Sudaryatno Sudirham. Mengenal Sifat Material #1

Ukuran: px
Mulai penontonan dengan halaman:

Download "Sudaryatno Sudirham. Mengenal Sifat Material #1"

Transkripsi

1 Sudaryatno Sudirham Mengenal Sifat Material #1

2 Bahan Kuliah Terbuka dalam format pdf tersedia di dalam format pps beranimasi tersedia di

3 Paparan Teori ada di Buku-e dalam format pdf tersedia di dan

4

5 Perkembangan Konsep Atom Perkembangan pengetahuan tentang material dilandasi olehkonsep atom yang tumbuhsemakin rumit dibandingkan dengan konsep awalnya yang sangat sederhana. Dalam tayangan ini kita hanya akan melihat selintas mengenai perkembangan ini. Uraian agak rinci dapat dilihat dalam buku yang dapat diunduh dari situs ini juga.

6 ± 46 SM Democritus 183 Dalton : berat atom 1897 Thomson : atom bukan partikel terkecil elektron Akhir abad 19 : Persoalan radiasi benda hitam Dijelaskan: gelombang cahaya seperti partikel; disebut photon 188 Kirchhoff 191 Ma Planck E osc = h f h = 6, joule-sec 195 Albert Einstein efek photolistrik E maks φ 1 φ φ 3 metal 1 metal metal 3 f Rutherford : Inti atom + dikelilingi oleh elektron -

7 1913 Niels Bohr tingkat energi BALMER PASCHEN 1 LYMAN 193 Compton : photon dari sinar-x mengalami perubahan momentum saat berbenturan dengan elektron valensi. 194 Louis de Broglie : partikel sub-atom dapat dipandang sebagai gelombang 196 Erwin Schrödinger : mekanika kuantum 197 Davisson dan Germer : berkas elektron didefraksi oleh sebuah kristal 197 Heisenberg : uncertainty Principle h 193 Born : intensitas gelombang * I = Ψ Ψ p E t h

8 Model Atom Bohr

9 Model atom Bohr dikemukakan dengan menggunakan pendekatan mekanika klasik. Model atom Bohr berbasis pada model yang diberikan oleh Rutherford: Partikel bermuatan positif terkonsentrasi di inti atom, dan elektron berada di sekeliling inti atom. Perbedaan penting antara kedua model atom: Model atom Rutherford: elektron berada di sekeliling inti atom dengan cara yang tidak menentu Model atom Bohr: elektron-elektron berada pada lingkaran-lingkaran orbit yang diskrit; energi elektron adalah diskrit.

10 e = 1, C r Ze F c F c = Ze r mv F c = r mv = Ze r mv Ze E k = = r Ze E = = r p E k E total = E p + E k = Ze r = E k Gagasan Bohr : orbit elektron adalah diskrit; ada hubungan linier antara energi dan frekuensi seperti halnya apa yang dikemukakan oleh Planck dan Einstein E = nhf f = n h m π r

11 Dalam model atom Bohr : energi dan momentum sudut elektron dalam orbit terkuantisasi Setiap orbit ditandai dengan dua macam bilangan kuantum: bilangan kuantum prinsipal, n bilangan kuantum sekunder, l

12 Jari-Jari Atom Bohr r = n h 4π mze r n 8 = k k1 =,58 1 cm 1 Z Untuk atom hidrogen pada ground state, di mana n = 1 dan Z = 1, maka r =,58 Å

13 Tingkat-Tingkat Energi Atom Hidrogen E n = π n mz h e 4 = 13,6 n ev energi total [ ev ] n : bilangan kuantum prinsipal , ,89 ev 5 6 3,4 E n 13,6 = n 1, ev 13,6-16 ground state

14 Spektrum Atom Hidrogen Deret n 1 n Radiasi 5 Lyman 1,3,4, UV 4 Balmer 3,4,5, tampak Paschen 3 4,5,6, IR Brackett 4 5,6,7, IR Pfund 5 6,7,8, IR Tingkat Energi 3 deret Balmer deret Paschen 1 deret Lyman

15

16 Gelombang Tunggal u = Acos ωt θ j ωt θ u = Ae u = Ae j ωt k k = π / λ bilangan gelombang Kecepatan rambat gelombang dicari dengan melihat perubahan posisi amplitudo ωt k = ωt d ω = v f = = = f λ k dt k Kecepatan ini disebut kecepatan fasa

17 Paket gelombang adalah gelombang komposit yang merupakan jumlah dari n gelombang sinus Paket Gelombang ω = n k t j n n n e A u ] [ ] [ k t j n k t j n k t j n k k t j n n k t j n e A e A A e A e A A e A u n n n n n n ω ω ω ω ω ω = = = dengank, ω, A, berturut-turut adalah nilai tengah dari bilangan gelombang, frekuensi dan amplitudo

18 Bilangan gelombang: k + k k k k k Perbedaan nilai k antara gelombang-gelombang yang membentuk paket gelombang tersebut sangat kecil dianggap kontinyu demikian juga selang k sempit sehingga A n / A 1. Dengan demikian maka ] [, k t j k t j n k t j e A t S e A e u n n ω ω ω = = Pada suatu t tertentu, misalnya pada t = persamaan bentuk amplitudo gelombang menjadi,, A e A S A n k j n = = Karena perubahan nilai k dianggap kontinyu maka k k d e e S k k k j n k j n / sin, / / = = = + variasi k sempit

19 Persamaan gelombang Persamaan gelombang komposit untuk t = menjadi t= sin k/ jk Ae u = Persamaan ini menunjukkan bahwa amplitudo gelombang komposit ini terselubung oleh fungsi S = sin k/ lebar paket gelombang selubung sin k/ sin k/ A cos k π = k = π k

20 Kecepatan Gelombang ] [, k t j k t j n k t j e A t S e A e u n n ω ω ω = = kecepatan fasa: v f ω / k = kecepatan group: Amplitudo gelombang akan mempunyai bentuk yang sama bilas,t = konstan. Hal ini terjadi jika ωt = k untuk setiap n k k t v g ω = ω = = Kecepatan group ini merupakan kecepatan rambat paket gelombang

21 Panjang gelombang de Broglie, Momentum, Kecepatan Einstein : energi photon E ph ω = hf = h = hω π de Broglie: energi elektron E k = mv g =hω π mv g = hk = h λ = h λ Panjang gelombang λ = h mv g λ = h p konstanta Planck momentum elektron Momentum p = mvg = hk Kecepatan v e = v g = hk m = h m π λ = h mλ

22 Elektron Sebagai Partikel dan Elektron Sebagai Gelombang Elektron dapat dipandang sebagai gelombang tidaklah berarti bahwa elektron adalah gelombang; akan tetapi kita dapat mempelajari gerakan elektron dengan menggunakan persamaan diferensial yang sama bentuknya dengan persamaan diferensial untuk gelombang. Elektron sebagai partikel: massa tertentu, m. Elektron sebagai partikel: E total = E p + E k = E p + mv e /. Elektron sebagai gelombang massa nol, tetapi λ = h/mv e. Elektron sebagai gelombang: E total = hf = ħω. Elektron sebagai partikel: p = mv e Elektron sebagai gelombang: p = ħk = h/λ. Dalam memandang elektron sebagai gelombang, kita tidak dapat menentukan momentum dan posisi elektron secara simultan dengan masing-masing mempunyai tingkat ketelitian yang kita inginkan secara bebas. Kita dibatasi oleh prinsip ketidakpastian Heisenberg: p h. Demikian pula halnya dengan energi dan waktu: E t h.

23

24 Sebagai partikel elektron memiliki energi energi kinetik + energi potensial E merupakan fungsi p dan mv p E = + V = + V m p E H p, = + V m H = Hamiltonian H p, = p H p, p m = v e = V = d dt dv = F = m = dt dp dt Turunan Hp, terhadap p memberikan turunan terhadap t. Turunan Hp, terhadap memberikan turunan p terhadap t.

25 Gelombang : ] [ k t j n k t j e A e u n n ω ω = ω ] ω [ ω ω ω k t j n k t j n A e e j t u n n = 1 /, selang sempit Dalam ω ω n k jeu u j u t = ω = h h u t j Eu = h t j E h Operator momentum ] [ k t j n k t j n A e e k k jk u n n ω ω = 1 /, selang sempit Dalam k k k n jpu u k j u = = h h u j pu = h j p h Operator energi u merupakan fungsi t dan Turunan u terhadap t: Turunan u terhadap :

26 , V m p p H E + = t j E h j p h Hamiltonian: = t j V m Ψ Ψ = Ψ h h t j z y V m Ψ Ψ = Ψ h h,, Ψ = Ψ E p H, Jika Hp, dan E dioperasikan pada fungsi gelombang Ψ maka diperoleh Operator: t j V m Ψ Ψ = + Ψ h h Inilah persamaan Schrödinger tiga dimensi satu dimensi

27 Persamaan Schrödinger Bebas Waktu, t T t ψ = Ψ = ψ + ψ V E m h Aplikasi persamaan Schrödinger dalam banyak hal hanya berkaitan dengan energi potensial, yaitu besaran yang hanya merupakan fungsi posisi E t t T t T j V m tetapan sembarang 1 1 = = ψ ψ ψ h h,, Ψ = Ψ + z y V E m h Ψ Ψ = Ψ E V m h Satu dimensi Tiga dimensi Oleh karena itu jika persamaan tersebut diupayakan tidak merupakan fungsi yang bebas waktu agar penanganannya menjadi lebih sederhana Jika kita nyatakan: maka dapat diperoleh sehingga

28 Fungsi Gelombang Persamaan Schrödinger adalah persamaan diferensial parsial dengan ψ adalah fungsi gelombang dengan pengertian bahwa Ψ * Ψ d dy dz adalah probabilitas keberadaan elektron pada waktu tertentu dalam volume d dy dz di sekitar titik, y, z Jadi persamaan Schrödinger tidak menentukan posisi elektron melainkan memberikan probabilitas bahwa ia akan ditemukan di sekitar posisi tertentu. Kita juga tidak dapat mengatakan secara pasti bagaimana elektron bergerak sebagai fungsi waktu karena posisi dan momentum elektron dibatasi oleh prinsip ketidakpastian Heisenberg Contoh kasus satu dimensi pada suatu t = Ψ * sin k / Ψ = A

29 Persyaratan Fungsi Gelombang Elektron sebagai suatu yang nyata harus ada di suatu tempat. Oleh karena itu fungsi gelombang untuk satu dimensi harus memenuhi: Ψ * Ψd = 1 Fungsi gelombang, harus kontinyu sebab jika terjadi ketidak-kontinyuan hal itu dapat ditafsirkan sebagai rusaknya elektron, suatu hal yang tidak dapat diterima. Turunan fungsi gelombang terhadap posisi,juga harus kontinyu, karena turunan fungsi gelombang terhadap posisi terkait dengan momentum elektron Oleh karena itu persyaratan ini dapat diartikan sebagai persayaratan kekontinyuan momentum. Fungsi gelombang harus bernilai tunggal dan terbatas sebab jika tidak akan berarti ada lebih dari satu kemungkinan keberadaan elektron. Fungsi gelombang tidak boleh sama dengan nol di semua posisi sebab kemungkinan keberadaan elektron haruslah nyata, betapapun kecilnya.

