengan cepat (rapidly varied flow)

53 Aliran disebut berubah lambat laun apabila perubahan kecepatan terjadi secara lambat laun dalam jarak yang panjang, sedangkan aliran disebut berubah dengan apabila perubahan terjadi pada jarak yang pendek. Untuk saluran prismatis jenis aliran tersebut diatas juga dapat dinyatakan dalan perubahan kedalaman aliran seperti ditunjukkan dl dalam persamaan persamaan sebagai iberikut :

54 h h AliranTetap: = 0, AliranTidak Tetap: 0 s s h h Aliran Seragam : = 0, AliranTidakSeragam : t t 0 Contoh dari perubahan kedalaman air disepanjang aliran dapat dilihat pada Gb.1.7 dibawah ini. (a)

55 Air balik (backwater) Laut (b) (c) Laut Gambar 1.7. Perubahan kedalaman air (a. aliran seragam; b. aliran berubah lambat laun; c. aliran berubah dengan cepat) disepanjang aliran

56 F. Sifat Aliran (Aliran Laminer, Aliran Turbulen, dan Angka Reynold) Sebaliknya aliran turbulen tidak mempunyai garis- garis arus yang halus dan sejajar sama sekali Aliran laminer adalahsuatu tipe aliran yang ditunjukkan oleh gerak partikelpartikel cairan menurut garis garis i arusnya yang halus dan sejajar.

57 Karakteristik aliran turbulen ditunjukkan oleh terbentuknya pusaran pusaran dalam aliran, yang menghasilkan percampuran p terus menerus antara partikel partikel cairan di seluruh penampang aliran. Perhatikan bahwa pusaran pusaran menghasilkan variasi arah maupun besarnya kecepatan. Perhatikan juga bahwa pusaranpusaran pada suatu waktu memberi kontribusi pada kecepatan dari partikel yang diketahui i dalam arah aliran, dan pada waktu yang lain mengurangi darinya.

58 Hasilnya adalah bahwa pembagian kecepatan yang diambil pada waktu yang berbeda beda tampak berbeda satu sama lain, dan pembagian kecepatan tersebut akan tampak lebih kasar daripada pembagian kecepatan dari suatu aliran laminer Hal ini dapat diinterpertasikan bahwa perubahan kecepatan dalam aliran turbulen akan dipertimbangkan sebagai aliran tidak tetapt (unstedy). Namun demikian, apabila kecepatan rata-rata pada sembarang titik yang diketahui di dalam aliran adalah tetap (constant), maka aliran diasumsikan sebagai aliran tetap.

59 Untuk membedakan aliran apakah turbulen atau laminer, terdapat suatu angka tidak bersatuan yang disebut Angka Reynold (Reynolds Number). ) Angka inii dihitung dengan persamaan sebagai berikut: 4V R ( 1.10) R e = ϑ Dimana: Re = Angka Reynold (tanpa satuan) V = Kecepatan rata-rata (ft/s atau m/s) R = Jari-jari hydraulik (ft atau m) ϑ = Viskositas kinematis, tersedia dalam tabel sifat-sifat cairan (ft 2 /s atau m 2 /s)

60 Menurut thasil percobaan oleh lh Reynold, apabila angka Reynold kurang daripada 2000, aliran biasanya merupakan aliran laminer. Apabila angka Reynold lebih besar daripada 4000, aliran biasanya adalah turbulen. Sedang antara 2000 dan 4000 aliran dapat laminer atau turbulen tergantung pada fk faktorfaktor lain yang mempengaruhi.

61 G. Tipe Aliran (Aliran kritis, sub kritis dan super kritis, angka Froude) Efek dari gaya gravitasi pada suatu aliran ditunjukkan dalam perbandingan atau rasio antara gaya inersia dan gaya gravitasi. Rasio antara gaya gaya tersebut dinyatakan dalam angka Froude, yaitu : V F R = (111) 1.11) g. L

62 Dimana: F R = angka Froude (tidak berdimensi/ tidak mempunyai satuan) V = kecepatan rata rata aliran ( ft/satau m/s ) L = panjang karakteristik (dalam ftatau m)

63 Dalam aliran saluran terbuka panjang karakteristikk ik disamakan dengan kdl kedalaman hydraulik D. Dengan demikian untuk aliran saluran terbukaangka k Froude adalah: dlh V F R = g. D ( 1.12) 12) Apabila angka F sama dengan satu maka Pers.1.10 menjadi: V = g. D ( 1.13)

64 Dimana: g.d Adalah kecepatan rambat gelombang (celerity), dari gelombang gravitasi yang terjadi dalam aliran dangkal.

65 Dalam hal ini aliran disebut dalam kondisi kritis, and aliran disebut aliran kritis (critical flow). ) Apabila harga angka F R lebih kecil daripada satu atau aliran disebut aliran sub kritis (subcritical flow). g ) D V. Dl Dalam kondisi i inii gaya gravitasi i memegang peran lebih besar; dalam hal ini kecepatan aliran lebih kecil daripada kecepatan rambat gelombang g dan hal ini ditunjukkan dengan lairannya yang tenang.

66 Sebaliknya apabila harga FR lebih besar daripada satu atau V g. D aliran disebut Aliran super kritis (supercritical flow). Dalam hal ini gaya gaya inersia menjadi dominan, jadi aliran mempunyai kecepatan besar; kecepatan aliran lebih besar daripada kecepatan rambat gelombang yang ditandai dengan alirannya yang deras.

67 H. Regime aliran (regimes of flow) Suatu kombinasi dari efek viskositas dan Gravitasi menghasilkan salah satu dari empat regime aliran, yang disebut: subkritis laminer (subcritical laminer), apabila FR lebih kecil daripada satu dan Re berada dalam rentang laminer;

68 superkritis laminer (supercritical laminer), apabila F R lebih besar daripada satu dan Re berada dalam rentang laminer; superkritis turbulent kiti t t (supercritical turbulent), l t b l t) apabila F R lebih besar daripada satu dan Re berada dalam rentang laminer; subkritis turbulen (subcritical turbulent), apabila F R lebih kecil daripada satu dan Re berada dalam rentang turbulen.

