IDENTIFIKASI FAKTOR SIGNIFIKAN RANCANGAN FAKTORIAL FRAKSIONAL TANPA PENGULANGAN DENGAN METODE BISSELL, LENTH, DAN FANG

Ukuran: px
Mulai penontonan dengan halaman:

Download "IDENTIFIKASI FAKTOR SIGNIFIKAN RANCANGAN FAKTORIAL FRAKSIONAL TANPA PENGULANGAN DENGAN METODE BISSELL, LENTH, DAN FANG"

Transkripsi

1 TESIS IDENTIFIKASI FAKTOR SIGNIFIKAN RANCANGAN FAKTORIAL FRAKSIONAL TANPA PENGULANGAN DENGAN METODE BISSELL, LENTH, DAN FANG Oleh: ADNAN SAUDDIN NRP PROGRAM STUDI MAGISTER JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 2006

2 IDENTIFIKASI FAKTOR SIGNIFIKAN RANCANGAN FAKTORIAL FRAKTIONAL TANPA PENGULANGAN DENGAN METODE BISSELL, LENTH, DAN FANG Tesis ini disusun untuk memenuhi salah satu syarat memperoleh gelar Magister Sains (M.Si.) di Institut Teknologi Sepuluh Nopember Surabaya Oleh: ADNAN SAUDDIN NRP Disetujui Oleh Tim Penguji Tesis: Tangal Ujian : 31 Juli 2006 Periode Wisuda: September Prof. Dra. Susanti Linuwih, M.Stat., Ph.D (Pembimbing 1) NIP DR. Drs. Purhadi, M.Sc (Pembimbing 2) NIP Prof. Drs. Nur Iriawan, MIkom., Ph.D (Penguji) NIP DR. Drs. I Nyoman Budiantara, M.Sc (Penguji) NIP DR. Drs. Sony Sunaryo, M.Si (Penguji) NIP Ir. Mutiah Salamah, M.Kes (Penguji) NIP Direktur Program Pascasarjana Prof. Ir. Happy Ratna S., M.Sc., Ph.D. NIP

3 IDENTIFIKASI FAKTOR SIGNIFIKAN RANCANGAN FAKTORIAL FRAKSIONAL TANPA PENGULANGAN DENGAN METODE BISSELL, LENTH, DAN FANG Oleh : Adnan Sauddin Pembimbing : Prof. Dra. Susanti Linuwih, M.Stat., Ph.D Co. Pembimbing : Dr. Purhadi, M.Sc ABSTRAK Rancangan faktorial dengan jumlah faktor yang sangat besar tidak memungkinkan untuk diterapkan didunia industri atau di bidang lainnya. Untuk mengatasi hal tersebut, digunakan rancangan faktorial fraktional. Dalam penelitian, penentuan faktor mana dari sejumlah faktor yang dinyatakan potensial memberikan informasi terhadap masalah yang diteliti menjadi lebih sulit jika pengukurannya dilakukan tanpa pengulangan untuk setiap kombinasi perlakuan. Hal tersebut disebabkan oleh tidak adanya rata-rata kuadrat error yang dapat diperoleh pada sebagian besar rancangan faktorial fraksional tanpa pengulangan. Untuk mengatasi hal tersebut, dalam penelitian ini dihasilkan statistik uji metode Bissell, Lenth, dan Fang beserta penaksir-penaksirnya yang memberikan suatu analisis formal tentang bagaimana menentukan suatu faktor signifikan atau tidak dalam rancangan faktorial fraksional tanpa pengulangan. Juga diperoleh funsi power dari ketiga metode tersebut, yang digunakan untuk membandingkan kekuatan uji masing-masingnya. Power uji menunjukkan metode Lenth dan Fang lebih kuat banding metode Bissell, dan antara metode Lenth dan Fang tidak memberikan indikasi adanya perbedaan kekuatan uji. Kata kunci: Fraksional Faktorial, fungsi power, metode Lenth, metode Fang, metode Bissell. iii