30

31 Elektron Bebas Elektron bebas adalah elektron yang tidak mendapat pengaruh medan listrik sehingga energi potensialnya nol, V = V = h ψ m + Eψ = Im Ae Ae j j α solusi Re α h s m ψ = + E = s Ae h m me s = ± j = ± j α, dengan α = h s s h As e + EAe = s + E ψ = m harus berlaku untuk semua me j j = α α Ae + Ae k = α = ψ Persamaan gelombang elektron bebas E h = h k m me h p E = m Energi elektron bebas p = mvg = hk λ = h mv g

32 Elektron di Sumur Potensial yang Dalam I II III V= V= V= ψ 1 ψ ψ 3 L Fungsi gelombang Daerah I dan daerah III adalah daerahdaerah dengan V =, daerah II, < < L, V = Elektron yang berada di daerah II terjebak dalam sumur potensial Sumur potensial ini dalam karena di daerah I dan II V = ψ j α = Be + B e j α ψ jk jk e e jb + = = jb j n sin L π jb sin k = k = nπ L = α = me h Probabilitas ditemukannya elektron Energi elektron ψ nπ = K sin L n L * π ψ = 4B sin E = n L π h m = h nπ m L

33 Fungsi gelombang, probabilitas ditemukannya elektron, dan energi elektron, tergantung dari lebar sumur, L Fungsi gelombang Probabilitas ditemukan elektron ψ ψ = jb nπ sin L n L * π ψ = 4B sin 4 ψ * ψ ψ L 3.16 a. n = 1 4 ψ * ψ ψ L 3.16 b.n = 4 ψ * ψ ψ L 3.16 c. n = 3 Energi elektron E = n π h h nπ = ml m L E = h 8mL E = 4h 8mL E = 9h 8mL

34 Pengaruh lebar sumur pada tingkat-tingkat energi E = n π h h nπ = ml m L n = 3 V n = n = 1 V L L Makin lebar sumur potensial, makin kecil perbedaan antara tingkat-tingkat energi

35 Elektron di Sumur Potensial yang Dangkal Probabilitas keberadaan elektron tergantung dari kedalaman sumur V ψ * ψ ψ * ψ ψ * ψ a ψ * ψ E E E L L L L a b c d Makin dangkal sumur, kemungkinan keberadaan elektron di luar sumur makin besar Jika diding sumur tipis, elektron bisa menembus dinding potensial

36 z y L L y L z Sumur tiga dimensi ψ = + ψ + ψ + ψ E z y m h,, z Z y Y X z y = ψ = E z z Z z Z y y Y y Y X X m h E m z z Z z Z y y Y y Y X X h = + + E m X X 1 h = E y m y y Y y Y 1 h = E z m z z Z z Z 1 h = = + X E m X h Arah sumbu- Persamaan ini adalah persamaan satu dimensi yang memberikan energi elektron: L π = n m E h 8mL h n E = y 8mL h n E y y = z 8mL h n E z z = Untuk tiga dimensi diperoleh: Tiga nilai energi sesuai arah sumbu

37

38 Persamaan Schrödinger dalam Koordinat Bola

39 persamaan Schrödinger dalam koordinat bola r e r V 4 πε = 4 sin 1 cot 1 ψ = πε + + ϕ ψ θ + θ Ψ θ + θ ψ + Ψ + ψ r e E r r r dr r r m h r θ ϕ y z elektron inti atom inti atom berimpit dengan titik awal koordinat R,, ϕ Φ Θ θ = ϕ θ ψ r r sin 1 cot 1 4 R R R R = ϕ Φ θ Φ + θ Θ Θ θ + θ Θ Θ + πε m r r e E dr r r r m h h mengandung r tidak mengandung r salah satu kondisi yang akan memenuhi persamaan ini adalah jika keduanya = Persamaan Schrödinger dalam Koordinat Bola Jika kita nyatakan: kita peroleh persamaan yang berbentuk

40 Persamaan yang mengandung r saja R 4 R = πε + h me r R R = + h me r 4 R R R R = πε r r e E dr r r r m h fungsi gelombang R hanya merupakan fungsi r simetri bola kalikan dengan / R r R 4 R R = πε r e E r r r m h kalikan dengan dan kelompokkan suku-suku yang berkoefisien konstan / h mr R R R 4 R = + + πε + h h me r r me r Ini harus berlaku untuk semua nilai r Salah satu kemungkinan:

41 R r + me 4πε h R = r R + me h R = salah satu solusi: R 1 = sr A 1 e me me s = s + = 4πε h h 4 4 h me me me E = = = = m 4 πεh 3π εh 8εh E Inilah nilai E yang harus dipenuhi agar R 1 merupakan solusi dari kedua persamaan Energi elektron pada status ini diperoleh dengan masukkan nilai-nilai e, m, dan h E =, J E = 13,6 ev Probabilitas keberadaan elektron dapat dicari dengan menghitung probabilitas keberadaan elektron dalam suatu volume dinding bola yang mempunyai jari-jari r dan tebal dinding r.

42 P e1 = πr r R1 4 = A * 1 r e sr P e P e1 r r [Å] 3 probabilitas maksimum ada di sekitar suatu nilai r sedangkan di luar r probabilitas ditemukannya elektron dengan cepat menurun keberadaan elektron terkonsentrasi di sekitar jari-jari r saja Inilah struktur atom hidrogen yang memiliki hanya satu elektron di sekitar inti atomnya dan inilah yang disebut status dasar atau ground state

43 1, 8, 6, 4, -, Adakah Solusi Yang Lain? 4 ψ * ψ 4 ψ * ψ 4 ψ * ψ Kita ingat: ψ ψ ψ L 3.16 a. n = 1 L 3.16 b.n = L 3.16 c. n = 3 E = h 8mL E = 4h 8mL E = 9h 8mL solusi yang lain: R = r / r A B r e Energi Elektron terkait jumlah titik simpul fungsi gelombang bertitik simpul dua R R 3 = r / r A B r + C r e bertitik simpul tiga R 1 r / r Solusi secara umum: R = L r e n n R 3 R polinom,5 1 1,5,5 3 3,5 r[å] 4

44 1, 1, 8, 6, 4, -, probabilitas keberadaan elektron P e P e1 P en = 4πr r R n P e P e3 r[å],5 1 1,5,5 3 3,5 4 E n Tingkat-Tingkat Energi Atom Hidrogen π mz = n h e 4 13,6 = n ev energi total [ ev ] 1,51 3,4 bilangan kuantum prinsipal n ,6 n 1,89 ev 1, ev 13,6-16 ground state

45 Momentum Sudut Momentum sudut juga terkuantisasi + L = l l 1h l =,1,, 3,... bilangan bulat positif Momentum sudut ditentukan oleh dua macam bilangan bulat: l : menentukan besar momentum sudut, dan m l : menentukan komponen z atau arah momentum sudut Nilai l dan m l yang mungkin : l m = = l l l = l 1 m =, ± 1 = l m =, ± 1, ± dst.

46 l disebut bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal bilangan kuantum l simbol s p d f g h degenerasi m l adalah bilangan kuantum magnetik

47 Bilangan Kuantum Ada tiga bilangan kuantum yang sudah kita kenal, yaitu: 1 bilangan kuantum utama, n, yang menentukan tingkat energi; bilangan kuantum momentum sudut, atau bilangan kuantum azimuthal, l; 3 bilangan kuantum magnetik, m l. energi total [ ev ] 1,51 3,4 n : bilangan kuantum utama s, p 3s, 3p, 3d 13,6 1s Bohr lebih cermat 4 Spin Elektron: ± ½ dikemukakan oleh Uhlenbeck

48 Konfigurasi Elektron Dalam Atom Netral Kandungan elektron setiap tingkat energi n status momentum sudut s p d f Jumlah tiap tingkat Jumlah s/d tingkat

49 Orbital inti atom inti atom 1s s

50 Penulisan konfigurasi elektron unsur-unsur H: 1s 1 ; He: 1s Li: 1s s 1 ; Be: 1s s ; B: 1s s p 1 ; C: 1s s p ; N: 1s s p 3 ; O: 1s s p 4 ; F: 1s s p 5 ; Ne: 1s s p 6...dst

51 Diagram Tingkat Energi e n e r g i tingkat 4s sedikit lebih rendah dari 3d

52 Pengisian Elektron Pada Orbital H: pengisian 1s; He: pemenuhan 1s; Li: pengisian s; Be: pemenuhan s; B: pengisian p dengan 1 elektron; C: pengisian p y dengan 1 elektron; N: pengisian p z dengan 1 elektron; O: pemenuhan p ; F: pemenuhan p y ; Ne: pemenuhan p z.

53 Tingkat energi 4s lebih rendah dari 3d. Hal ini terlihat pada perubahan konfigurasi dari Ar argon ke K kalium. Ar: 1s s p 6 3s 3p 6 K: 1s s p 6 3s 3p 6 4s 1 bukan 3d 1 Ca: 1s s p 6 3s 3p 6 4s bukan 3d Sc: 1s s p 6 3s 3p 6 3d 1 4s orbital 3d baru mulai terisi setelah 4s penuh Y: 1s s p 6 3s 3p 6 3d 4s dan unsur selanjutnya pengisian 3d sampai penuh

54 Blok-Blok Unsur 1 H 1s 1 He 1s 3 Li [He] s 1 4 Be [He] s 5 B [He] s p 1 6 C [He] s p 7 N [He] s p 3 8 O [He] s p 4 9 F [He] s p 5 1 Ne [He] s p 6 11 Na [Ne] 3s 1 1 Mg [Ne] 3s 13 Al [Ne] 3s 3p 1 14 Si [Ne] 3s 3p 15 P [Ne] 3s 3p 3 16 S [Ne] 3s 3p 4 17 Cl [Ne] 3s 3p 5 18 Ar [Ne] 3s 3p 6 19 K [Ar] 4s 1 Ca [Ar] 4s 1 Sc [Ar] 3d 1 4s Ti [Ar] 3d 4s 3 V [Ar] 3d 3 4s 4 Cr [Ar] 3d 5 4s 1 5 Mn [Ar] 3d 5 4s 6 Fe [Ar] 3d 6 4s 7 Co [Ar] 3d 7 4s 8 Ni [Ar] 3d 8 4s 9 Cu [Ar] 3d 1 4s 1 3 Zn [Ar] 3d 1 4s 31 Ga [Ar] 3d 1 4s 4p 1 3 Ge [Ar] 3d 1 4s 4p 33 As [Ar] 3d 1 4s 4p 3 34 Se [Ar] 3d 1 4s 4p 4 35 Br [Ar] 3d 1 4s 4p 5 36 Kr [Ar] 3d 1 4s 4p 6 Blok s Blok d Blok p pengisian orbital s pengisian orbital d pengisian orbital p

55 Ionisasi dan Energi Ionisasi Ionisasi: X X + gas gas + e Energi ionisasi adalah jumlah energi yang diperlukan untuk melepaskan elektron terluar suatu unsur guna membentuk ion positif bermuatan +1. Energi ionisasi dalam satuan ev disebut juga potensial ionisasi. Potensial ionisasi didefinisikan sebagai energi yang diperlukan untuk melepaskan elektron yang paling lemah terikat pada atom. Pada atom dengan banyak elektron, pengertian ini sering disebut sebagai potensial ionisasi yang pertama, karena sesudah ionisasi yang pertama ini bisa terjadi ionisasi lebih lanjut dengan terlepasnya elektron yang lebih dekat ke inti atom.

56 1 H 13,6 He 4,5 3 Li 5,39 4 Be 9,3 5 B 8,9 6 C 11, 7 N 14,6 8 O 13,6 9 F 17,4 1 Ne 1,6 11 Na 5,14 1 Mg 7,64 13 Al 5,98 14 Si 8,15 15 P 1,4 16 S 1,4 17 Cl 13, 18 Ar 15,8 19 K 4,34 Ca 6,11 1 Sc 6,54 Ti 6,83 3 V 6,74 4 Cr 6,76 5 Mn 7,43 6 Fe 7,87 7 Co 7,86 8 Ni 7,63 9 Cu 7,7 3 Zn 9,39 31 Ga 6, 3 Ge 7,88 33 As 9,81 34 Se 9,75 35 Br 11,8 36 Kr 14 Energi Ionisasi [ev]

57 Energi Ionisasi 5 p Energi ionisasi [ev] s s p s d p H He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Unsur Di setiap blok unsur, energi ionisasi cenderung meningkat jika nomer atom makin besar Energi ionisasi turun setiap kali pergantian blok unsur

58 Afinitas Elektron Afinitas elektron adalah energi yang dilepaskan jika atom netral menerima satu elektron membentuk ion negatif bermuatan 1. Afinitas elektron dinyatakan dengan bilangan negatif, yang berarti pelepasan energi. Afinitas elektron merupakan ukuran kemampuan suatu unsur untuk menarik elektron, bergabung dengan unsur untuk membentuk ion negatif. Makin kuat gaya tarik ini, berarti makin besar energi yang dilepaskan. Gaya tarik ini dipengaruhi oleh jumlah muatan inti atom, jarak orbital ke inti, dan screening tabir elektron.