PRINSIP DASAR HIDROLIKA

PRINSIP DASAR HIDROLIKA PRINSIP DASAR HIDROLIKA 1.1.PENDAHULUAN Hidrolika adalah bagian dari hidromekanika (hydro mechanics) yang berhubungan dengan gerak air. Untuk mempelajari aliran saluran terbuka mahasiswa harus menempuh

Lebih terperinci

Hidrolika Saluran. Kuliah 6

Hidrolika Saluran. Kuliah 6 Hidrolika Saluran Kuliah 6 Analisa Hidrolika Terapan untuk Perencanaan Drainase Perkotaan dan Sistem Polder Seperti yang perlu diketahui, air mengalir dari hulu ke hilir (kecuali ada gaya yang menyebabkan

Lebih terperinci

Gita Yunianti Dwi Astuti, Feril Hariati Jurusan Teknik Sipil, Universitas Ibn Khaldun Bogor

Gita Yunianti Dwi Astuti, Feril Hariati Jurusan Teknik Sipil, Universitas Ibn Khaldun Bogor Gita Yunianti Astuti, Feril Hariati, Karakteristik Pada Flume Saluran Terbuka di Laboratorium Teknik Sipil UIKA STUDI KARAKTERISTIK ALIRAN PADA FLUME SALURAN TERBUKA DI LABORATORIUM TEKNIK SIPIL UIKA Gita

Lebih terperinci

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase

Bab III HIDROLIKA. Sub Kompetensi. Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase Bab III HIDROLIKA Sub Kompetensi Memberikan pengetahuan tentang hubungan analisis hidrolika dalam perencanaan drainase 1 Analisis Hidraulika Perencanaan Hidraulika pada drainase perkotaan adalah untuk

Lebih terperinci

I Putu Gustave Suryantara Pariartha

I Putu Gustave Suryantara Pariartha I Putu Gustave Suryantara Pariartha Open Channel Saluran terbuka Aliran dengan permukaan bebas Mengalir dibawah gaya gravitasi, dibawah tekanan udara atmosfir. - Mengalir karena adanya slope dasar saluran

Lebih terperinci

Aliran Turbulen (Turbulent Flow)

Aliran Turbulen (Turbulent Flow) Aliran Turbulen (Turbulent Flow) A. Laminer dan Turbulen Laminer adalah aliran fluida yang ditunjukkan dengan gerak partikelpartikel fluidanya sejajar dan garis-garis arusnya halus. Dalam aliran laminer,

Lebih terperinci

II. TINJAUAN PUSTAKA. Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang

II. TINJAUAN PUSTAKA. Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang 7 II. TINJAUAN PUSTAKA A. Hidrologi Hidrologi berasal dari Bahasa Yunani yaitu terdiri dari kata hydros yang berarti air dan kata logos yang berarti ilmu, dengan demikian secara umum hidrologi adalah ilmu

Lebih terperinci

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan

Sub Kompetensi. Bab III HIDROLIKA. Analisis Hidraulika. Saluran. Aliran Permukaan Bebas. Aliran Permukaan Tertekan Bab III HIDROLIKA Sub Kompetensi Memberikan pengetauan tentang ubungan analisis idrolika dalam perencanaan drainase Analisis Hidraulika Perencanaan Hidrolika pada drainase perkotaan adala untuk menentukan

Lebih terperinci

Aliran berubah lambat laun. surut di muara saluran atau. air atau pasang surut air laut. berpengaruh sampai ke hulu dan atau ke hilir.

Aliran berubah lambat laun. surut di muara saluran atau. air atau pasang surut air laut. berpengaruh sampai ke hulu dan atau ke hilir. Aliran berubah lambat laun banyak terjadi akibat pasang surut di muara saluran atau akibat adanya bangunan-bangunan air atau pasang surut air laut terutama pada saat banjir akan berpengaruh sampai ke hulu

Lebih terperinci

Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran. momentum. Dengan persamaan energi

Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran. momentum. Dengan persamaan energi Prinsip ketetapan energi dan ketetapan t momentum merupakan dasar penurunan persamaan aliran saluran terbuka disamping ketetapan momentum. Dengan persamaan energi dan persamaan momentum dapat dibedakan

Lebih terperinci

ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN

ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN ANALISIS TINGGI DAN PANJANG LONCAT AIR PADA BANGUNAN UKUR BERBENTUK SETENGAH LINGKARAN R.A Dita Nurjanah Jurusan TeknikSipil, UniversitasSriwijaya (Jl. Raya Prabumulih KM 32 Indralaya, Sumatera Selatan)

Lebih terperinci

MODEL ANALISIS ALIRAN PADA SALURAN TERBUKA DENGAN BENTUK PENAMPANG TRAPESIUM PENDAHULUAN

MODEL ANALISIS ALIRAN PADA SALURAN TERBUKA DENGAN BENTUK PENAMPANG TRAPESIUM PENDAHULUAN MODEL ANALISIS ALIRAN PADA SALURAN TERBUKA DENGAN BENTUK PENAMPANG TRAPESIUM 1.1 Latar Belakang PENDAHULUAN Kondisi aliran dalam saluran terbuka yang rumit berdasarkan kenyataan bahwa kedudukan permukaan

Lebih terperinci

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika

Mekanika Fluida II. Karakteristik Saluran dan Hukum Dasar Hidrolika Mekanika Fluida II Karakteristik Saluran dan Hukum Dasar Hidrolika 1 Geometri Saluran 1.Kedalaman (y) - depth 2.Ketinggian di atas datum (z) - stage 3.Luas penampang A (area cross section area) 4.Keliling

Lebih terperinci

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy

Persamaan Chezy. Pada aliran turbulen gaya gesek sebanding dengan kuadrat kecepatan. Persamaan Chezy, dengan C dikenal sebagai C Chezy Saluran Terbuka Persamaan Manning Persamaan yang paling umum digunakan untuk menganalisis aliran air dalam saluran terbuka. Persamaan empiris untuk mensimulasikan aliran air dalam saluran dimana air terbuka

Lebih terperinci

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana.