4 IDENTIFICATION SIGNIFICANT FACTORS OF UNREPLICATED FRACTIONAL FACTORIAL DESIGN BY USING BISSELL, LENTH, AND FANG METHODS By : Adnan Sauddin Supervisor : Prof. Dra. Susanti Linuwih, M.Stat., Ph.D Co. Supervisor : Dr. Purhadi, M.Sc ABSTRACT Factorial design with number of factors very large is impossible to be apply in industrial world. To avoid such a problems, fractional factorial design is used instead. However, to select the right factor which should be used in order to supply information about the problem being analyzed will be difficult when we running each treatment combination without replication. That is causes by due to absence of mean square error in any analysis of most unreplicated fractional factorial design. In this research, statistical test of Bissell, Lenth, and Fang methods, including their estimation and the power function are resulted. The power function that resulting used to comparing power test of these methods, the result are Lenth and Fang method more powerfull than Bissell method, and Lenth and Fang methods showed with no indication of resulting different power test. Key words: fractional factorial, power function, unreplicated, Bissel method, Lenth method, Fang method. iv

5 DAFTAR ISI HALAMAN PENGESAHAN ABSTRAK ABSTRACT DAFTAR TABEL DAFTAR GAMBAR DAFTAR LAMPIRAN KATA PENGANTAR iii iii iv vii viii ix x BAB I. PENDAHULUAN Latar Belakang Permasalahan Tujuan Penelitian Manfaat Penelitian Batasan Permasalahan BAB II. TINJAUAN PUSTAKA Model Linier Estimasi Kontras Distribusi dari β Penaksir σ Pengujian Hipotesis Rancangan Fraksional Faktorial Fraksional Faktorial Dua-Level, 2 k p Identifikasi Struktur Alias Fraksional Faktorial Tiga-Level Identifikasi Struktur Alias Beberapa Definisi dan Teorema Berkaitan dengan Pembahasan.. 21 BAB III. METODOLOGI PENELITIAN Bahan dan Alat Metode Penelitian v

6 BAB IV. PEMBAHASAN Statistik uji dari Metode Bissell, Fang dan Lenth Serta Penaksirnya Statistik Uji Metode Bissell dan Penaksirnya Penaksiran Parameter dengan Metode Lenth Penaksiran Parameter dengan Metode Fang Fungsi Power Metode Bissell, Lenth dan Fang Perbandingan Power Uji Metode Bissell, Lenth dan Fang Kasus Rancangan Faktorial Fraksional 2-Level Kasus Rancangan Faktorial Fraksional 3-Level BAB V. KESIMPULAN DAN SARAN Kesimpulan Saran DAFTAR PUSTAKA 53 LAMPIRAN 54 Lampiran A. Matriks Rancangan dan Data Data Eksperimen Permainan Golf Data Pembakaran pada Boiler Lampiran B. Hasil Analisis untuk Identifikasi Faktor Signifikan Permainan Golf Pembakaran Pada Boiled 3-Level Lampiran C. Hasil Penghitungan Power dan Kurva Kuasa Metode Bissell, Lenth, dan Fang untuk Permainan Golf 62 Lampiran D. Listing Program Listing Program Iterasi Bissell Listing Program Perhitungan Metode Lenth dan Fang vi

7 DAFTAR TABEL 2.1 Susunan Rancangan Faktorial Susunan Rancangan Faktorial Algoritma Yate untuk Rancangan Rangkuman Hasil Analisis Varian Rangkuman Hasil Analisis Varian Faktor dan Level-level untuk Permainan Golf Matriks Rancangan Eksperimen Permainan Golf Faktor dan Level-Level data Pembakaran pada Boiler Matriks Rancangan Fraksional Faktorial 3-Level Data Pembakaran pada Boiler Nilai Statistik Bissell, Metode Lenth dan Fang untuk Permainan Golf Hasil Perhitungan Metode Bissell, Lenth dan Fang Hasil Perhitungan Metode Bissell, Lenth dan Fang Power Metode Bissell untuk Permainan Golf Power Metode Lenth untuk Permainan Golf Power Metode Fang untuk Permainan Golf vii

8 DAFTAR GAMBAR 4.1 Kurva Kuasa Metode Bissell, Lenth, dan Fang untuk Permainan Golf Kurva Kuasa Metode Bissell, Lenth dan Fang untuk Permainan Golf 65 viii