59

60 Bilangan Kuantum : Bilangan kuantum : prinsipal: n = 1,, 3, dst azimuthal: l =, 1,, 3 : s, p, d, f magnetik: m l = l sampai +l spin elektron: m s = +1/ dan 1/ Pauli Eclusion Prinsiple : setiap status hanya dapat ditempati tidak lebih dari satu elektron

61 Konfigurasi Elektron Unsur pada Ground State 1 H 1s 1 He 1s 3 Li [He] s 1 4 Be [He] s 5 B [He] s p 1 6 C [He] s p 7 N [He] s p 3 8 O [He] s p 4 9 F [He] s p 5 1 Ne [He] s p 6 11 Na [Ne] 3s 1 1 Mg [Ne] 3s 13 Al [Ne] 3s 3p 1 14 Si [Ne] 3s 3p 15 P [Ne] 3s 3p 3 16 S [Ne] 3s 3p 4 17 Cl [Ne] 3s 3p 5 18 Ar [Ne] 3s 3p 6 19 K [Ar] 4s 1 Ca [Ar] 4s 1 Sc [Ar] 3d 1 4s Ti [Ar] 3d 4s 3 V [Ar] 3d 3 4s 4 Cr [Ar] 3d 5 4s 1 5 Mn [Ar] 3d 5 4s 6 Fe [Ar] 3d 6 4s 7 Co [Ar] 3d 7 4s 8 Ni [Ar] 3d 8 4s 9 Cu [Ar] 3d 1 4s 1 3 Zn [Ar] 3d 1 4s 31 Ga [Ar] 3d 1 4s 4p 1 3 Ge [Ar] 3d 1 4s 4p 33 As [Ar] 3d 1 4s 4p 3 34 Se [Ar] 3d 1 4s 4p 4 35 Br [Ar] 3d 1 4s 4p 5 36 Kr [Ar] 3d 1 4s 4p 6 37 Rb [Kr] 5s 1 38 Sr [Kr] 5s 39 Y [Kr] 4d 1 5s 4 Zr [Kr] 4d 5s 41 Nb [Kr] 4d 4 5s 1 4 Mo [Kr] 4d 5 5s 1 43 Tc [Kr] 4d 6 5s 1 44 Ru [Kr] 4d 7 5s 1 45 Rh [Kr] 4d 8 5s 1 46 Pd [Kr] 4d 1 47 Ag [Kr] 4d 1 5s 1 48 Cd [Kr] 4d 1 5s 49 In [Kr] 4d 1 5s 5p 1 5 Sn [Kr] 4d 1 5s 5p 51 Sb [Kr] 4d 1 5s 5p 3 5 Te [Kr] 4d 1 5s 5p 4 53 I [Kr] 4d 1 5s 5p 5 54 Xe [Kr] 4d 1 5s 5p 6 55 Cs [Xe] 6s 1 56 Ba [Xe] 6s 57 La [Xe] 5d 1 6s 58 Ce [Xe] 4f 1 5d 1 6s 59 Pr [Xe] 4f 3 6s 6 Nd [Xe] 4f 4 6s 61 Pm [Xe] 4f 5 6s 6 Sm [Xe] 4f 6 6s 63 Eu [Xe] 4f 7 6s 64 Gd [Xe] 4f 7 5d 1 6s 65 Tb [Xe] 4f 9 6s 66 Dy [Xe] 4f 1 6s 67 Ho [Xe] 4f 11 6s 68 Er [Xe] 4f 1 6s 69 Tm [Xe] 4f 13 6s 7 Yb [Xe] 4f 14 6s 71 Lu [Xe] 4f 14 5d 1 6s 7 Hf [Xe] 4f 14 5d 6s 73 Ta [Xe] 4f 14 5d 3 6s 74 W [Xe] 4f 14 5d 4 6s 75 Re [Xe] 4f 14 5d 5 6s 76 Os [Xe] 4f 14 5d 6 6s 77 Ir [Xe] 4f 14 5d 7 6s 78 Pt [Xe] 4f 14 5d 9 6s 1 79 Au [Xe] 4f 14 5d 1 6s 1 8 Hg [Xe] 4f 14 5d 1 6s 81 Tl [Xe] 4f 14 5d 1 6s 6p 1 8 Pb [Xe] 4f 14 5d 1 6s 6p 83 Bi [Xe] 4f 14 5d 1 6s 6p 3 84 Po [Xe] 4f 14 5d 1 6s 6p 4 85 At [Xe] 4f 14 5d 1 6s 6p 5 86 Rn [Xe] 4f 14 5d 1 6s 6p 6 87 Fr [Rn] 7s 1 88 Ra [Rn] 7s 89 Ac [Rn] 6d 1 7s 9 Th [Rn] 6d 7s 91 Pa [Rn] 5f 6d 1 7s 9 U [Rn] 5f 3 6d 1 7s 93 Np [Rn] 5f 4 6d 1 7s 94 Pu [Rn] 5f 6 7s 95 Am [Rn] 5f 7 7s 96 Cm [Rn] 5f 7 6d 1 7s 97 Bk [Rn] 98 Cf [Rn] 99 Es [Rn] 1 Fm [Rn] 11 Md [Rn] 1 No [Rn] 13 Lw [Rn]

62 Gaya Ikat Gaya Ikat : gaya yang menyebabkan dua atom menjadi terikat; gaya ini terbentuk jika terjadi penurunan energi ketika dua atom saling mendekat Ikatan Primer : Kuat Ikatan Kovalen Ikatan Metal Ikatan Sekunder : Lemah Ikatan Hidrogen Ikatan van der Waals Ikatan Ion

63 Ikatan Berarah dan Tak Berarah Ikatan berarah: kovalen dipole permanen Ikatan tak berarah: metal ion van der Waals terutama terjadi pada ikatan kovalen antara unsur non metal: Nitrogen; Oksigen; Carbon; Fluor; Chlor atom dengan ikatan berarah akan terkumpul sedemikian rupa sehingga terpenuhi sudut ikatan terutama pada Ikatan metal yang terjadi antara sejumlah besar atom atom dengan ikatan tak berarah pada umumnya terkumpul secara rapat kompak dan mengikuti aturan geometris yang ditentukan oleh perbedaan ukuran atom walaupun kita bedakan ikatan atom berarah dan ikatan tak berarah, namum dalam kenyataan material bisa terbentuk dari campuran dua macam ikatan tersebut

64 Atom dengan ikatan tak berarah Sifat ikatan : Jumlah diskrit Arah tidak diskrit Contoh : H atom H memiliki 1 elektron di orbital 1s simetri bola namun ikatan atom H tetap diskrit : setiap atom H hanya akan terikat dengan satu atom H yang lain

65 Atom dengan ikatan berarah Sifat ikatan : Jumlah diskrit Arah diskrit ditentukan oleh status kuantum dari elektron yang berperan dalam terbentuknya ikatan Hanya orbital yang setengah terisi yang dapat berperan dalam pembentukan ikatan kovalen; oleh karena itu jumlah susunan ikatan ditentukan oleh jumlah elektron dari orbital yang setengah terisi. Elektron di orbital selain orbital s akan membentuk ikatan yang memiliki arah spasial tertentu dan juga diskrit; misal orbital p akan membentuk ikatan dengan arah tegak lurus satu sama lain. z z z p p y p z y y y

66 Contoh : 1 H: 1s 1 O 8 O: [He] s p 4 H H + 14 o dipole 1 H: 1s 1 H + 9 F: [He] s p 5 F dipole

67 Hibrida dari fungsi gelombang s dan p 6 C: [He] s p Hibrida dari fungsi gelombang s dan p pada karbon membuat karbon memiliki 4 ikatan yang kuat mengarah ke susut-sudut tetrahedron Intan dan methane CH 4 terbentuk dari ikatan hibrida ini. 14 Si [Ne] 3s 3p 3 Ge [Ar] 3d 1 4s 4p 5 Sn [Kr] 4d 1 5s 5p juga membentuk orbital tetrahedral seperti karbon karena hibrida 3s-sp, 4s-4p, dan 5s-5p, sama dengan s-p.

68 Karena ikatan kovalen adalah diskrit dalam jumlah maupun arah, maka terdapat banyak kemungkinan struktur ikatan tergantung dari ikatan mana yang digunakan oleh setiap atom. Contoh: senyawa hidrokarbon yang terdiri hanya dari atom C dan H. Methane : CH 4. Ikatannya adalah tetrahedral C H H H H C H H C H H H

69 Ethane : C H 6. Memiliki satu ikatan C C H H H C C H H H Propane : C 3 H 8. Memiliki dua ikatan C C H H H H C C C H H H H dst.

70 Rantaian panjang bisa dibentuk oleh ribuan ikatan C C. Simetri ikatan atom karbon dalam molekul ini adalah tetrahedral, dan satu ikatan C C dapat dibayangkan sebagai dua tetrahedra yang berikatan sudut-ke-sudut. Variasi ikatan bisa terjadi sebab tetrahedra pengikat, selain berikatan sudut-ke-sudut dapat pula berikatan sisi-ke-sisi ikatan dobel dan juga berikatan bidang-ke-bidang ikatan tripel. Contoh: ethylene C H 4, H H H C=C H Contoh: acetylene C H H C C H

71 Peningkatan kekuatan ikatan sebagai hasil dari terjadinya ikatan multiple disertai penurunan jarak antar atom karbon. 1,54 Ä pada ikatan tunggal, 1,33 Ä pada ikatan dobel, 1, Ä pada ikatan tripel. Ikatan C C juga bisa digabung dari ikatan tunggal dan ikatan dobel, seperti yang terjadi pada benzena.

72 Susunan Atom-atom yang Berikatan Tak Berarah Atom berukuran sama Atom-atom material padat akan terkumpul secara ringkas / kompak menempati ruang sekecil mungkin. Dengan cara ini jumlah ikatan per satuan volume menjadi maksimum yang berarti energi ikatan per satuan volume menjadi minimum. Sebagai pendekatan pertama kita memandang atom sebagai kelereng keras. Secara geometris, ada 1 kelereng yang dapat berposisi mengelilingi 1 kelereng terletak di pusat dan mereka saling menyentuh satu sama lain. Ada macam susunan kompak yang teramati pada banyak struktur metal dan elemen mulia, yaitu heagonal close-packed HCP dan face-centered cubic FCC.

73 Heagonal Closed-Packed HCP Face-Centered Cubic FCC 6 atom mengelilingi 1 atom di bidang tengah 6 atom mengelilingi 1 atom di bidang tengah 3 atom di bidang atas, tepat di atas 3 atom yang berada di bidang bawah, 3 atom di bidang atas, berselangseling di atas 3 atom di bidang bawah,

74 Semua elemen mulia membentuk struktur kompak jika membeku pada temperatur sangat rendah, Sekitar /3 dari jenis metal membentuk struktur HCP atau FCC pada temperatur kamar. 1/3 dari jenis metal yang tidak membentuk struktur struktur kompak pada temperatur kamar adalah metal alkali Na, K, dll dan metal transisi Fe, Cr, W, dsb. Mereka cenderung membentuk struktur body-centered cubic BCC. Walaupun kurang kompak, susunan ini memiliki energi total relatif rendah. Kebanyakan metal alkali berubah dari BCC ke FCC atau HCP pada temperatur yang sangat rendah. Hal ini menunjukkan bahwa susunan kurang kompak yang terjadi pada temperatur kamar adalah akibat dari pengaruh energi thermal Susunan BCC pada metal transisi diduga sebagai akibat dari ikatan metal ini yang sebagian berupa ikatan kovalen yang merupakan ikatan berarah.

75 Susunan Atom-atom yang Berikatan Tak Berarah Atom berukuran tidak sama Ikatan ion membentuk struktur yang terdiri dari atom-atom yang berbeda ukuran karena anion dan kation pada umumnya sangat berbeda ukuran. Perbedaan ini terjadi karena transfer elektron dari atom yang elektro-positif ke atom yang elektronegatif Membuat ukuran anion > kation. Anion : ion negatif sebagai hasil dari atom elektronegatif yang memperoleh tambahan elektron. Kation : ion positif sebagai hasil dari atom elektropositif yang kehilangan satu atau lebih elektron. Ikatan ini tak berarah dan juga tidak diskrit, namun pada skala besar kenetralan harus tetap terjaga.

76 Bilangan Koordinasi Bilangan yang menunjukkan perbandingan jumlah ion elemen A yang mengelilingi ion elemen K yang lebih kecil disebut bilangan koordinasi Ligancy. Bilangan Koordinasi tergantung dari perbedaan radius antara Kation dan Anion makin besar perbedaannya, ligancy akan semakin kecil. Bilangan Koordinasi Rasio Radius Kation / Anion Polyhedron Koordinasi Packing [],155 garis linier 3,155,5 segitiga triangular 4,5,414 tetrahedron Tetrahedral 6,414,73 oktahedron Octahedral 8,73 1, kubus cubic 1 1, HCP 1 1, FCC

77 Atom dengan ikatan tak terarah : Atom berukuran tidak sama Senyawa / Metal r K / r A Ligancy teramati Ba O 3,14 3 BeS,17 4 BeO,3 4 SiO,9 4 LiBr,31 6 MgO,47 6 MgF,48 6 TiO,49 6 NaCl,53 6 CaO,71 6 KCl,73 6 CaF,73 8 CaCl,93 8 BCC Metal 1, 8 FCC Metal 1, 1 HCP Metal 1, 1 []

78 Rasio radius di mana anion saling menyentuh dan juga menyentuh kation sentral disebut rasio radius kritis, sebab di bawah rasio ini jarak kation-anion menjadi lebih besar dibanding jarak keseimbangan antar ion. Polyhedra yang terbentuk dengan menghubungkan pusat-pusat anion yang mengelilingi kation sentral disebut polihedra anion atau polihedra koordinasi. HCP FCC

79 Polihedra ikatan dan polihedra koordinasi dapat dilihat sebagai sub-unit yang jika disusun akan membentuk struktur padatan tiga dimensi. H HCP C H H H Cara bagaimana mereka tersusun akan menentukan apakah material berbentuk kristal atau nonkristal gelas dan jika berbentuk kristal struktur kristalnya akan tertentu. Polihedra ini bukan besaran fisis tetapi hanya merupakan sub-unit yang lebih mudah dibayangkan daripada atom, dan dengan menggunakan pengertian ini dapat dilakukan pembahasan mengenai struktur lokal secara terpisah dari struktur besarnya struktur makro.