BAB II PENDEKATAN PEMECAHAN MASALAH. curah hujan ini sangat penting untuk perencanaan seperti debit banjir rencana. BAB II PENDEKATAN PEMECAHAN MASALAH A. Intensitas Curah Hujan Menurut Joesron (1987: IV-4), Intensitas curah hujan adalah ketinggian curah hujan yang terjadi pada suatu kurun waktu. Analisa intensitas

Lebih terperinci

bangunan- Gangguan tersebut dapat merupakan dan kedalaman normal.

bangunan- Gangguan tersebut dapat merupakan dan kedalaman normal. Aliran seragam merupakan aliran yang tidak berubah menurut tempat. Konsep aliran seragam dan aliran kritis sangat diperlukan dalam peninjauan aliran berubah dengan cepat atau berubah lambat laun. Perhitungan

Lebih terperinci

Klasifikasi Aliran Fluida (Fluids Flow Classification)

Klasifikasi Aliran Fluida (Fluids Flow Classification) Klasifikasi Aliran Fluida (Fluids Flow Classification) Didasarkan pada tinjauan tertentu, aliran fluida dapat diklasifikasikan dalam beberapa golongan. Dalam ulasan ini, fluida yang lebih banyak dibahas

Lebih terperinci

Mekanika Fluida II. Tipe Saluran Terbuka Penampang Hidrolis Terbaik

Mekanika Fluida II. Tipe Saluran Terbuka Penampang Hidrolis Terbaik Mekanika Fluida II Tipe Saluran Terbuka Penampang Hidrolis Terbaik Review Rumus S adalah slope energi dan S= hf /L dimana hf adalah energy (head) loss dan L adalah panjang saluran. Untuk aliran uniform

Lebih terperinci

DAFTAR ISI. SURAT KETERANGAN TUGAS AKHIR... i. SURAT KETERANGAN SELESAI TUGAS AKHIR...ii. ABSTRAK...iii. PRAKATA... iv. DAFTAR ISI...

DAFTAR ISI. SURAT KETERANGAN TUGAS AKHIR... i. SURAT KETERANGAN SELESAI TUGAS AKHIR...ii. ABSTRAK...iii. PRAKATA... iv. DAFTAR ISI... DAFTAR ISI SURAT KETERANGAN TUGAS AKHIR... i SURAT KETERANGAN SELESAI TUGAS AKHIR...ii ABSTRAK...iii PRAKATA... iv DAFTAR ISI... vi DAFTAR NOTASI DAN SINGKATAN...viii DAFTAR GAMBAR... x DAFTAR TABEL...xii

Lebih terperinci

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami kegunaan Energi Spesifik.

Tujuan Pembelajaran Umum Setelah membaca modul mahasiswa memahami kegunaan Energi Spesifik. Tujuan Pembelajaran Umum Setelah membaa modul mahasiswa memahami kegunaan Energi Spesifik. Tujuan Pembelajaran Khusus Setelah membaa modul dan menelesailkan ontoh soal, mahasiswa mampu menjelaskan penggunaan

Lebih terperinci

DAFTAR ISI Novie Rofiul Jamiah, 2013

DAFTAR ISI Novie Rofiul Jamiah, 2013 DAFTAR ISI ABSTRAK... i KATA PENGANTAR... iii UCAPAN TERIMA KASIH... iv DAFTAR ISI... v DAFTAR GAMBAR... vii DAFTAR TABEL... ix DAFTAR NOTASI... xi BAB I PENDAHULUAN 1.1 Latar Belakang... 1 1.2 Batasan

Lebih terperinci

REYNOLDS NUMBER K E L O M P O K 4

REYNOLDS NUMBER K E L O M P O K 4 REYNOLDS NUMBER K E L O M P O K 4 P A R A M I T A V E G A A. T R I S N A W A T I Y U L I N D R A E K A D E F I A N A M U F T I R I Z K A F A D I L L A H S I T I R U K A Y A H FAKULTAS PERIKANAN DAN ILMU

Lebih terperinci

Mekanika Fluida II. Aliran Berubah Lambat

Mekanika Fluida II. Aliran Berubah Lambat Mekanika Fluida II Aliran Berubah Lambat Introduction Perilaku dasar berubah lambat: - Kedalaman hidrolis berubah secara lambat pada arah longitudinal - Faktor pengendali aliran ada di kombinasi di hulu

Lebih terperinci

BAB III METODOLOGI PENELITIAN

BAB III METODOLOGI PENELITIAN BAB III METODOLOGI PENELITIAN 3.1 Tempat Penelitian Penelitian ini dilakukan di Instalasi Pengolahan Air Minum (IPA) Bojong Renged Cabang Teluknaga Kabupaten Tangerang. Pemilihan tempat penelitian ini

Lebih terperinci

Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal.

Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal. Setelah membaca modul mahasiswa memahami pembagian kecepatan di arah vertical dan horizontal. Setelah membaca modul dan membuat latihan mahasiswa a memahami bahwa apabila menggunakan kecepatan rata-rata

Lebih terperinci

SOBEK Hidrodinamik 1D2D (modul 2C)

SOBEK Hidrodinamik 1D2D (modul 2C) SOBEK Hidrodinamik 1D2D (modul 2C) 1 Konten Mengapa pemodelan? Gelombang Aspek aliran 1 dimensi di Sobek Aspek numerik Aspek aliran 2 dimensi di Sobek 2 (mengapa?) pemodelan 3 Mengapa pemodelan? - Tidak

Lebih terperinci

Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal

Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal Aliran Seragam Pada Saluran Terbuka Teori & Penyelesaian Soal-Soal Ichwan Ridwan Nasution Fakultas Teknik Jurusan Teknik Sipil Universitas Sumatera Utara I. DASAR-DASAR ALIRAN DALAM SALURAN TERBUKA Aliran

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA 6 II. TINJAUAN PUSTAKA A. Drainase Perkotaan Drainase merupakan sebuah sistem yang dibuat untuk menanggulangi persoalan kelebihan air yang berada di atas permukaan tanah. Kelebihan air dapat disebabkan