9 DAFTAR LAMPIRAN Lampiran A: Matrik Rancangan dan Data Data Eksperimen Permainan Golf Pembakaran pada Boiler Lampiran B: Hasil Analisis untuk Identifikasi Faktor Signifikan Permainan Golf Kasus Pembakaran Pada Boiled 3-Level Lampiran C: Hasil Perhitungan Power dan Kurva Kuasa Metode Bissell, Lenth, dan Fang 62 Lampiran D : Listing Program Listing Program Iterasi Bissell Listing Program Perhitungan Metode Lenth dan Fang ix

10 Kata Pengantar Segala puji hanya milik Allah, hanya kepada-nya kami berlindung dan hanya kepada-nya kami memohon ampunan, kami berlindung kepada-nya dari keburukan diri kami dan kejelekan amalan-amalan kami. Bahwa, barang siapa diberi petunjuk oleh Allah SWT, tidak seorang yang dapat menyesatkannya dan barang siapa yang disesatkan oleh-nya, tidak seorang yang dapat memberinya petunjuk. Saya bersaksi bahwa tidak ada illah yang berhak diibadahi kecuali Allah SWT, dan aku bersaksi bahwa Muhammad rasulullah SAW adalah rasul-nya. Alhamdulillah, penulis dapat menyelesaikan tesis ini dengan judul Identifikasi Faktor signifikan Rancangan Faktorial Fraksional tanpa Pengulangan Dengan Metode Bissell, Lenth, dan Fang. Tesis ini merupakan salah satu syarat untuk mendapatkan gelar Magister Sains (M. Si.) pada Jurusan Statistika, Program Pascasarjana Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Sepuluh Nopember Surabaya. Penulis menyadari sepenuhnya bahwa tesis ini masih sangat jauh dari kesempurnaan dan dalam penyelesaiannya tidak terlepas dari bantuan, bimbingan, dan arahan dari berbagai pihak, oleh karenanya pada kesempatan ini penulis mengucapkan terima kasih dan penghargaan yang setinggi tingginya kepada yang terhormat: 1. Bapak Dr. Drs. I Nyoman Budiantara, M.S. selaku Koordinator Program Studi S2 Jurusan Statistika Institut Teknologi Sepuluh Nopember Surabaya. 2. Prof. Dra. Susanti Linuwih, M.Stat., Ph.D, selaku pembimbing satu yang telah meluangkan waktu memberikan arahan dan bimbingan kepada penulis. x

11 3. Dr. Purhadi, M.Sc, selaku pembimbing dua yang telah meluangkan waktu memberikan arahan dan bimbingan kepada penulis. 4. Para staf dosen Program Studi Statistika, Institut Teknologi Sepuluh November Surabaya yang telah membekali penulis dengan ilmu pengetahuan. 5. Semua pihak yang telah banyak membantu dan tidak sempat penulis sebutkan namanya satu persatu. Surabaya, Maret 2006 Penulis xi

12 BAB I PENDAHULUAN 1.1 Latar Belakang Penggunaan rancangan faktorial fraksional telah diperkenalkan oleh Tippett (Box dan Meyer, 1986), dan sejak Tahun an telah menjadi perhatian. Voelkel dan Rochester (2004), dalam penelitiannya menyimpulkan bahwa rancangan ini relatif lebih efisien. Eksperimen yang didasarkan pada rancangan faktorial, dimaksudkan untuk menentukan faktor mana diantara sejumlah faktor yang secara potensial memberikan efek pada respon. Namun, pada rancangan faktorial dengan jumlah faktor yang besar dan diikuti oleh jumlah kombinasi perlakuan yang besar, eksperimen menjadi tidak efisien untuk dilakukan. Untuk menurunkan jumlah kombinasi perlakuan, digunakan rancangan faktorial fraksional. Jika terdapat lebih dari satu unit eksperimen untuk setiap perlakuan, maka digunakan analisis varian untuk menguji efek utama dan efek interaksi dalam model. Semua uji tersebut memerlukan rata-rata kuadrat error (mean squares error, MS E ), sebab estimasi dari varians error didasarkan pada variabilitas data yang diperoleh dari hasil pengukuran atau pengamatan yang dilakukan secara berulang-ulang untuk setiap perlakuan. Pertanyaan yang kemudian muncul adalah, bagaimana jika hanya terdapat satu pengamatan pada tiap-tiap perlakuan?. Kelemahan eksperimen tanpa pengulangan adalah tidak terdapat derajat bebas untuk mengestimasi σ 2, tidak ada error dalam setiap perlakuan, yang berakibat pada sulitnya melakukan interpretasi terhadap efek yang dimungkinkan berpengaruh, dan semua yang berkaitan dengan rata-rata kuadrat untuk uji signifikan statistik. Dalam menaksir efek faktor yang signifikan dari rancangan faktorial frak- 1