80 Polihedra koordinasi berperilaku sebagai suatu unit yang erat terikat jika valensi atom sentral lebih dari setengah dari total valensi atom yang terikat dengannya. Jika valensi atom sentral sama dengan valensi total atom yang mengelilinginya maka sub-unit itu adalah molekul. Titik leleh suatu material bergantung dari kekuatan ikatan atom. Ia makin rendah jika polihedra sub-unit terbangun dari kelompok atom yang diskrit, yang terikat satu sama lain dengqan ikatan sekunder dibandingkan dengan bila ikatannya primer. Contoh: methane, CH 4, titik leleh 184 o C; ethane, C H 6, titik leleh 17 o C; polyethylene, titik leleh 15 o C; polyethylene saling terikat dengan ikatan C-C dapat stabil sampai 3 o C.

81

82 Kristal merupakan susunan atom-atom yang teratur dalam ruang tiga dimensi. Keteraturan susunan tersebut timbul karena kondisi geometris yang dihasilkan oleh ikatan atom yang terarah dan paking yang rapat. Sesungguhnya tidaklah mudah untuk menyatakan bagaimana atom tersusun dalam padatan. Namun ada hal-hal yang diharapkan menjadi faktor penting yang menentukan terbentuknya polihedra koordinasi atom-atom. Secara ideal, susunan polihdra koordinasi paling stabil adalah yang memungkinkan terjadinya energi per satuan volume minimal. Keadaan tersebut dicapai jika: 1. kenetralan listrik terpenuhi. ikatan kovalen yang diskrit dan terarah terpenuhi 3. meminimalkan gaya tolak ion-ion 4. paking atom serapat mungkin

83 Struktur kristal yang biasa teramati pada padatan dinyatakan dalam konsep geometris ideal yang disebut kisi-kisi ruang space lattice dan menyatakan cara bagaimana polihedra koordinasi atom-atom tersusun bersama agar energi dalam padatan menjadi minimal. Kisi-kisi ruang adalah susunan tiga dimensi titik-titik di mana setiap titik memiliki lingkungan yang serupa. Titik dengan lingkungan yang serupa itu disebut titik kisi Lattice Point. Titik kisi dapat disusun hanya dalam 14 susunan yang berbeda yang disebut kisi-kisi Bravais; oleh karena itu atom-atom dalam kristal haruslah tersusun dalam salah satu dari 14 kemungkinan tersebut.

84 Sel Satuan pada Kisi-Kisi Ruang BRAVAIS [,5]

85 Setiap titik kisi dapat ditempati oleh satu atau lebih atom, tetapi atom atau kelompok atom pada satu titik kisi haruslah identik dengan orientasi yang sama agar memenuhi definisi kisi ruang. Susunan atom dapat disebutkan secara lengkap dengan menyatakan posisi atom dalam suatu unit yang secara berulang tersusun dalam kisi ruang. Unit yang berulang itu disebut sel satuan. Rusuk sel satuan, yaitu vektor yang menghubungkan dua titik kisi, haruslah merupakan translasi kisi, dan sel satuan yang identik akan membentuk kisikisi ruang jika mereka disusun bidang sisi ke bidang sisi. Satu kisi-kisi ruang dapat memiliki beberapa sel satuan berbeda yang memenuhi kriteria tersebut di atas, akan tetapi biasanya sel satuan dipilih yang memiliki geometri sederhana dan memuat beberapa titik kisi saja. Satu sel satuan yang memiliki titik kisi hanya pada sudut-sudutnya, atau dengan kata lain satu unit sel yang memuat hanya satu titik kisi, disebut sel primitif.

86 Unsur Metal dan Unsur Mulia 3 sel satuan yang paling banyak dijumpai pada unsur ini adalah: [] Bulatan menunjukkan posisi atom yang juga merupakan lattice points pada FCC dan BCC Posisi atom yang ada dalam sel bukan lattice points

87 Unsur Dengan Lebih Dari 3 Elektron Valensi Unsur ini biasanya memiliki ikatan kovalen sehingga kristal yang terbentuk akan mengikuti ketentuan ikatan ini. Jika orbital yang tak terisi digunakan seluruhnya untuk membentuk ikatan, maka atom ini akan berikatan dengan 8 N atom lain, dimana N adalah jumlah elektron valensi yang dimilikinya. Elemen Cl, Br, J, kulit terluarnya memuat 7 elektron; oleh karena itu pada umumnya mereka berikatan dengan hanya 1 atom dari elemen yang sama membentuk molekul diatomik, Cl, Br, J. Molekul diatomik tersebut membangun ikatan dengan molekul yang lain melalui ikatan sekunder yang lemah, membentuk kristal. []

88 Atom Group VI S, Se, Te [] Atom Group VI S, Se, Te memiliki 6 elektron di kulit terluarnya dan membentuk molekul rantai atao cincin di mana setiap atom berikatan dengan dua atom dengan sudut ikatan tertentu. Molekul ini berikatan satu sama lain dengan ikatan sekunder yang lemah membentuk kristal. Rantai spiral atom Te bergabung dengan rantai yang lain membentuk kristal heagonal.

89 Atom Group V P, As, Sb, Bi [] Atom Group V P, As, Sb, Bi memiliki 5 elektron di kulit terluarnya dan setiap atom berikatan dengan tiga atom dengan sudut ikatan tertentu.

90 Kristal Ionik Walau sangat jarang ditemui kristal yang 1% ionik, namun beberapa kristal memiliki ikatan ionik yang sangat dominan sehingga dapat disebut sebagai kristal ionik. Contoh: NaCl, MgO, SiO, LiF. Dalam kristal ionik murni, polihedra anion polihedra koordinasi tersusun sedemikian rupa sehingga kenetralan listrik terpenuhi dan energi ikat per satuan volume menjadi minimum tanpa menyebabkan menguatnya gaya tolak antar muatan yang bersamaan tanda. Gaya tolak yang terbesar terjadi antar kation karena muatan listriknya terkonsentrasi dalam volume yang kecil, oleh karena itu polihedra koordinasi harus tersusun sedemikian rupa sehingga kation saling berjauhan.

91 Contoh struktur kristal ionik Anion tetrahedron Kation oktahedron

92 Kristal Molekul Jika dua atom terikat dengan ikatan primer, baik berupa ikatan ion ataupun ikatan kovalen, maka mereka dapat membentuk molekul yang diskrit. Jika ikatan primer tersebut kuat dalam satu sub-unit, maka ikatan yang terjadi antar sub-unit akan berupa bentuk ikatan yang berbeda dari ikatan primer. Kristal yang terbentuk adalah kristal molekuler dengan ikatan antar sub-unit yang lemah. Jika ikatan primernya adalah ikatan ion, molekul yang diskrit terbentuk jika muatan kation sama dengan hasilkali muatan anion dengan bilangan koordinasi. Contoh: sub-unit SiF 4 terbentuk dengan ikatan ion, polihedra koordinasi atau polihedra anion berbentuk tetrahedra F mengelilingi kation Si yang kemudian tersusun dalam kisi-kisi BCC

93 Pada es H O, ikatan primernya adalah ikatan kovalen dan ikatan sekunder antar sub-unit adalah ikatan ionik yang lemah Hidrogen hanya akan membentuk satu ikatan kovalen. Oleh karena itu molekul air terdiri dari 1 atom oksigen dengan ikatan kovalen yang dipenuhi oleh atom hidrogen dengan sudut antara dua atom hidrogen adalah 15 o. Dalam bentuk kristal, atom-atom hidrogen mengikat molekul-molekul air dengan ikatan ionik atau ikatan dipole hidrogen. Bola-bola menunjukkan posisi atom O; atom H terletak pada garis yang menghubungkan atom O yang berdekatan; ada atom H setiap satu atom O.

94 Jika molekul membentuk rantaian panjang dengan penampang melintang yang mendekati simetris, mereka biasanya mengkristal dalam kisi-kisi berbentuk orthorhombic atau monoclinic. Molekul polyethylene dilihat dari depan

95 Kebanyakan polimer yang terbentuk lebih dari dua macam atom, memiliki ketidak-teraturan yang membuat ia tidak mengkristal. Walaupun demikian ada yang memiliki penampang simetris dan mudah mengkristal, seperti polytetrafluoroethylene Teflon. Molekul polytetrafluoroethylene Polimer yang komplekspun masih mungkin memiliki struktur yang simetris dan dapat mengkristal seperti halnya cellulose.

96 Ketidaksempurnaan Pada Kristal

97 Kebanyakan kristal mengandung ketidak-sempurnaan. Karena kisi-kisi kristal merupakan suatu konsep geometris, maka ketidaksempurnaan kristal juga diklasifikasikan secara geometris. ketidak-sempurnaan berdimensi nol ketidak-sempurnaan titik, ketidak-sempurnaan berdimensi satu ketidak-sempurnaan garis, ketidak-sempurnaan berdimensi dua ketidak-sempurnaan bidang. Selain itu terjadi pula ketidak-sempurnaan volume dan juga ketidak-sempurnaan pada struktur elektronik

98 Ketidak sempurnaan titik atom dari unsur yang sama unsur sendiri berada di antara atom matriks yang seharusnya tidak terisi atom interstitial atom sendiri substitusi atom asing atom asing menempati tempat yang seharusnya ditempati oleh unsur sendiri pengotoran tidak ada atom pada tempat yang seharusnya terisi kekosongan interstitial atom asing atom asing berada di antara atom matriks yang seharusnya tidak terisi pengotoran

99 Ketidak sempurnaan titik pada kristal ionik pasangan tempat kosong yang ditinggalkan dan kation yang meninggalkannya ketidaksempurnaan Frenkel kekosongan kation berpasangan dengan kekosongan anion ketidaksempurnaan Schottky pengotoran substitusi pengotoran interstitial kekosongan kation

100 Dislokasi Dislokasi merupakan ketidak-sempurnaan kristal karena penempatan atom yang tidak pada tempat yang semestinya. vector Burger edge dislocation screw dislocation

101

102 Melihat strukturnya, material nonkristal dapat dikelompokkan menjadi dua kelompok utama, yaitu: a struktur yang terbangun dari molekul berbentuk rantai panjang b struktur yang terbangun dari jaringan tiga dimensi

103 Molekul Rantaian Panjang - Organik Beberapa faktor yang mendorong terbentuknya struktur nonkristal adalah: a molekul rantaian yang panjang dan bercabang; b kelompok atom yang terikat secara tak beraturan sepanjang sisi molekul; c rantaian panjang yang merupakan kombinasi dari dua atau lebih polimer, yang disebut kopolimer; d adanya unsur aditif, yang akan memisahkan satu rantaian dari rantaian yang lain; unsur aditif ini biasa disebut plasticizer.

104 Contoh terbentuknya rantaian panjang ethylene : C H 4 membentuk rantaian panjang polyethylene H H C = C H H H H H H H H H H H H H H... C C C C C C C C C C C C... H H H H H H H H H H H H Dalam struktur ini polyethylene disebut linear polyethylene

105 Keadaan jauh berbeda jika molekul polyethylene bercabang. Makin bercabang, polyethylene makin nonkristal. Pengaruh adanya cabang ini bisa dilihat pada vinyl polymer, yaitu polymer dengan unit berulang C H 3 X. Cabang X ini bisa berupa gugus atom yang menempati posisi di mana atom H seharusnya berada. H H C C H X

106 Ada tiga kemungkinan cara tersusunnya cabang ini yaitu a ataktik atactic, atau acak X C H H b isotaktik isotactic, semua cabang berada di salah satu sisi rantai C X H H c sindiotaktik syndiotactic, cabang-cabang secara teratur bergantian dari satu sisi ke sisi yang lain. C X H H

107 Jika gugus cabang kecil, seperti pada polyvinyl alkohol di mana X = OH, dan rantaian linier, maka polimer ini dengan mudah membentuk kristal. Akan tetapi jika gugus cabang besar, polimer akan berbentuk nonkristal seperti pada poyvinyl chloride, di mana X = Cl; juga pada polystyrene, di mana X = benzena yang secara acak terdistribusi sepanjang rantaian ataktik. Polimer isotactic dan syndiotactic biasanya membentuk kristal, bahkan jika cabang cukup besar.

108 Kopolimerisasi atau pembentukan kopolimer, selalu menyebabkan ketidak-teraturan dan oleh karena itu mendorong terbentuknya struktur nonkristal. a dua macam polimer tersusun secara acak sepanjng rantai. b susunan berselang-seling secara teratur c susunan kopolimer secara blok d salah satu macam polimer menjadi cabang rantaian macam polimer yang lain

109 Cross-Linking Cross-linking merupakan ikatan antar rantaian panjang yang terjadi di berbagai titik, dan ikatan ini merupakan ikatan primer. Cross-link bisa terbentuk oleh segmen kecil dari rantaian. Cross-link bisa juga terbentuk oleh atom atau molekul asing.