Lebih terperinci

Aliran Pada Saluran Terbuka. Dr. Ir. Bambang Yulistiyanto T SipiI UGM. KIasifikas Aliran

Aliran Pada Saluran Terbuka. Dr. Ir. Bambang Yulistiyanto T SipiI UGM. KIasifikas Aliran Aliran Pada Saluran Terbuka Dr. Ir. Bambang Yulistiyanto T SipiI UGM KIasifikas Aliran Steady / Unsteady Flow Uniform / Non Uniform Flow 1,2,3 Dimensional Flow Laminer / Turbulent Flow Incompressible /

Lebih terperinci

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN Dasar-Dasar Aliran Fluida Konsep penting dalam aliran fluida 1. Prinsip kekekalan massa (persamaan kontinuitas) 2. Prinsip Energi Kinetik (persamaanpersamaan aliran

Lebih terperinci

Mekanika Fluida II. Hidrolika saluran terbuka & Fluida terkompresi

Mekanika Fluida II. Hidrolika saluran terbuka & Fluida terkompresi Mekanika Fluida II Hidrolika saluran terbuka & Fluida terkompresi Objectives Mahasiswa dapat mengerti property dan fenomena dasar aliran air di saluran terbuka Mahasiswa dapat mengerti jenis dan penggunaan

Lebih terperinci

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy.

9. Dari gambar berikut, turunkan suatu rumus yang dikenal dengan rumus Darcy. SOAL HIDRO 1. Saluran drainase berbentuk empat persegi panjang dengan kemiringan dasar saluran 0,015, mempunyai kedalaman air 0,45 meter dan lebar dasar saluran 0,50 meter, koefisien kekasaran Manning

Lebih terperinci

ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS SUNGAI : PULAU KEMARO SAMPAI DENGAN MUARA SUNGAI KOMERING)

ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS SUNGAI : PULAU KEMARO SAMPAI DENGAN MUARA SUNGAI KOMERING) ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS SUNGAI : PULAU KEMARO SAMPAI DENGAN MUARA SUNGAI KOMERING) Ady Syaf Putra Mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Sriwijaya Korespondensi

Lebih terperinci

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P

PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P PERSAMAAN BERNOULLI I PUTU GUSTAVE SURYANTARA P ANGGAPAN YANG DIGUNAKAN ZAT CAIR ADALAH IDEAL ZAT CAIR ADALAH HOMOGEN DAN TIDAK TERMAMPATKAN ALIRAN KONTINYU DAN SEPANJANG GARIS ARUS GAYA YANG BEKERJA HANYA

Lebih terperinci

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013

Edy Sriyono. Jurusan Teknik Sipil Universitas Janabadra 2013 Edy Sriyono Jurusan Teknik Sipil Universitas Janabadra 2013 Aliran Pipa vs Aliran Saluran Terbuka Aliran Pipa: Aliran Saluran Terbuka: Pipa terisi penuh dengan zat cair Perbedaan tekanan mengakibatkan

Lebih terperinci

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa

KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa KARAKTERISTIK ZAT CAIR Pendahuluan Aliran laminer Bilangan Reynold Aliran Turbulen Hukum Tahanan Gesek Aliran Laminer Dalam Pipa ALIRAN STEDY MELALUI SISTEM PIPA Persamaan kontinuitas Persamaan Bernoulli

Lebih terperinci

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair :

Macam Aliran : Berdasarkan Cara Bergerak Partikel zat cair : Mempelajari gerak partikel zat cair pada setiap titik medan aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak aliran di setiap saat, tanpa meninjau gaya yang menyebabkan gerak tersebut.

Lebih terperinci

Rumus bilangan Reynolds umumnya diberikan sebagai berikut:

Rumus bilangan Reynolds umumnya diberikan sebagai berikut: Dalam mekanika fluida, bilangan Reynolds adalah rasio antara gaya inersia (vsρ) terhadap gaya viskos (μ/l) yang mengkuantifikasikan hubungan kedua gaya tersebut dengan suatu kondisi aliran tertentu. Bilangan

Lebih terperinci

Hidraulika Saluran Terbuka. Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM

Hidraulika Saluran Terbuka. Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM Hidraulika Saluran Terbuka Pendahuluan Djoko Luknanto Jurusan Teknik Sipil dan Lingkungan FT UGM Pendahuluan Pengaliran saluran terbuka: pengaliran tak bertekanan pengaliran yang muka airnya berhubungan

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Sungai Sungai adalah suatu alur yang panjang diatas permukaan bumi tempat mengalirnya air yang berasal dari hujan dan senantiasa tersentuh air serta terbentuk secara alamiah (Sosrodarsono,

Lebih terperinci

HIDRODINAMIKA BAB I PENDAHULUAN

HIDRODINAMIKA BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Kinematika adalah tinjauan gerak partikel zat cair tanpa memperhatikan gaya yang menyebabkan gerak tersebut. Kinematika mempelajari kecepatan disetiap titik dalam medan

Lebih terperinci

HIDROLIKA I. Yulyana Aurdin, ST., M.Eng

HIDROLIKA I. Yulyana Aurdin, ST., M.Eng HIDROLIKA I Yulyana Aurdin, ST., M.Eng ATURAN PERKULIAHAN 1. TEPAT WAKTU 2. TIDAK MEMAKAI BAJU KAOS DAN SANDAL 3. TAAT SEGALA PERATURAN PERKULIAHAN 4. KEHADIRAN MIN 80% HIDROLIKA 1.1.PENDAHULUAN Hidrolika

Lebih terperinci

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut.

Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. KINEMATIKA ZAT CAIR Mempelajari grafik gerak partikel zat cair tanpa meninjau gaya penyebab gerak tersebut. Jenis aliran. Aliran inisid dan iskos Aliran inisid aliran dengan kekentalan zat cair μ 0 (zat

Lebih terperinci

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang

BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS. benda. Panas akan mengalir dari benda yang bertemperatur tinggi ke benda yang BAB II TEORI ALIRAN PANAS 7 BAB II TEORI ALIRAN PANAS 2.1 Konsep Dasar Perpindahan Panas Perpindahan panas dapat terjadi karena adanya beda temperatur antara dua bagian benda. Panas akan mengalir dari

Lebih terperinci

01/02/2015. Mekanika Fluida. 2/1/2015 Ir.Darmadi,MM 2

01/02/2015. Mekanika Fluida. 2/1/2015 Ir.Darmadi,MM 2 Mekanika Fluida 2/1/2015 Ir.Darmadi,MM 2 1 PENGERTIAN MEKANIKA FLUIDA Mekanika fluida adalah ilmu tentang gaya dan gerakan dari suatu fluida Fluida adalah suatu material yang memiliki gaya gesek rendah

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hukum Kekekalan Massa Hukum kekekalan massa atau dikenal juga sebagai hukum Lomonosov- Lavoiser adalah suatu hukum yang menyatakan massa dari suatu sistem tertutup akan konstan

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi Fluida

BAB II DASAR TEORI. 2.1 Definisi Fluida BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antarmolekul

Lebih terperinci

MENURUNKAN ENERGI AIR DARI SPILLWAY

MENURUNKAN ENERGI AIR DARI SPILLWAY digilib.uns.ac.id ABSTRAK Sad Mei Nuraini, 2012. MENURUNKAN ENERGI AIR DARI SPILLWAY DENGAN STEPPED CHUTES. Skripsi, Jurusan Tenik Sipil, Fakultas Teknik Universitas Sebelas Maret Surakarta. Bangunan spillway

Lebih terperinci

Perancangan Saluran Berdasarkan Konsep Aliran Seragam

Perancangan Saluran Berdasarkan Konsep Aliran Seragam Perancangan Saluran Berdasarkan Konsep Aliran Seragam Perancangan saluran berarti menentukan dimensi saluran dengan mempertimbangkan sifat-sifat bahan pembentuk tubuh saluran serta kondisi medan sedemikian

Lebih terperinci

TINJAUAN ENERGI SPESIFIK AKIBAT PENYEMPITAN PADA SALURAN TERBUKA

TINJAUAN ENERGI SPESIFIK AKIBAT PENYEMPITAN PADA SALURAN TERBUKA TINJAUAN ENERGI SPESIFIK AKIBAT PENYEMPITAN PADA SALURAN TERBUKA Jhonson A. Harianja ), Stefanus Gunawan ) ) Jurusan Teknik Spil Fakultas Teknik UKRIM Yogyakarta ) Jurusan Teknik Spil Fakultas Teknik UKRIM

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Sungai Sungai merupakan saluran alami yang mempunyai peranan penting bagi alam terutama sebagai system drainase. Sungai memiliki karakteristik dan bentuk tampang yang berbeda

Lebih terperinci

BAB II DASAR TEORI. 2.1 Definisi fluida

BAB II DASAR TEORI. 2.1 Definisi fluida BAB II DASAR TEORI 2.1 Definisi fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

(2) Dimana : = berat jenis ( N/m 3 ) g = percepatan gravitasi (m/dt 2 ) Rapat relatif (s) adalah perbandingan antara rapat massa suatu zat ( ) dan

(2) Dimana : = berat jenis ( N/m 3 ) g = percepatan gravitasi (m/dt 2 ) Rapat relatif (s) adalah perbandingan antara rapat massa suatu zat ( ) dan 1. Sifat-Sifat Fluida Semua fluida nyata (gas dan zat cair) memiliki sifat-sifat khusus yang dapat diketahui, antara lain: rapat massa (density), kekentalan (viscosity), kemampatan (compressibility), tegangan

Lebih terperinci

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3

BAB II DASAR TEORI. m (2.1) V. Keterangan : ρ = massa jenis, kg/m 3 m = massa, kg V = volume, m 3 BAB II DASAR TEORI 2.1 Definisi Fluida Fluida dapat didefinisikan sebagai zat yang berubah bentuk secara kontinu bila terkena tegangan geser. Fluida mempunyai molekul yang terpisah jauh, gaya antar molekul

Lebih terperinci

PEMODELAN & PERENCANAAN DRAINASE

PEMODELAN & PERENCANAAN DRAINASE PEMODELAN & PERENCANAAN DRAINASE PEMODELAN & PERENCANAAN DRAINASE PEMODELAN ALIRAN PERMANEN FTSP-UG NURYANTO,ST.,MT. 1.1 BATAS KEDALAMAN ALIRAN DI UJUNG HILIR SALURAN Contoh situasi kedalaman aliran kritis

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. TINJAUAN UMUM Hidrolika adalah bagian dari ilmu yang mempelajari perilaku air baik dalam keadaan diam atau yang disebut hidrostatika maupun dalam keadaan bergerak atau disebut

Lebih terperinci

ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS JEMBATAN AMPERA SAMPAI DENGAN PULAU KEMARO)

ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS JEMBATAN AMPERA SAMPAI DENGAN PULAU KEMARO) ANALISIS DISTRIBUSI KECEPATAN ALIRAN SUNGAI MUSI (RUAS JEMBATAN AMPERA SAMPAI DENGAN PULAU KEMARO) Fathona Fajri Junaidi Mahasiswa Jurusan Teknik Sipil Fakultas Teknik Universitas Sriwijaya * Korespondensi

Lebih terperinci

PERUBAHAN KEDALAMAN MUKA AIR PADA SALURAN TERBUKA AKIBAT PENYEMPITAN DENGAN VARIASI KEMIRINGAN SALURAN DAN BUKAAN PINTU RADIAL LAPORAN TUGAS AKHIR

PERUBAHAN KEDALAMAN MUKA AIR PADA SALURAN TERBUKA AKIBAT PENYEMPITAN DENGAN VARIASI KEMIRINGAN SALURAN DAN BUKAAN PINTU RADIAL LAPORAN TUGAS AKHIR PERUBAHAN KEDALAMAN MUKA AIR PADA SALURAN TERBUKA AKIBAT PENYEMPITAN DENGAN VARIASI KEMIRINGAN SALURAN DAN BUKAAN PINTU RADIAL LAPORAN TUGAS AKHIR Oleh FRIDA AMANDA 141903103012 PROGRAM STUDI D3 TEKNIK