13 2 sional tanpa pengulangan, telah dikemukakan beberapa metode, diantaranya; Lenth (1989) menggunakan nilai margin of error atau batas kesalahan, simultan margin error dan pseudo sparsity of error untuk menentukan faktor yang signifikan yang didasarkan pada distribusi t, Hamada dan Balakrishnan (1998) mengemukakan bahwa kelemahan dari metode Lenth adalah lemah dalam mengontrol kesalahan type I. Dong (1993) memodifikasi metode Lenth, yaitu mengganti nilai s 0 dengan s 1 yang merupakan trimmed median. Bissell (1989, 1992), mengadopsi uji dispersi Cochran (1954) dalam mengkonstruksi uji statistik untuk mengidentifikasi faktor yang signifikan. Menurut Hamada dan Balakrishnan (1998), kelemahan dari metode Bissell adalah power ujinya akan mengalami penurunan tatkala terdapat banyak faktor yang signifikan. 1.2 Permasalahan Berdasarkan latar belakang yang dijelaskan di atas, rumusan masalah dari penelitian adalah sebagai berikut: 1. Bagaimana menentukan statistik uji dari metode Bissell, Lenth, dan Fang serta penaksirnya dalam mengindentifikasi faktor yang signifikan dalam faktorial fraksional tanpa pengulangan 2. Bagaimana menentukan faktor yang signifikan dalam rancangan faktorial fraksional 2 k dan 3 k tanpa pengulangan dengang menggunakan metode Bissell, Lenth, dan Fang. 1.3 Tujuan Penelitian Dari permasalahan yang dikemukakan di atas, tujuan penelitian dapat dirumuskan sebagai berikut: 1. Menentukan penaksir dan statistik uji untuk mendapat faktor yang signifikan dengan metode Bissell, Lenth, dan Fang.

14 3 2. Membandingkan fungsi power metode Bissell, Lenth, dan Fang dalam mengidentifikasi faktor yang signifikan dari rancangan faktorial fraksional 2 k tanpa pengulangan pada kasus permainan golf. 3. Membandingkan fungsi power metode Bissell, Lenth, dan Fang dalam mengidentifikasi faktor yang signifikan dari rancangan faktorial fraksional 3 k tanpa pengulangan pada kasus pembakaran pada boiler. 1.4 Manfaat Penelitian Manfaat dari penelitian ini adalah: 1. Menambah wawasan keilmuan menyangkut masalah penaksiran efek faktor pada rancangan faktorial fraksional tanpa pengulangan 2. Untuk memberikan alat analisis dalam menetapkan faktor yang signifikan dalam eksperimen rancangan faktorial fraksional tanpa pengulangan. 1.5 Batasan Permasalahan Karena keterbatasan waktu dan mengacu pada rumusan masalah, penelitian ini dibatasi pada masalah pengidentifikasian faktor yang signifikan rancangan faktorial fraksional dua level dan tiga level.