110 Jaringan Tiga Dimensi - Anorganik Suatu senyawa anorganik cenderung membentuk struktur nonkristal jika: a setiap anion terikat pada hanya dua kation; b tidak lebih dari empat anion mengelilingi satu kation; c polihedra anion berhubungan sudut ke sudut, tidak sisi ke sisi dan tidak pula bidang ke bidang; d senyawa memiliki sejumlah besar atom penyusun yang terdistribusi secara tak menentu di seluruh jaringan. Jika muatan kation besar, seperti misalnya silika Si+4, dengan polihedron anion yang kecil, maka struktur nonkristal mudah sekali terbentuk. Kebanyakan gelas anorganik berbahan dasar silika, SiO, dengan sub-unit berbentuk tetrahedra yang pada gelas silika murni terhubung sudut ke sudut

111 Penambahan oksida alkali pada struktur yang demikian ini dapat memutus rantaian tetrahedra; atom oksigen dari oksida ini menyelip pada titik dimana dua tetrahedra terhubung dan memutus hubungan tersebut sehingga masing-masing tertrahedron mempunyai satu sudut bebas. Terputusnya hubungan antar tetrahedra dapat menyebabkan turunnya viskositas, sehingga gelas lebih mudah dibentuk.

112 Struktur Padatan Dalam Skala yang Lebih Besar

113 Struktur Padatan Struktur kristal dan nonkristal adalah struktur padatan dilihat dalam skala atom atau molekul. Sesungguhnya kebanyakan padatan memiliki detil struktur yang lebih besar dari skala atom ataupun molekul, yang terbangun dari kelompokkelompok kristal ataupun nonkristal. Kelompok-kelompok ini dengan jelas dapat dibedakan antara satu dengan lainnya dan disebut fasa; bidang batas antara mereka disebut batas fasa. Secara formal dikatakan bahwa fasa adalah daerah dari suatu padatan yang secara fisis dapat dibedakan dari daerah yang lain dalam padatan tersebut. Pada dasarnya berbagai fasa yang hadir dalam suatu padatan dapat dipisahkan secara mekanis.

114 Dalam satu unit kristal jarak antara atom dengan atom hanya beberapa angstrom. Jika unit-unit kristal tersusun secara homogen membentuk padatan maka padatan yang terbentuk memiliki bangun yang sama dengan bangun unit kristal yang membentuknya namun dengan ukuran yang jauh lebih besar, dan disebut sebagai kristal tunggal; padatan ini merupakan padatan satu fasa. Pada umumnya susunan kristal dalam padatan satu fasa tidaklah homogen. Dislokasi dan perbedaan orientasi terjadi antara kristal-kristal. Padatan jenis ini merupakan padatan polikristal, walaupun tetap merupakan padatan satu fasa. Kristal-kristal yang membentuk padatan ini biasa di sebut grain, dan batas antara grain disebut batas grain. Pada padatan nonkristal sulit mengenali adanya struktur teratur dalam skala lebih besar dari beberapa kali jarak atom. Oleh karena itu kebanyakan padatan nonkristal merupakan padatan satu fasa. Padatan dapat tersusun dari dua fasa atau lebih. Padatan demikian disebut sebagai padatan multifasa. Padatan multifasa bisa terdiri hanya dari satu komponen komponen tunggal atau lebih multikomponen.

115

116 Ulas Ulang Kuantisasi Energi Planck : energi photon partikel E = nhf bilangan bulat frekuensi gelombang cahaya h = 6, joule-sec De Broglie : Elektron sbg gelombang λ = h mv bilangan gelombang: k = π λ k mv = π h momentum: p h = k π = hk energi kinetik elektron sbg gelombang : E p h k = = k m m

117 Energi elektron sebagai fungsi k bilangan gelombang E p h k = = k m m E k

118 Makin tinggi nomer atom, atom akan makin kompleks, tingkat energi yang terisi makin banyak.

119 Sodium Hidrogen [6] E [ ev ] s p d f ,14 6 Kemungkinan terjadinya transisi elektron dari satu tingkat ke tingkat yang lain semakin banyak

120 Molekul Molekul lebih kompleks dari atom; tingkat-tingkat energi lebih banyak karena energi potensial elektron yang bergerak dalam medan yang diberikan oleh banyak inti atom tidaklah sederhana. Lebih dari itu, energi vibrasi dan rotasi atom secara relatif satu terhadap lainnya juga terkuantisasi seperti halnya terkuantisasinya energi elektron pada atom. Transisi dari satu tingkat ketingkat yang lain semakin banyak kemungkinannya, sehingga garis-garis spektrum dari molekul semakin rapat dan membentuk pita. Timbullah pengertian pita energi yang merupakan kumpulan tingkat energi yang sangat rapat.

121 Penggabungan atom H membentuk molekul H E [ ev ] 4 Ikatan tak stabil 1 3 Ikatan stabil jarak antar atom Å 4 R

122 Pada penggabungan dua atom, tingkat energi dengan bilangan kuantum tertinggi akan terpecah lebih dulu Elektron yang berada di tingkat energi terluar disebut elektron valensi Elektron valensi ini berpartisipasi dalam pembentukan ikatan atom. Elektron yang berada pada tingkat energi yang lebih dalam lebih rendah disebut elektron inti;

123 Padatan Gambaran tentang terbentuknya molekul dapat diperluas untuk sejumlah atom yang besar yang tersusun secara teratur, yaitu kristal padatan. Dalam penggabungan N atom identik, setiap tingkat energi terpecah menjadi N tingkat dan setiap tingkat akan mengakomodasi sepasang elekron dengan spin yang berlawanan m s = ± ½. Energi n = n = 3 n = 1 Jarak antar atom

124 sodium 3s [6] 3d 3p 4s 1 E [ ev ] R = 3,67 Å 3 p 5 1 Å 15

125 Cara penempatan elektron pada tingkat-tingkat energi mengikuti urutan sederhana: tingkat energi yang paling rendah akan terisi lebih dulu, menyusul tingkat di atasnya, dan seterusnya. Pada o K semua tingkat energi sampai ke tingkat E F terisi penuh, dan semua tingkat energi di atas E F kosong. E F, tingkat energi tertinggi yang terisi disebut tingkat Fermi, atau energi Fermi. Pada temperatur yang lebih tinggi, beberapa tingkat energi di bawah E F kosong karena elektron mendapat tambahan energi untuk naik ke tingkat di atas E F.

126 Elektron valensi yang berada pada tingkat energi Fermi ataupun di atas energi Fermi, berada pada salah satu tingkat energi yang dimiliki oleh kristal. Jumlah tingkat energi yang dimiliki oleh kristal sangat banyak dan sangat rapat sehingga hampir merupakan perubahan yang kontinyu. Oleh karena itu, elektron pada tingkat energi Fermi yang bergerak dalam kristal dapat dipandang sebagai elektron bebas. Elektron yang bergerak dengan kecepatan tertentu memiliki energi kinetik dan bilangan gelombang, k, tertentu. E p h k = = k m m Gerakan elektron tersebut mengalami hambatan karena ada celah energi.

127 Konduktor Isolator Semikonduktor

128 Jika banyak atom bergabung menjadi padatan, tingkat valensi terluar dari setiap atom cenderung akan terpecah membentuk pita energi. Tingkat-tingkat energi yang lebih dalam, yang disebut tingkat inti, tidak terpecah. Setiap tingkat valensi dari dari suatu padatan yang terdiri dari N atom berbentuk pita valensi yang terdiri dari N tingkat energi. Dengan demikian maka tingkat valensi s yang di tiap atom memuat elektron, akan menjadi pita s yang dapat menampung N elektron. Tingkat valensi p yang di tiap atom memuat 6 elektron, akan menjadi pita p yang dapat menampung 6N elektron.

129 Gambaran pita-pita energi pada suatu padatan Pita-pita energi yang terjadi dalam padatan dapat digambarkan sebagai berikut: pita p celah energi pita s

130 Pita energi paling luar, jika ia hanya sebagian terisi dan padanya terdapat tingkat Fermi, disebut sebagai pita konduksi. Pada metal, pita valensi biasanya hanya sebagian terisi Sodium kosong celah energi E F terisi kosong pita valensi pita konduksi

131 Pada beberapa metal, pita valensi terisi penuh. Akan tetapi pita ini overlap dengan pita di atanya yang kosong. Pita yang kosong ini memfasilitasi tingkat energi yang dengan mudah dicapai oleh elektron yang semula berada di pita valensi. Magnesium kosong E F terisi penuh pita valensi

132 Pada beberapa material, pita valensi terisi penuh dan pita valensi ini tidak overlap dengan pita di atasnya yang kosong. Jadi antara pita valensi dan pita di atasnya terdapat celah energi. Intan Silikon kosong celah energi terisi penuh isolator pita valensi kosong celah energi terisi penuh semikonduktor

133 Bahan Kuliah Terbuka Mengenal Sifat Material #1 Sudaryatno Sudirham

Sudaryatno Sudirham ing Utari. Mengenal. 5-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. 5-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 5-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 5 Konfigurasi Elektron Dalam Atom Atom dengan lebih dari satu elektron

Lebih terperinci

Mengenal Sifat Material. Teori Pita Energi

Mengenal Sifat Material. Teori Pita Energi Mengenal Sifat Material Teori Pita Energi Ulas Ulang Kuantisasi Energi Planck : energi photon (partikel) bilangan bulat frekuensi gelombang cahaya h = 6,63 10-34 joule-sec De Broglie : Elektron sbg gelombang

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal. 6-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. 6-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 6-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 6 Ikatan Atom dan Susunan Atom Tentang ikatan atom dibahas dalam buku

Lebih terperinci

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit

TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) SUB KIMIA FISIK. 16 Mei Waktu : 120menit OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI 2017 (ONMIPA-PT) BIDANG KIMIA SUB KIMIA FISIK 16 Mei 2017 Waktu : 120menit Petunjuk Pengerjaan H 1. Tes ini terdiri atas

Lebih terperinci

Mekanika Kuantum. Orbital dan Bilangan Kuantum

Mekanika Kuantum. Orbital dan Bilangan Kuantum Standar Kompetensi Kompetensi Dasar Mendeskripsikan struktur atom dan sifat-sifat periodik serta struktur molekul dan sifat-sifatnya. Menerapkan teori atom mekanika kuantum untuk menuliskan konfigurasi

Lebih terperinci

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford.

BAB FISIKA ATOM. Model ini gagal karena tidak sesuai dengan hasil percobaan hamburan patikel oleh Rutherford. 1 BAB FISIKA ATOM Perkembangan teori atom Model Atom Dalton 1. Atom adalah bagian terkecil dari suatu unsur yang tidak dapat dibagi-bagi 2. Atom-atom suatu unsur semuanya serupa dan tidak dapat berubah

Lebih terperinci

RANCANGAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN 2012 TENTANG TINGKAT KLIERENS

RANCANGAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN 2012 TENTANG TINGKAT KLIERENS KEPALA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA RANCANGAN PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR... TAHUN 2012 TENTANG TINGKAT KLIERENS DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN

Lebih terperinci

BAB 2 STRUKTUR ATOM PERKEMBANGAN TEORI ATOM

BAB 2 STRUKTUR ATOM PERKEMBANGAN TEORI ATOM BAB 2 STRUKTUR ATOM PARTIKEL MATERI Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi :. Menurut Democritus, pembagian materi bersifat diskontinyu ( jika suatu materi

Lebih terperinci

kimia REVIEW I TUJUAN PEMBELAJARAN

kimia REVIEW I TUJUAN PEMBELAJARAN KTSP kimia K e l a s XI REVIEW I TUJUAN PEMBELAJARAN Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami teori atom mekanika kuantum dan hubungannya dengan bilangan

Lebih terperinci

UJIAN I - KIMIA DASAR I A (KI1111)

UJIAN I - KIMIA DASAR I A (KI1111) KIMIA TAHAP PERSIAPAN BERSAMA Departemen Kimia, Fakultas MIPA Institut Teknologi Bandung E-mail: first-year@chem.itb.ac.id UJIAN I - KIMIA DASAR I A (KI1111) http://courses.chem.itb.ac.id/ki1111/ 22 Oktober

Lebih terperinci

kimia KONFIGURASI ELEKTRON

kimia KONFIGURASI ELEKTRON K-13 Kelas X kimia KONFIGURASI ELEKTRON Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami konfigurasi elektron kulit dan subkulit. 2. Menyelesaikan

Lebih terperinci

OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI (ONMIPA-PT) Bidang Kimia Sub bidang Kimia Anorganik

OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI (ONMIPA-PT) Bidang Kimia Sub bidang Kimia Anorganik OLIMPIADE NASIONAL MATEMATIKA DAN ILMU PENGETAHUAN ALAM TINGKAT PERGURUAN TINGGI (ONMIPA-PT) 2017 Bidang Kimia Sub bidang Kimia Anorganik 16 Mei 2017 Waktu : 120 menit Petunjuk Pengerjaan 1. Tes ini berlangsung

Lebih terperinci

ATOM BERELEKTRON BANYAK

ATOM BERELEKTRON BANYAK ATOM BERELEKTRON BANYAK A. MODEL ATOM BOHR * Keunggulan Dapat menjelaskan adanya : 1. Kestabilan atom. Spektrum garis pada atom hidrogen (deret Lyman, Balmer, Paschen, Brackett, Pfund) * Kelemahan Tidak