Lebih terperinci

3. PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA

3. PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA . PRINSIP ENERGI DAN MOMENTUM DALAM ALIRAN SALURAN TERBUKA ENERGI DALAM ALIRAN SALURAN TERBUKA Gambar.1. Aliran Dalam Saluran Terbuka Garis energi : garis yang menyatakan ketinggian dari jumlah tinggi

Lebih terperinci

BAB II TINJAUAN PUSTAKA. keterangan melalui kutipan teori dari pihak yang kompeten di bidang

BAB II TINJAUAN PUSTAKA. keterangan melalui kutipan teori dari pihak yang kompeten di bidang BAB II TINJAUAN PUSTAKA 2.1. Umum Dalam bab ini akan disajikan beberapa penjelasan terkait berbagai macam aspek yang nantinya dipakai sebagai acuan peneletian. Ditekankan pada hal yang berhubungan langsung

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA A. Definisi Fluida Aliran fluida atau zat cair (termasuk uap air dan gas) dibedakan dari benda padat karena kemampuannya untuk mengalir. Fluida lebih mudah mengalir karena ikatan molekul

Lebih terperinci

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN

Laporan Praktikum Operasi Teknik Kimia I Efflux Time BAB I PENDAHULUAN Page 1 BAB I PENDAHULUAN I.1. Latar Belakang Penggunaan efflux time dalam dunia industri banyak dijumpai pada pemindahan fluida dari suatu tempat ke tempat yang lain dengan pipa tertutup serta tangki sebagai

Lebih terperinci

BAB II TINJAUAN PUSTAKA. daerah sekitar hilir Sungai. Banjir yang terjadi dapat mengakibatkan kerugian.

BAB II TINJAUAN PUSTAKA. daerah sekitar hilir Sungai. Banjir yang terjadi dapat mengakibatkan kerugian. BAB II TINJAUAN PUSTAKA II.1 Umum Banjir merupakan salah satu masalah lingkungan yang sering terjadi di lingkungan daerah sekitar hilir Sungai. Banjir yang terjadi dapat mengakibatkan kerugian. Diakibatkan

Lebih terperinci

BAB IV OLAHAN DATA DAN PEMBAHASAN

BAB IV OLAHAN DATA DAN PEMBAHASAN BAB IV OLAHAN DATA DAN PEMBAHASAN 4.1 Analisa Sungai Cisadane 4.1.1 Letak Geografis Sungai Cisadane yang berada di provinsi Banten secara geografis terletak antara 106 0 5 dan 106 0 9 Bujur Timur serta

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI 3.1 Saluran Terbuka Saluran terbuka adalah salah satu aliran yang mana tidak semua dinding saluran bergesekan dengan fluida yang mengalir, oleh karena itu terdapat ruang bebas dimana

Lebih terperinci

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN. Heri Suprapto

HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN. Heri Suprapto HIDROLIKA DAN JENIS ALIRAN DALAM SALURAN Heri Suprapto Dasar-Dasar Aliran Fluida Konsep penting dalam aliran fluida 1. Prinsip kekekalan massa (persamaan kontinuitas) 2. Prinsip Energi Kinetik (persamaanpersamaan

Lebih terperinci

BAB II KAJIAN PUSTAKA DAN DASAR TEORI

BAB II KAJIAN PUSTAKA DAN DASAR TEORI BAB II KAJIAN PUSTAKA DAN DASAR TEORI 2.1 Kajian Pustaka Ristiyanto (2003) menyelidiki tentang visualisasi aliran dan penurunan tekanan setiap pola aliran dalam perbedaan variasi kecepatan cairan dan kecepatan

Lebih terperinci

Mekanika Fluida PENGERTIAN MEKANIKA FLUIDA. Mekanika fluida adalah ilmu tentang gaya dan gerakan dari suatu fluida

Mekanika Fluida PENGERTIAN MEKANIKA FLUIDA. Mekanika fluida adalah ilmu tentang gaya dan gerakan dari suatu fluida Mekanika Fluida PENGERTIAN MEKANIKA FLUIDA Mekanika fluida adalah ilmu tentang gaya dan gerakan dari suatu fluida Fluida adalah suatu material yang memiliki gaya gesek rendah (shear stress) Fluida: air,

Lebih terperinci

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK

ANALISIS FAKTOR GESEKAN PADA PIPA HALUS ABSTRAK ANALISIS FAKTOR GESEKAN PADA PIPA HALUS Juari NRP: 1321025 Pembimbing: Robby Yussac Tallar, Ph.D. ABSTRAK Hidraulika merupakan ilmu dasar dalam bidang teknik sipil yang menjelaskan perilaku fluida atau

Lebih terperinci

(1) Angka Froude (F R ) = 1 (2.37)

(1) Angka Froude (F R ) = 1 (2.37) Tujuan Pembelajaran Umum Setelah membaa dan mempelajari modul ini mahasiswa memahami kriteria dan penerapan konsep aliran kritis pada aliran saluran terbuka. Tujuan Pembelajaran Khusus Setelah mempelajari

Lebih terperinci

NUR EFENDI NIM: PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS PASIR PENGARAIAN KABUPATEN ROKAN HULU RIAU/2016

NUR EFENDI NIM: PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS PASIR PENGARAIAN KABUPATEN ROKAN HULU RIAU/2016 ARTIKEL ILMIAH STUDI EXPERIMEN DISTRIBUSI KECEPATAN PADA SALURAN MENIKUNG DI SUNGAI BATANG LUBUH Disusun Oleh : NUR EFENDI NIM: 1110 PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS PASIR PENGARAIAN