15 BAB II TINJAUAN PUSTAKA 2.1 Model Linier Diberikan variabel respon y dari rancangan faktorial fraksional yang pengamatannya dilakukan tanpa pengulangan untuk tiap kombinasi perlakuan, dan x 1, x 2,..., x k, variabel input yang berkaitan dengan faktor independen. Hubungan antara variabel-variabel tersebut dapat digambarkan dalam persamaan berikut: y = β 0 + β 1 x 1 + β 2 x β k x k + ɛ (2.1) Jika dilakukan pengamatan sebanyak n kali, maka persamaan (2.1) menjadi: y i = β 0 + β 1 x 1i + β 2 x 2i + + β k x ki + ɛ i ; i = 1, 2,, n Model terakhir ini dapat dituliskan dalam model linear, sebagai berikut: y = Xβ + ɛ (2.2) dimana; y = [y 1 y 2 y n ] T adalah vektor pengamatan berukuran n 1, β = [β 0 β 1 β 2 β k ] T adalah vektor dari parameter X adalah matriks berukuran n (k + 1), dan ɛ = [ɛ 1 ɛ 2 ɛ n ] T adalah vektor error berukuran n 1 dan berdistribusi N n (0, σ 2 I). Persamaan (2.2) dapat dituliskan dalam bentuk sebagai berikut: y 1 1 x 11 x 21 x k1 β 0 ɛ 1 y 2. = 1 x 12 x 22 x k2 β ɛ 2. y n 1 x 1n x 2n x kn β k ɛ n Estimasi Kontras Pada analisis variansi dua arah rancangan faktorial fraksional dua faktor tanpa pengulangan dengan model sebagai berikut: y ij = µ + τ i + θ j + ɛ ij ; i = 1, 2; j = 1, 2 (2.3) 4

16 dengan syarat τ 1 + τ 2 = 0 τ 1 = τ 2 dan θ 1 + θ 2 = 0 θ 1 = θ 2. 5 Model tersebut juga dapat dituliskan dalam bentuk persamaan regresi linier, yaitu y i = β 0 + β 1 x 1 + β 2 x 2 + ɛ i ; i = 1, 2, 3, 4 (2.4) untuk x 1 bernilai ( 1, +1) dan x 2 bernilai ( 1, +1). Keterkaitan antara kedua model tersebut dalam menetapkan kontras untuk penaksir efek faktor dapat ditunjukkan sebagai berikut. Dari syarat τ 1 = τ 2 dan θ 1 = θ 2 serta nilai dari x 1 ( 1, +1), dan x 2 ( 1, +1), selanjutnya y 11 = µ + τ 1 + θ 1 + ɛ 11 y 12 = µ + τ 1 θ 1 + ɛ 12 y 21 = µ τ 1 + θ 1 + ɛ 21 y 22 = µ τ 1 θ 1 + ɛ 22 karena (2.3) dan (2.4) ekuivalen, maka dan y 1 = β 0 + β 1 + β 2 + ɛ 1 y 2 = β 0 + β 1 β 2 + ɛ 2 y 1 = β 0 β 1 + β 2 + ɛ 3 y 1 = β 0 β 1 β 2 + ɛ 4 y 11 = y 1 µ + τ 1 + θ 1 = β 0 + β 1 + β 2 (2.5) y 12 = y 2 µ + τ 1 θ 1 = β 0 + β 1 β 2 (2.6) y 21 = y 1 µ τ 1 + θ 1 = β 0 β 1 + β 2 (2.7) y 22 = y 1 µ τ 1 θ 1 = β 0 β 1 β 2 (2.8) Persamaan (2.5) dan (2.6) dijumlahkan µ + τ 1 + θ 1 = β 0 + β 1 + β 2 µ + τ 1 θ 1 = β 0 + β 1 β 2 + 2µ + 2τ 1 = 2β 0 + 2β 1 (2.9) Persamaan (2.5) dan (2.7) dijumlahkan µ + τ 1 + θ 1 = β 0 + β 1 + β 2 µ τ 1 + θ 1 = β 0 β 1 + β 2 + 2µ + 2θ 1 = 2β 0 + 2β 2 (2.10)