Lebih terperinci

BENDA WUJUD, SIFAT DAN KEGUNAANNYA

BENDA WUJUD, SIFAT DAN KEGUNAANNYA BENDA WUJUD, SIFAT DAN KEGUNAANNYA Benda = Materi = bahan Wujud benda : 1) Padat 2) Cair 3) Gas Benda Padat 1. Mekanis kuat (tegar), sukar berubah bentuk, keras 2. Titik leleh tinggi 3. Sebagian konduktor

Lebih terperinci

BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA

BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA BADAN PENGAWAS TENAGA NUKLIR REPUBLIK INDONESIA KEPUTUSAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR : 02/Ka-BAPETEN/V-99 TENTANG BAKU TINGKAT RADIOAKTIVITAS DI LINGKUNGAN KEPALA BADAN PENGAWAS TENAGA NUKLIR,

Lebih terperinci

UJIAN I - KIMIA DASAR I A (KI1111)

UJIAN I - KIMIA DASAR I A (KI1111) KIMIA TAHAP PERSIAPAN BERSAMA Departemen Kimia, Fakultas MIPA Institut Teknologi Bandung E-mail: first-year@chem.itb.ac.id UJIAN I - KIMIA DASAR I A (KI1111) http://courses.chem.itb.ac.id/ki1111/ 20 Oktober

Lebih terperinci

Struktur atom. Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi :

Struktur atom. Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi : Struktur atom A PARTIKEL MATERI Bagian terkecil dari materi disebut partikel. Beberapa pendapat tentang partikel materi : Menurut Democritus, pembagian materi bersifat diskontinyu ( jika suatu materi dibagi

Lebih terperinci

MODUL KIMIA SMA IPA Kelas 10

MODUL KIMIA SMA IPA Kelas 10 SMA IPA Kelas Atom Bagian terkecil dari materi yang sudah tidak dapat dibagi lagi disebut atom (berasal dari bahasa Yunani atomos yang berarti tidak dapat dibagi lagi). Namun, berakhir pendapat tersebut

Lebih terperinci

Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat

Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat ZAT PADAT Yang akan dibahas: 1. Kristal dan Ikatan pada zat Padat 2. Teori Pita Zat Padat ZAT PADAT Sifat sifat zat padat bergantung pada: Jenis atom penyusunnya Struktur materialnya Berdasarkan struktur

Lebih terperinci

Bab 1 ZAT PADAT IKATAN ATOMIK DALAM KRISTAL

Bab 1 ZAT PADAT IKATAN ATOMIK DALAM KRISTAL Bab 1 ZAT PADAT IKATAN ATOMIK DALAM KRISTAL Kekristalan Zat Padat Zat padat dapat dibedakan menjadi: Kristal yaitu bila atom atau molekul penyusun tersusun dalam bentuk pengulangan kontinu untuk rentang

Lebih terperinci

X Z. ISOTOP Atom atom yang sama mempunyai nomor atom sama tetapi nomor massa berbeda disebut isotop Contoh : H 1 H 1 H 1

X Z. ISOTOP Atom atom yang sama mempunyai nomor atom sama tetapi nomor massa berbeda disebut isotop Contoh : H 1 H 1 H 1 MODUL -1 NOTASI UNSUR & JUMLAH PROTON, ELEKTRON & NEUTRON Standar Kompetensi : : 1. Memahami struktur atom, sifat-sifat periodik unsur, dan ikatan kimia Kompetensi Dasar : 1.1.Memahami struktur atom berdasarkan

Lebih terperinci

STRUKTUR ATOM. Perkembangan Teori Atom

STRUKTUR ATOM. Perkembangan Teori Atom STRUKTUR ATOM Perkembangan Teori Atom 400 SM filsuf Yunani Demokritus materi terdiri dari beragam jenis partikel kecil 400 SM dan memiliki sifat dari materi yang ditentukan sifat partikel tersebut Dalton

Lebih terperinci

1. Tentukan Elektron Valensi dari : 100 Fm, 91 Pa, 81 Ti 2. Tentukan Periode dan golongan dari unsur : 72 Hf, 82 Pb, 92 U 3. Bagaimana ikatan Kimia

1. Tentukan Elektron Valensi dari : 100 Fm, 91 Pa, 81 Ti 2. Tentukan Periode dan golongan dari unsur : 72 Hf, 82 Pb, 92 U 3. Bagaimana ikatan Kimia 1. Tentukan Elektron Valensi dari : 72 Hf, 82 Pb, 92 U 2. Tentukan Periode dan golongan dari unsur : 100 Fm, 91 Pa, 81 Ti 3. Bagaimana ikatan Kimia yang terjadi antara unsur : K dan Se, Rb dan Br, Fr dan

Lebih terperinci

DAFTAR PUSTAKA. 1. Dra. Sukmriah M & Dra. Kamianti A, Kimia Kedokteran, edisi 2, Penerbit Binarupa Aksara, 1990

DAFTAR PUSTAKA. 1. Dra. Sukmriah M & Dra. Kamianti A, Kimia Kedokteran, edisi 2, Penerbit Binarupa Aksara, 1990 DAFTAR PUSTAKA 1. Dra. Sukmriah M & Dra. Kamianti A, Kimia Kedokteran, edisi 2, Penerbit Binarupa Aksara, 1990 2. Drs. Hiskia Achmad, Kimia Unsur dan Radiokimia, Penerbit PT. Citra Aditya Bakti, 2001 3.

Lebih terperinci

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya.

Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton (bermuatan positif) dan neutron

Lebih terperinci

Tabel berikut ini memuat beberapa contoh unsure dengan jumlah atom pembentuknya. Tabel 5.1 Beberapa nama unsure dan jumlah atom pembentuknya

Tabel berikut ini memuat beberapa contoh unsure dengan jumlah atom pembentuknya. Tabel 5.1 Beberapa nama unsure dan jumlah atom pembentuknya Klasifikasi Zat A. Unsur, Senyawa dan Campuran Jika kita memanaskan gula pasir setengah sendok makan di tas lampu bunsen, maka gula akan mencair. Cairan ini akan terasa manis karena sifat gula terasa manis.

Lebih terperinci

Sifat-Sifat Umum Unsur Dra. Sri Wardhani, M.Si. Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya

Sifat-Sifat Umum Unsur Dra. Sri Wardhani, M.Si. Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya Sifat-Sifat Umum Unsur Dra. Sri Wardhani, M.Si. Jurusan Kimia, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya Pada akhir abad 18 dan awal abad 19 beberapa unsur telah ditemukan dan

Lebih terperinci

Tabel Periodik Unsur. Sebagian unsur terbentuk. ini. Sudah sejak dahulu para ahli kimia berusaha mengelompokkan unsurunsur

Tabel Periodik Unsur. Sebagian unsur terbentuk. ini. Sudah sejak dahulu para ahli kimia berusaha mengelompokkan unsurunsur II Sebagian unsur terbentuk bersamaan dengan terbentuknya alam semesta ini. Sudah sejak dahulu para ahli kimia berusaha mengelompokkan unsurunsur berdasarkan kemiripan sifat, agar unsurunsur tersebut mudah

Lebih terperinci

kimia Kelas X REVIEW I K-13 A. Hakikat Ilmu Kimia

kimia Kelas X REVIEW I K-13 A. Hakikat Ilmu Kimia K-13 Kelas X kimia REVIEW I Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami hakikat ilmu kimia dan metode ilmiah. 2. Memahami teori atom dan

Lebih terperinci

TES AWAL II KIMIA DASAR II (KI-112)

TES AWAL II KIMIA DASAR II (KI-112) TES AWAL II KIMIA DASAR II (KI112) NAMA : Tanda Tangan N I M : JURUSAN :... BERBAGAI DATA. Tetapan gas R = 0,082 L atm mol 1 K 1 = 1,987 kal mol 1 K 1 = 8,314 J mol 1 K 1 Tetapan Avogadro = 6,023 x 10

Lebih terperinci

PERKEMBANGAN TEORI ATOM

PERKEMBANGAN TEORI ATOM DEMOKRITUS PERKEMBANGAN TEORI ATOM DALTON THOMSON RUTHERFORD BOHR MEKANIKA KUANTUM + + GAMBAR GAMBAR GAMBAR GAMBAR GAMBAR CATATAN : CATATAN : CATATAN : CATATAN : CATATAN : 1 PENEMUAN DERET BALMER Peralatan

Lebih terperinci

SISTEM PERIODIK UNSUR

SISTEM PERIODIK UNSUR SISTEM PERIODIK UNSUR Ilmu kimia Struktur Sifat Reaksi Energi Materi materi materi sifat unsur sistem klasifikasi unsur sistem periodik unsur SEBELUM TAHUN 1800 Hanya diketahui beberapa logam Tahun 3000

Lebih terperinci

IKATAN KIMIA Isana SYL

IKATAN KIMIA Isana SYL IKATAN KIMIA Isana SYL IKATAN KIMIA Kebahagiaan atom Konfigurasi i elektronik stabil Konfigurasi elektronik gas mulia / gas lamban (Energi ionisasi relatif besar dan afinitas elektron relatif kecil) Ada

Lebih terperinci

U = Energi potensial. R = Jarak antara atom

U = Energi potensial. R = Jarak antara atom IKATAN KRISTAL Zat padat merupakan zat yang memiliki struktur yang stabil Kestabilan sruktur zat padat disebabkan oleh adanya interaksi antara atom membentuk suatu ikatan kristal Sebagai contoh: Kristal

Lebih terperinci

Sejarah Perkembangan sistem periodik Di alam ada 109 unsur, bagaimana penyusunan unsur tersebut secara logis?

Sejarah Perkembangan sistem periodik Di alam ada 109 unsur, bagaimana penyusunan unsur tersebut secara logis? SISTEM PERIODIK UNSUR Sejarah Perkembangan sistem periodik Di alam ada 109 unsur, bagaimana penyusunan unsur tersebut secara logis? SAMPAI TAHUN 1800 Tahun 3000 SM : BESI EMAS PERAK TIMBAL Abad 3 M : Pengindetifikasian

Lebih terperinci

Bilangan Kuantum Utama (n)

Bilangan Kuantum Utama (n) Bilangan Kuantum Utama (n) Menyatakan nomer kulit tempat elektron berada atau bilangan ini juga menyatakan ukuran orbital/ jarak/ jari-jari atom. Dinyatakan dengan bilangan bulat positif. Mempunyai dua

Lebih terperinci

Struktur Atom dan Sistem Periodik

Struktur Atom dan Sistem Periodik Struktur Atom dan Sistem Periodik Struktur Atom Elektron Inti Atom Gelombang Radiasi Elektromagnet Model Bohr untuk atom Hidrogen Teori Gelombang Elektron Prinsip Ketidakpastian Heisenberg Model Quantum

Lebih terperinci

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT

BAGIAN 1 PITA ENERGI DALAM ZAT PADAT 1.1. Partikel bermuatan BAGIAN 1 PITA ENERGI DALAM ZAT PADAT - Muatan elektron : -1,6 x 10-19 C - Massa elektron : 9,11 x 10-31 kg - Jumlah elektron dalam setiap Coulomb sekitar 6 x 10 18 buah (resiprokal

Lebih terperinci

TEORI ATOM. Ramadoni Syahputra

TEORI ATOM. Ramadoni Syahputra TEORI ATOM Ramadoni Syahputra STRUKTUR ATOM Teori tentang atom pertama kali dikemukakan oleh filsafat Yunani yaitu Leoclipus dan Democritus, pada abad ke-5 sebelum Masehi. Atom berasal dari kata Yunani:

Lebih terperinci

ANALISIS SOAL UJIAN HARIAN KELAS XI BAB: TEORI ATOM MEKANIKA KUANTUM, BENTUK MOLEKUL, DAN GAYA ANTARMOLEKUL

ANALISIS SOAL UJIAN HARIAN KELAS XI BAB: TEORI ATOM MEKANIKA KUANTUM, BENTUK MOLEKUL, DAN GAYA ANTARMOLEKUL ANALISIS SOAL UJIAN HARIAN KELAS XI BAB: TEORI ATOM MEKANIKA KUANTUM, BENTUK MOLEKUL, DAN Petunjuk Umum : GAYA ANTARMOLEKUL Telitilah soal terlebih dahulu, perangkat soal terdiri dari 20 soal pilihan ganda

Lebih terperinci

FISIKA. Sesi TEORI ATOM A. TEORI ATOM DALTON B. TEORI ATOM THOMSON

FISIKA. Sesi TEORI ATOM A. TEORI ATOM DALTON B. TEORI ATOM THOMSON FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 11 Sesi NGAN TEORI ATOM A. TEORI ATOM DALTON 1. Atom adalah bagian terkecil suatu unsur yang tidak dapat dibagi lagi.. Atom suatu unsur serupa semuanya, dan tak

Lebih terperinci

Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai

Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai Struktur Atom Mengapa atom dipelajari? Penyusun bagian-bagian atom sangat menentukan sifat benda/materi. Untuk mengetahui bagaimana atom bergabung sehingga dapat mengubah bahan sesuai dengan kebutuhan.