Lebih terperinci

BAB III LANDASAN TEORI. A. Gerusan Lokal

BAB III LANDASAN TEORI. A. Gerusan Lokal 7 BAB III LANDASAN TEORI A. Gerusan Lokal Gerusan merupakan fenomena alam yang terjadi akibat erosi terhadap aliran air pada dasar dan tebing saluran alluvial. Juga merupakan proses menurunnya atau semakin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA ditujukan untuk penelitian selanjutnya atau untuk penerapan hasil penelitian di lapangan. BAB II TINJAUAN PUSTAKA 2.1 Umum Aliran saluran terbuka terjadi saat air mengalir karena gravitasi hanya tertutup

Lebih terperinci

BAB II TINJAUAN PUSTAKA. - Drainase bawah permukaan (Sub Surface Drainage). Perencanaan dimulai dengan membuat rute drainase yang akan ditinjau

BAB II TINJAUAN PUSTAKA. - Drainase bawah permukaan (Sub Surface Drainage). Perencanaan dimulai dengan membuat rute drainase yang akan ditinjau BAB II TINJAUAN PUSTAKA 2.1 Umum. Perencanaan system drainase didasarkan kepada keberadaan air permukaan dan bawah permukaan, sehingga perencanaan drainase dibagi menjadi dua yaitu : - Drainase permukaan

Lebih terperinci

BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA

BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA BAB V ANALISIS HIDROLIKA DAN PERHITUNGANNYA 5.1. TINJAUAN UMUM Analisis hidrolika bertujuan untuk mengetahui kemampuan penampang dalam menampung debit rencana. Sebagaimana telah dijelaskan dalam bab II,

Lebih terperinci

KATA PENGANTAR. Padang, 25 Desember Penulis

KATA PENGANTAR. Padang, 25 Desember Penulis KATA PENGANTAR Puji syukur penulis penjatkan kehadirat Alloh SWT, yang atas rahmat-nya maka penulis dapat menyelesaikan penyusunan makalah yang berjudul Aliran Fluida Pada Saluran Terbuka.Penulisan makalah

Lebih terperinci

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA

MODUL KULIAH : MEKANIKA FLUIDA DAN HIROLIKA MODUL KULIAH : MEKANIKA FLUIDA DAN SKS : 3 HIROLIKA Oleh : Acep Hidayat,ST,MT. Jurusan Teknik Perencanaan Fakultas Teknik Perencanaan dan Desain Universitas Mercu Buana Jakarta 2011 MODUL 12 HUKUM KONTINUITAS

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB 2 TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka 2.1.1 Saluran Terbuka Saluran terbuka adalah saluran dimana air mengalir dengan muka air bebas. Pada semua titik di sepanjang saluran, tekanan

Lebih terperinci

MODEL BANGUNAN PENDUKUNG PINTU AIR PAK TANI BERBAHAN JENIS KAYU DAN BAN SEBAGAI PINTU IRIGASI

MODEL BANGUNAN PENDUKUNG PINTU AIR PAK TANI BERBAHAN JENIS KAYU DAN BAN SEBAGAI PINTU IRIGASI MODEL BANGUNAN PENDUKUNG PINTU AIR PAK TANI BERBAHAN JENIS KAYU DAN BAN SEBAGAI PINTU IRIGASI TUGAS AKHIR Diajukan untuk melengkapi tugas-tugas dan Memenuhi syarat untuk menempuh Colloquium Doctum/ Ujian

Lebih terperinci

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta

FLUIDA DINAMIS. 1. PERSAMAAN KONTINUITAS Q = A 1.V 1 = A 2.V 2 = konstanta FLUIDA DINAMIS Ada tiga persamaan dasar dalam hidraulika, yaitu persamaan kontinuitas energi dan momentum. Untuk aliran mantap dan satu dimensi persamaan energi dapat disederhanakan menjadi persamaan Bernoulli

Lebih terperinci

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh

III PEMBAHASAN. (3.3) disubstitusikan ke dalam sistem koordinat silinder yang ditinjau pada persamaan (2.4), maka diperoleh III PEMBAHASAN Pada bagian ini akan dibahas penggunaan metode perturbasi homotopi untuk menyelesaikan suatu masalah taklinear. Metode ini digunakan untuk menyelesaikan model Sisko dalam masalah aliran

Lebih terperinci

Aliran pada Saluran Tertutup (Pipa)

Aliran pada Saluran Tertutup (Pipa) Aliran pada Saluran Tertutup (Pipa) Pipa adalah saluran tertutup yang biasanya berpenampang lingkaran yang digunakan untuk mengalirkan fluida dengan tampang aliran penuh (Triatmojo 1996 : 25). Fluida yang

Lebih terperinci

MODUL PRAKTIKUM MEKANIKA FLUIDA

MODUL PRAKTIKUM MEKANIKA FLUIDA MODUL PRAKTIKUM MEKANIKA FLUIDA LABORATORIUM TEKNIK SUMBERDAYA ALAM dan LINGKUNGAN JURUSAN KETEKNIKAN PERTANIAN FAKULTAS TEKNOLOGI PERTANIAN UNIVERSITAS BRAWIJAYA MALANG 2013 MATERI I KALIBRASI SEKAT UKUR

Lebih terperinci

Klasisifikasi Aliran:

Klasisifikasi Aliran: Klasisifikasi Aliran: 1) Aliran Invisid dan Viskos 2) Aliran kompresibel dan tak kompresible 3) Aliran laminer dan turbulen 4) Aliran steady dan unsteady 5) Aliran seragam dan tak seragam 6) Aliran satu,

Lebih terperinci

Mekanika Fluida Dan HIDROLIKA

Mekanika Fluida Dan HIDROLIKA Mekanika Fluida Dan HIDROLIKA PENGERTIAN MEKANIKA FLUIDA Mekanika fluida adalah ilmu tentang gaya dan gerakan dari suatu fluida Fluida adalah suatu material yang memiliki gaya gesek rendah (shear stress)

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aliran Air di Saluran Terbuka Aliran air dapat terjadi pada saluran terbuka maupun pada saluran tertutup (pipe flow). Pada saluran terbuka, aliran air akan memiliki suatu permukaan

Lebih terperinci

ABSTRAK. Kata kunci: saluran, aliran, saluran terbuka, permukaan, atmosfir, parameter, variasi, penampang. vii

ABSTRAK. Kata kunci: saluran, aliran, saluran terbuka, permukaan, atmosfir, parameter, variasi, penampang. vii ABSTRAK Pembuangan air atau bisa disebut selokan adalah contoh dari aliran saluran terbuka, dimana permukaan airnya bebas / berhubungan langsung dengan udara luar (atmosfir). Pada aliran saluran terbuka,

Lebih terperinci

HIDROLIKA SALURAN TERTUTUP -CULVERT- SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN

HIDROLIKA SALURAN TERTUTUP -CULVERT- SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN HIDROLIKA SALURAN TERTUTUP -CULVERT- SEBRIAN MIRDEKLIS BESELLY PUTRA TEKNIK PENGAIRAN UMUM Culvert/ gorong-gorong adalah sebuah conduit yang diletakkan di bawah sebuah timbunan, seperti misalnya timbunan

Lebih terperinci

beberapa parameter yang berdasarkan pada perubahan kedalaman aliran dengan

beberapa parameter yang berdasarkan pada perubahan kedalaman aliran dengan BAB III LANDASAN TEORI 3.1. Pendahuluan Aliran air di dalam saluran terbuka mempunyai sifat khusus, bila dibandingkan dengan aliran air di dalam pipa, yaitu antara lain : a. aliran air pada saluranterbuka

Lebih terperinci

PENGARAUH KEDALAMAN ALIRAN DI HULU PINTU AIR TERHADAP KETELITIAN PENGUKURAN ALIRAN

PENGARAUH KEDALAMAN ALIRAN DI HULU PINTU AIR TERHADAP KETELITIAN PENGUKURAN ALIRAN PENGARAUH KEDALAMAN ALIRAN DI HULU PINTU AIR TERHADAP KETELITIAN PENGUKURAN ALIRAN Sri Wisnuardy Bungin Mahasiswa S1 Jurusan Teknik Sipil Email : rama_tx@yahoo.com Dr. Eng. Ir.H. Farouk Maricar, MT Dosen

Lebih terperinci

BED LOAD. 17-May-14. Transpor Sedimen

BED LOAD. 17-May-14. Transpor Sedimen 1 BED LOAD Transpor Sedimen Transpor Sedimen 2 Persamaan transpor sedimen yang ada di HEC-RAS Ackers and White (total load) Engelund and Hansen Laursen (total load) Meyer-Peter and Müller Beberapa persamaan

Lebih terperinci

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida

MEKANIKA FLUIDA. Ferianto Raharjo - Fisika Dasar - Mekanika Fluida MEKANIKA FLUIDA Zat dibedakan dalam 3 keadaan dasar (fase), yaitu:. Fase padat, zat mempertahankan suatu bentuk dan ukuran yang tetap, sekalipun suatu gaya yang besar dikerjakan pada benda padat. 2. Fase

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Prinsip Kerja Pompa Hidram Prinsip kerja hidram adalah pemanfaatan gravitasi dimana akan menciptakan energi dari hantaman air yang menabrak faksi air lainnya untuk mendorong ke

Lebih terperinci

ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM

ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM Pengukur kedalaman kritis 1. Broad-crested weir Es1 Aliran melalui ambang, tinjauan menggunakan energi spesifik Aliran

Lebih terperinci

PERANCANGAN SALURAN IRIGASI PADA EMBUNG KALEN DESA HARGOSARI KECAMATAN TANJUNGSARI KABUPATEN GUNUNGKIDUL YOGYAKARTA

PERANCANGAN SALURAN IRIGASI PADA EMBUNG KALEN DESA HARGOSARI KECAMATAN TANJUNGSARI KABUPATEN GUNUNGKIDUL YOGYAKARTA PERANCANGAN SALURAN IRIGASI PADA EMBUNG KALEN DESA HARGOSARI KECAMATAN TANJUNGSARI KABUPATEN GUNUNGKIDUL YOGYAKARTA Laporan Tugas Akhir sebagai salah satu syarat untuk memperoleh gelar Sarjana dari Universitas

Lebih terperinci

ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM

ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM ALIRAN PADA AMBANG LEBAR DAN AMBANG TAJAM Pengukur kedalaman kritis 1. Broad-crested weir Es1 Aliran melalui ambang, tinjauan menggunakan energi spesifik Aliran di atas ambang dan grafik spesifik energi

Lebih terperinci

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure)

Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Minggu 1 Tekanan Hidrolika (Hydraulic Pressure) Disiapkan oleh: Bimastyaji Surya Ramadan ST MT Team Teaching: Ir. Chandra Hassan Dip.HE, M.Sc Pengantar Fluida Hidrolika Hidraulika merupakan satu topik

Lebih terperinci

MODUL V PINTU SORONG DAN AIR LONCAT

MODUL V PINTU SORONG DAN AIR LONCAT MODUL V PINTU SORONG DAN AIR LONCAT 6.1. Pendahuluan 6.1.1. Latar Belakang Pintu sorong adalah sekat yang dapat diatur bukaannya. Pada bangunan air, aplikasi pintu sorong adalah pintu pembilas. Fungsinya

Lebih terperinci

BAB III LANDASAN TEORI

BAB III LANDASAN TEORI BAB III LANDASAN TEORI A. Sungai Menurut Maryono (2007) disebutkan bahwa sungai memiliki aliran yang kompleks untuk diprediksi, tetapi dengan pengamatan dan penelitian jangka waktu yang panjang, sungai

Lebih terperinci

ANALISA HIDROLIKA TERAPAN UNTUK PERENCANAAN DRAINASE PERKOTAAN

ANALISA HIDROLIKA TERAPAN UNTUK PERENCANAAN DRAINASE PERKOTAAN ANALISA HIDROLIKA TERAPAN UNTUK PERENCANAAN DRAINASE PERKOTAAN. PENDAHULUAN.. SIFAT-SIFAT FLUIDA Mekanika fluida dan hidrolika adalah salah satu cabang ilmu mekanika terapan yang mempelajari sifat-sifat

Lebih terperinci