Lebih terperinci

Bab I Teori Atom Bohr dan Mekanika Kuantum

Bab I Teori Atom Bohr dan Mekanika Kuantum Bab I Teori Atom Bohr dan Mekanika Kuantum Model atom Rutherford Model atom Schrodinger Model atom Bohr Sumber: Encarta Encclopedia, 005 Teori atom berkembang mulai dari teori atom Rutherford, Bohr, sampai

Lebih terperinci

IKATAN KIMIA. RATNAWATI, S.Pd

IKATAN KIMIA. RATNAWATI, S.Pd IKATAN KIMIA RATNAWATI, S.Pd Tujuan Pembelajaran Setelah mempelajari materi ini, diharapkan siswa dapat: Menjelaskan kecenderungan suatu unsur untuk mencapai kestabilannya Menggambarkan susunan elektron

Lebih terperinci

IKATAN KIMIA DALAM BAHAN

IKATAN KIMIA DALAM BAHAN IKATAN KIMIA DALAM BAHAN Sifat Atom dan Ikatan Kimia Suatu partikel baik berupa ion bermuatan, inti atom dan elektron, dimana diantara mereka, akan membentuk ikatan kimia yang akan menurunkan energi potensial

Lebih terperinci

Struktur Atom dan Sistem Periodik

Struktur Atom dan Sistem Periodik Modul 1 Struktur Atom dan Sistem Periodik Drs. Ucu Cahyana, M.Si. M PENDAHULUAN odul Kimia Anorganik I merupakan suatu seri yang terdiri atas 9 modul. Dalam Modul 1 3, Anda akan mempelajari teori dasar

Lebih terperinci

GENTA GROUP in PLAY STORE. Kode Aktivasi Aplikasi: 74DSM. Kode Aktivasi Aplikasi: P859 FPM KIMIA

GENTA GROUP in PLAY STORE. Kode Aktivasi Aplikasi: 74DSM. Kode Aktivasi Aplikasi: P859 FPM KIMIA GENTA GROUP in PLAY STORE CBT UN SMA IPA Aplikasi CBT UN SMA IPA android dapat di download di play store dengan kata kunci genta group atau gunakan qr-code di bawah. CBT Psikotes Aplikasi CBT Psikotes

Lebih terperinci

K13 Revisi Antiremed Kelas 10 KIMIA

K13 Revisi Antiremed Kelas 10 KIMIA K13 Revisi Antiremed Kelas 10 KIMIA Persiapan Penilaian Akhir Semester (PAS) Ganjil Doc Name: RK13AR10KIM01PAS Version : 2016-11 halaman 1 01. Pernyataaan berikut yang tidak benar (A) elektron ditemukan

Lebih terperinci

PENDAHULUAN. Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi.

PENDAHULUAN. Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi. PENDAHULUAN Atom berasal dari bahasa Yunani atomos yang artinya tidak dapat dibagi-bagi lagi. Demokritus (460-370-S.M) Bagian terkecil yang tidak dapat dibagi lagi disebut: ATOM Konsep atom yang dikemukakan

Lebih terperinci

Ikatan Kimia dan Struktur Molekul. Sulistyani, M.Si.

Ikatan Kimia dan Struktur Molekul. Sulistyani, M.Si. Ikatan Kimia dan Struktur Molekul Sulistyani, M.Si. Email: sulistyani@uny.ac.id Pendahuluan Adalah ikatan yang terjadi antar atom atau antar molekul dengan cara sebagai berikut : - atom yang 1 melepaskan

Lebih terperinci

ANALISIS SOAL ULANGAN HARIAN I. Total. Dimensi Proses Pengetahuan Kognitif Menerapkan Menganalisa (C4) 15 3,6,9,11,21 4,12,18,26 5,19,20,25

ANALISIS SOAL ULANGAN HARIAN I. Total. Dimensi Proses Pengetahuan Kognitif Menerapkan Menganalisa (C4) 15 3,6,9,11,21 4,12,18,26 5,19,20,25 ANALISIS SOAL ULANGAN HARIAN I Mata pelajaran Kimia Kelas/Semester XI IPA 1/1 Kisi Butir Soal ClassXI Mudah Sedang Susah C1 C2 and C3 C 4,5,6 Total Presentase 12% 56% 32% 100% Jumlah soal 3 14 8 25 Dimensi

Lebih terperinci

! " "! # $ % & ' % &

!  ! # $ % & ' % & Valensi ! " "! # $ % & ' %& # % ( ) # *+## )$,) & -#.. Semua unsur memiliki bilangan oksidasi +1 Semua unsur memiliki bilangan oksidasi +2 Semua unsur memiliki bilangan oksidasi +3. Tl juga memiliki bilangan

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudirham ing Utari Mengenal Sifat-Sifat Material (1) 15-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 15 Difusi Difusi adalah peristiwa di mana terjadi tranfer materi melalui

Lebih terperinci

Bab V Ikatan Kimia. B. Struktur Lewis Antar unsur saling berinteraksi dengan menerima dan melepaskan elektron di kulit terluarnya. Gambaran terjadinya

Bab V Ikatan Kimia. B. Struktur Lewis Antar unsur saling berinteraksi dengan menerima dan melepaskan elektron di kulit terluarnya. Gambaran terjadinya Bab V Ikatan Kimia Sebagian besar unsur yang ada di alam mempunyai kecenderungan untuk berinteraksi (berikatan) dengan unsur lain. Hal itu dilakukan karena unsur tersebut ingin mencapai kestabilan. Cara

Lebih terperinci

MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI

MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI MOLEKUL, ZAT PADAT DAN PITA ENERGI MOLEKUL ZAT PADAT PITA ENERGI edy wiyono 2004 PENDAHULUAN Pada umumnya atom tunggal tidak memiliki konfigurasi elektron yang stabil seperti gas mulia, maka atom atom

Lebih terperinci

BAB 2. Pada bab struktur atom dan sistem periodik unsur, Anda sudah mempelajari bahwa. Ikatan Kimia. Kata Kunci. Pengantar

BAB 2. Pada bab struktur atom dan sistem periodik unsur, Anda sudah mempelajari bahwa. Ikatan Kimia. Kata Kunci. Pengantar Kimia X SMA 43 BAB 2 Ikatan Kimia Tujuan Pembelajaran: Setelah mempelajari bab ini, Anda diharapkan mampu: 1 Menjelaskan pengertian ikatan kimia 2 Menyebutkan macam-macam ikatan kimia 3 Menjelaskan proses

Lebih terperinci

ATOM DAN SISTEM PERIODIK UNSUR

ATOM DAN SISTEM PERIODIK UNSUR ATOM DAN SISTEM PERIODIK UNSUR I. Perkembangan teori atom a. Teori atom Dalton: Materi tersusun atas partikel-partikel terkecil yang disebut atom. Atom merupakan bagian terkecil dari materi yang tidak

Lebih terperinci

IKATAN KIMIA MAKALAH KIMIA DASAR

IKATAN KIMIA MAKALAH KIMIA DASAR IKATAN KIMIA MAKALAH KIMIA DASAR dibuat sebagai salah satu syarat untuk memperoleh nilai mata kuliah kimia dasar Oleh : AZKA WAFI EL HAKIM ( NPM : 301014000 ) HELGA RACHEL F ( NPM : 3010140014 ) MUHAMMAD

Lebih terperinci

Apa yang dimaksud dengan atom? Atom adalah bagian terkecil dari suatu unsur

Apa yang dimaksud dengan atom? Atom adalah bagian terkecil dari suatu unsur Struktur Atom Apa yang dimaksud dengan atom? Atom adalah bagian terkecil dari suatu unsur Atom tersusun atas partikel apa saja? Partikel-partikel penyusun atom : Partikel Lambang Penemu Muatan Massa 9,11x10-28g

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup:

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: PENDAHULUAN Di dalam modul ini Anda akan mempelajari Kristal Semikonduktor yang mencakup: kristal semikonduktor intrinsik dan kristal semikonduktor ekstrinsik. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Ikatan kovalen koordinat adalah ikatan dimana elektronelektron yang dipakai bersama-sama hanya berasal dari satu atom.

Ikatan kovalen koordinat adalah ikatan dimana elektronelektron yang dipakai bersama-sama hanya berasal dari satu atom. IKATAN KIMIA 1. Pada molekul CH 4 terdapat ikatan kovalen SEBAB paa tiap molekul CH 4 terdapat 4 atom hidrogen SMU/Ebtanas/Kimia/Tahun 1988 Ikatan Kovalen adalah ikatan kimia yang terjadi karena penggunaan

Lebih terperinci

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron PENDAHUUAN Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron bebas dalam satu dimensi dan elektron bebas dalam tiga dimensi. Oleh karena itu, sebelum mempelajari modul

Lebih terperinci

Konfigurasi Elektron Dalam Atom

Konfigurasi Elektron Dalam Atom Konfigurasi Elektron Dalam Atom Sudaryatno Sudirham Atom dengan lebih dari satu elektron akan memberikan persamaan Schrödinger yang rumit, karena setiap elektron tidak hanya mendapat gaya tarik dari inti

Lebih terperinci

Struktur Atom. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang

Struktur Atom. Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang Struktur atom merupakan satuan dasar materi yang terdiri dari inti atom beserta awan elektron bermuatan negatif yang mengelilinginya. Inti atom mengandung campuran proton (bermuatan positif) dan neutron

Lebih terperinci

STRUKTUR ATOM A. PENGERTIAN DASAR

STRUKTUR ATOM A. PENGERTIAN DASAR STRUKTUR ATOM A. PENGERTIAN DASAR 1. Partikel dasar : partikel-partikel pembentuk atom yang terdiri dari elektron, proton den neutron. 1. Proton : partikel pembentuk atom yang mempunyai massa sama dengan

Lebih terperinci

Ikatan Kimia. Ikatan kimia adalah gaya tarik antar atom yang pemutusan atau pembentukannya menyebabkan terjadinya perubahan kimia.

Ikatan Kimia. Ikatan kimia adalah gaya tarik antar atom yang pemutusan atau pembentukannya menyebabkan terjadinya perubahan kimia. Ikatan Kimia 1. Ikatan Kimia 1.1 Pengertian Ikatan kimia adalah gaya tarik antar atom yang pemutusan atau pembentukannya menyebabkan terjadinya perubahan kimia. 1.2 Macam-Macam Ikatan Kimia Ikatan Ion:

Lebih terperinci

DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR,

DENGAN RAHMAT TUHAN YANG MAHA ESA KEPALA BADAN PENGAWAS TENAGA NUKLIR, PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2017 TENTANG PERUBAHAN ATAS PERATURAN KEPALA BADAN PENGAWAS TENAGA NUKLIR NOMOR 7 TAHUN 2013 TENTANG NILAI BATAS RADIOAKTIVITAS LINGKUNGAN DENGAN

Lebih terperinci

PENGANTAR. Konsep Dasar Kimia untuk PGSD 99

PENGANTAR. Konsep Dasar Kimia untuk PGSD 99 PENGANTAR Kata atom telah sering didengar, bahkan banyak ditampilkan pada bahan belajar lalu. Namun pemahaman tentang atom, sejujurnya tentu masih belum dalam. Mengapa? Rahasia atom sampai kini pun masih

Lebih terperinci

Ikatan dan Isomeri. Prof. Dr. Jumina Robby Noor Cahyono, S.Si., M.Sc.

Ikatan dan Isomeri. Prof. Dr. Jumina Robby Noor Cahyono, S.Si., M.Sc. Ikatan dan Isomeri Prof. Dr. Jumina Robby Noor Cahyono, S.Si., M.Sc. Susunan Elektron dalam Atom Mulai dikenalkan oleh Rutherford: Atom terdiri atas inti yg kecil & padat dan dikelilingi oleh elektron-elektron

Lebih terperinci

BAB FISIKA ATOM. a) Tetes minyak diam di antara pasangan keping sejajar karena berat minyak mg seimbang dengan gaya listrik qe.

BAB FISIKA ATOM. a) Tetes minyak diam di antara pasangan keping sejajar karena berat minyak mg seimbang dengan gaya listrik qe. BAB FISIKA ATOM Contoh 9. Hitungan mengenai percobaan Milikan. Sebuah tetes minyak yang beratnya,9-4 N diam di antara pasangan keping sejajar yang kuat medan listriknya 4, 4 N/C. a) Berapa besar muatan

Lebih terperinci

III. Ikatan Kimia. Diharapkan Anda mampu memahami pembentukan jenis-jenis ikatan kimia beserta sifat-sifat fisisnya setelah mempelajari bab ini.

III. Ikatan Kimia. Diharapkan Anda mampu memahami pembentukan jenis-jenis ikatan kimia beserta sifat-sifat fisisnya setelah mempelajari bab ini. III Ikatan Kimia Jika benda yang kita lihat sehari-hari diamati di bawah mikroskop (misalnya kepingan es batu) maka akan tampak struktur dari benda tersebut. Struktur dari benda tersebut sangat unik dan

Lebih terperinci

STRUKTUR ATOM DAN SISTEM PERIODIK Kimia SMK KELAS X SEMESTER 1 SMK MUHAMMADIYAH 3 METRO

STRUKTUR ATOM DAN SISTEM PERIODIK Kimia SMK KELAS X SEMESTER 1 SMK MUHAMMADIYAH 3 METRO STRUKTUR ATOM DAN SISTEM PERIODIK Kimia SMK KELAS X SEMESTER 1 SMK MUHAMMADIYAH 3 METRO SK DAN KD Standar Kompetensi Mengidentifikasi struktur atom dan sifat-sifat periodik pada tabel periodik unsur Kompetensi

Lebih terperinci

ORBITAL DAN IKATAN KIMIA ORGANIK

ORBITAL DAN IKATAN KIMIA ORGANIK ORBITAL DAN IKATAN KIMIA ORGANIK Objektif: Pada Bab ini, mahasiswa diharapkan untuk dapat memahami, Teori dasar orbital atom dan ikatan kimia organik, Orbital molekul orbital atom dan Hibridisasi orbital

Lebih terperinci

Komponen Materi. Kimia Dasar 1 Sukisman Purtadi

Komponen Materi. Kimia Dasar 1 Sukisman Purtadi Komponen Materi Kimia Dasar 1 Sukisman Purtadi Pengamatan ke Arah Pandangan Atomik Materi Konservasi Massa Komposisi Tetap Perbandingan Berganda Teori Atom Dalton Bagaimana Teori Dalton Menjelaskan Hukum

Lebih terperinci

LAMPIRAN C CCT pada Materi Ikatan Ion

LAMPIRAN C CCT pada Materi Ikatan Ion LAMPIRAN C CCT pada Materi Ikatan Ion 1 IKATAN ION A. KECENDERUNGAN ATOM UNTUK STABIL Gas mulia merupakan sebutan untuk unsur golongan VIIIA. Unsur unsur ini bersifat inert (stabil). Hal ini dikarenakan

Lebih terperinci

SISTEM PERIODIK UNSUR

SISTEM PERIODIK UNSUR SISTEM PERIODIK UNSUR Terdiri atas PETA KONSEP Perkembangan Sistem Periodik Unsur Sifat-sifat keperiodikan J. W. Dobereiner John Newland Dimitri Mendeleev Sistem Periodik Modern Sistem 18 golongan Sistem

Lebih terperinci

MATERI II TINGKAT TENAGA DAN PITA TENAGA

MATERI II TINGKAT TENAGA DAN PITA TENAGA MATERI II TINGKAT TENAGA DAN PITA TENAGA A. Tujuan 1. Tujuan Umum Mahasiswa memahami konsep tingkat tenaga dan pita tenaga untuk menerangkan perbedaan daya hantar listrik.. Tujuan Khusus a. Mahasiswa dapat

Lebih terperinci

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB VI IKATAN KIMIA

FAKULTAS TEKNIK UNIVERSITAS NEGERI YOGYAKARTA BAHAN AJAR KIMIA DASAR BAB VI IKATAN KIMIA No. BAK/TBB/SBG201 Revisi : 00 Tgl. 01 Mei 2008 Hal 1 dari 7 BAB VI IKATAN KIMIA Sebagian besar partikel materi adalah berupa molekul atau ion. Hanya beberapa partikel materi saja yang berupa atom. 1)

Lebih terperinci

Ikatan Atom dan Susunan Atom. Sudaryatno Sudirham

Ikatan Atom dan Susunan Atom. Sudaryatno Sudirham Ikatan Atom dan Susunan Atom Sudaryatno Sudirham Tentang ikatan atom dibahas dalam buku Zbigniew D Jastrzebski dan juga oleh Robert M. Rose.[5,6]. Di sini kita akan mengulanginya agar kita tidak kehilangan

Lebih terperinci

Model Atom Bohr Tingkat Energi dan Spektrum Asas Persesuaian Eksitasi Atomik (Percobaan Frank-Hertz)

Model Atom Bohr Tingkat Energi dan Spektrum Asas Persesuaian Eksitasi Atomik (Percobaan Frank-Hertz) Pertemuan Ke-9 dan 10 STRUKTUR ATOM LANJUTAN NURUN NAYIROH, M.Si FISIKA MODERN SUB TEMA Model Atom Bohr Tingkat Energi dan Spektrum Asas Persesuaian Eksitasi Atomik (Percobaan Frank-Hertz) 1 MODEL ATOM

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Potensial Coulomb untuk Partikel yang Bergerak Dalam bab ini, akan dikemukakan teori-teori yang mendukung penyelesaian pembahasan pengaruh koreksi relativistik potensial Coulomb

Lebih terperinci

BAB - III IKATAN KRISTAL

BAB - III IKATAN KRISTAL BAB - III IKATAN KISTAL Pertanyaan yang harus dawab pada dalam bab ini adalah : Apakah yang menyebabkan sebuah kristal tetap bersatu? Jawab : Interaksi yang paling besar bertanggung awab untuk teradi kohesi

Lebih terperinci

NIP

NIP NIP. 197510072006042023 By. Nursyidah, ST Bahan Ajar Kimia Unsur KOMPETENSI INTI KOMPETENSI DASAR INDIKATOR KOMPETENSI INTI KI 1 : KI 2 : KI 3 : Menghayati dan mengamalkan ajaran agama yang dianutnya Menghayati

Lebih terperinci

BAB I STRUKTUR ATOM DAN SISTEM PERIODIK UNSUR

BAB I STRUKTUR ATOM DAN SISTEM PERIODIK UNSUR BAB I STRUKTUR ATOM DAN SISTEM PERIODIK UNSUR A. STANDAR KOMPOTENSI 1 : Mendeskripsikan struktur atom,sifat-sifat periodik unsur, dan ikatan kimia serta struktur molekul dan sifat-sifatnya. B. KOMPETENSI

Lebih terperinci

IKATAN KIMIA BAB 3. Pada pelajaran bab tiga ini akan dipelajari tentang ikatan ion, ikatan kovalen, dan ikatan logam.

IKATAN KIMIA BAB 3. Pada pelajaran bab tiga ini akan dipelajari tentang ikatan ion, ikatan kovalen, dan ikatan logam. BAB 3 IKATAN KIMIA Gambar 3.1 Kisi Kristal Senyawa NaCl. Sumber: amparan Dunia Ilmu Time life Pada pelajaran bab tiga ini akan dipelajari tentang ikatan ion, ikatan kovalen, dan ikatan logam. Ikatan Kimia

Lebih terperinci

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8.

BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. BAB 4. WUJUD ZAT 1. WUJUD GAS 2. HUKUM GAS 3. HUKUM GAS IDEAL 4. GAS NYATA 5. CAIRAN DAN PADATAN 6. GAYA ANTARMOLEKUL 7. TRANSISI FASA 8. DIAGRAM FASA WUJUD ZAT: GAS CAIRAN PADATAN PERMEN (sukrosa) C 12

Lebih terperinci

MODUL 1 KULIAH SEMIKONDUKTOR

MODUL 1 KULIAH SEMIKONDUKTOR MODUL 1 KULIAH SMIKONDUKTOR I.1. LOGAM, ISOLATOR dan SMIKONDUKTOR. Suatu bahan zat padat apabila dikaitkan dengan kemampuannya dalam menghantarkan arus listrik, maka bahan zat padat dibedakan menjadi tiga

Lebih terperinci

SIFAT SIFAT ATOM DAN TABEL BERKALA

SIFAT SIFAT ATOM DAN TABEL BERKALA SIFAT SIFAT ATOM DAN TABEL BERKALA 1. Hukum Berkala dan Tabel Berkala SIFAT SIFAT HUKUM BERKALA Sifat - sifat hukum berkala melibatkan sifat yang di kenal sebagai volume atom yang dimana bobot atom suatu

Lebih terperinci

Struktur Kristal Logam dan Keramik

Struktur Kristal Logam dan Keramik Struktur Kristal Logam dan Keramik 1. Selayang Pandang Muhammad Fauzi Mustamin [*] Jurusan Fisika, Universitas Hasanuddin Maret 2015 Material padat dapat diklasifikasi berdasarkan karakteristik atom atau

Lebih terperinci

BAB 3 IKATAN KRISTAL. 3.1 Macam-Macam Ikatan Kristal

BAB 3 IKATAN KRISTAL. 3.1 Macam-Macam Ikatan Kristal BAB 3 IKATAN KRISTAL Zat padat berdasarkan susunan atomnya dapat diklasifikasikan atas kristal dan amorf. Sebuah kristal mempunyai susunan atom yang teratur sehingga dapat berbentuk kubus, tetragonal atau

Lebih terperinci

IKATAN KIMIA. Tim Dosen Kimia Dasar FTP

IKATAN KIMIA. Tim Dosen Kimia Dasar FTP IKATAN KIMIA Tim Dosen Kimia Dasar FTP Sub pokok bahasan: Konsep Ikatan Kimia Macam-macam ikatan kimia KONSEP IKATAN KIMIA Untuk mencapai kestabilan, atom-atom saling berikatan. Ikatan kimia merupakan

Lebih terperinci

Ikatan kimia. 1. Peranan Elektron dalam Pembentukan Ikatan Kimia. Ikatan kimia

Ikatan kimia. 1. Peranan Elektron dalam Pembentukan Ikatan Kimia. Ikatan kimia Ikatan kimia 1. Peranan Elektron dalam Pembentukan Ikatan Kimia Ikatan kimia Gaya tarik menarik antara atom sehingga atom tersebut tetap berada bersama-sama dan terkombinasi dalam senyawaan. gol 8 A sangat

Lebih terperinci

STRUKTUR ATOM. 3. Perhatikan gambar berikut :

STRUKTUR ATOM. 3. Perhatikan gambar berikut : STRUKTUR ATOM. Elektron - elektron dalam atom beredar mengelilingi inti dan berada pada lintasan (tingkat energi) tertentu. Elektron dapat berpindah dari satu tingkat energi ke tingkat energi lainnya di

Lebih terperinci

MODEL ATOM DALTON. Atom ialah bagian terkecil suatu zat yang tidak dapat dibagi-bagi. Atom tidak dapat dimusnahkan & diciptakan

MODEL ATOM DALTON. Atom ialah bagian terkecil suatu zat yang tidak dapat dibagi-bagi. Atom tidak dapat dimusnahkan & diciptakan MODEL ATOM MODEL ATOM DALTON Atom ialah bagian terkecil suatu zat yang tidak dapat dibagi-bagi. Atom tidak dapat dimusnahkan & diciptakan MODEL ATOM DALTON Konsep Model Atom Dalton : 1. Setiap benda (zat)

Lebih terperinci

Sudaryatno Sudirham ing Utari. Mengenal. 8-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1)

Sudaryatno Sudirham ing Utari. Mengenal. 8-2 Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) Sudaryatno Sudiram ing Utari Mengenal Sifat-Sifat Material (1) 8- Sudaryatno S & Ning Utari, Mengenal Sifat-Sifat Material (1) BAB 8 Teori Pita Energi Tentang Padatan Setela mempelajari bagaimana atom

Lebih terperinci

BAB IV OSILATOR HARMONIS

BAB IV OSILATOR HARMONIS Tinjauan Secara Mekanika Klasik BAB IV OSILATOR HARMONIS Osilator harmonis terjadi manakala sebuah partikel ditarik oleh gaya yang besarnya sebanding dengan perpindahan posisi partikel tersebut. F () =

Lebih terperinci

Ikatan Kimia. 2 Klasifikasi Ikatan Kimia :

Ikatan Kimia. 2 Klasifikasi Ikatan Kimia : Ikatan Kimia Ikatan Kimia : Gaya tarik yang menyebabkan atom-atom yang terikat satu sama lain dalam suatu kombinasi untuk membentuk senyawa yang lebih kompleks. 2 Klasifikasi Ikatan Kimia : 1. Ikatan ion

Lebih terperinci

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur);

01 : STRUKTUR MIKRO. perilaku gugus-gugus atom tersebut (mungkin mempunyai struktur kristalin yang teratur); 01 : STRUKTUR MIKRO Data mengenai berbagai sifat logam yang mesti dipertimbangkan selama proses akan ditampilkan dalam berbagai sifat mekanik, fisik, dan kimiawi bahan pada kondisi tertentu. Untuk memanfaatkan

Lebih terperinci

kimia Kelas X TABEL PERIODIK K-13

kimia Kelas X TABEL PERIODIK K-13 K-13 Kelas X kimia TABEL PERIODIK Tujuan Pembelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut. 1. Memahami perkembangan sistem periodik unsur dan kelemahannya. 2. Menentukan

Lebih terperinci

BAB VIII STRUKTUR ATOM

BAB VIII STRUKTUR ATOM BAB VIII STRUKTUR ATOM Pengertian mengenai struktur atom berguna untuk menjelaskan gaya-gaya diantara atom yang akhirnya mengarah pada pembentukan molekul. Dalam bab ini akan dipelajari struktur listrik

Lebih terperinci