17 Persamaan (2.6) dan (2.7) dijumlahkan 6 µ + τ 1 θ 1 = β 0 + β 1 β 2 µ τ 1 + θ 1 = β 0 β 1 + β 2 + 2µ = 2β 0 µ = β 0 (2.11) Selanjutnya, dengan mensubtitusikan persamaan (2.11) ke persamaan (2.9) dan (2.10), diperoleh τ 1 = β 1 dan θ 1 = β 2 Dengan demikian, menaksir parameter-paramter pada model anova adalah sama dengan melakukan penaksiran parameter-parameter pada model regresi. Estimasi kontras dari model pada persamaan (2.2), yaitu: y = Xβ + ɛ dapat diperoleh dengan menggunakan metode kuadrat terkecil (Ordinary Least Square Method), yaitu dengan mengambil turunan pertama dari jumlah kuadrat error terhadap β dan menyamakannya dengan nol yang dijelaskan sebagai berikut: y = Xβ + ɛ ɛ = y Xβ L = ɛ T ɛ = (y Xβ) T (y Xβ) (2.12) persamaan (2.12) merupakan jumlah kuadrat error. Selanjutnya, ambil turunan pertama dari L terhadap β L β = 2XT (y Xβ) = 2X T y + 2X T Xβ L β = 0 2XT y + 2X T Xβ = 0 X T Xβ = X T y β = (X T X) 1 X T y (2.13)

18 dengan syarat X T X tidak singular, diperoleh β = (X T X) 1 X T y yang merupakan penaksir dari β Distribusi dari β a. Ekspektasi β Dari hasil sebelumnya, penaksir dari β adalah β = (X T X) 1 X T y. Untuk menentukan apakah estimasi dari β bias atau tidak, dilakukan dengan langkahlangkah sebagai berikut E( β) = E{(X T X) 1 X T y} = E{(X T X) 1 X T (Xβ + ɛ)} = E{(X T X) 1 X T Xβ + (X T X) 1 X T ɛ)} Karena (X T X) 1 X T X = I dan E(ɛ) = 0, maka E( β) = β Karena E( β) = β, maka β merupakan estimator tak bias dari β b. Varians β V ar( β) = V ar{(x T X) 1 X T y} = {(X T X) 1 X T }V ar(y){(x T X) 1 X T } T = {(X T X) 1 X T }σ 2 I{(X T X) 1 X T } T = σ 2 {(X T X) 1 X T }{(X T X) 1 X T } T = σ 2 {(X T X) 1 X T X(X T X) 1 } Karena (X T X) 1 X T X = I, maka V ar( β) = σ 2 (X T X) 1. Oleh karena β merupakan kombinasi linear dari y 1, y 2,..., y n yang berdistribusi normal, sehingga distribusi dari β adalah β N(β, σ 2 (X T X) 1 ) (2.14)

19 2.1.3 Penaksir σ 2 8 Selanjutnya, untuk menentukan MS E, diketahui ŷ = X β dan ɛ = (y ŷ) SS E = (y ŷ) T (y ŷ) = (y X β) T (y X β) = y T y y T X β β T X T y + β T X T X β karena β T X T y adalah skalar, dan transposnya, (β T X T y) T = y T X β juga merupakan suatu skalar, dan X T y = X T X β maka SS E = y T y 2 β T X T y + β T X T X β = y T y 2 β T X T y + β T X T y = y T y β T X T y dengan demikian jumlah kuadrat error adalah SS E = y T y β T X T y (2.15) Dari persamaan (2.13), β = (X T X) 1 X T y X β = X(X T X) 1 X T y andaikan matriks X(X T X) 1 X T = P dan I n P simetri dan idempoten, maka X β = Py, sehingga y X β = (I n P)y karena SS E = (y X β) T (y X β), maka SS E = ((I n P)y) T ((I n P)y) = y T (I n P) T (I n P)y

20 = y T (I n P)y 9 karena PX β = X β dan E(y T (I n P)y) = tr((i n P)Σ + µ T (I n P)µ) dengan demikian diperoleh E(SS E ) = E(y T (I n P)y) = σ 2 Itr(I n P) + (Xβ) T (I n P)Xβ E(SS E ) = σ 2 (n p) sehingga, suatu estimator tak bias dari σ 2 diberikan sebagai berikut ˆσ 2 = SS E n p MS E = SS E df Pengujian Hipotesis = (y X β) T (y X β) n p Untuk mengetahui faktor-faktor yang signifikan, tentunya perlu dilakukan pengujian hipotesis. Pengujian koefisien regresi atau efek faktor dari suatu model anova dalam mempengaruhi variabel responnya, dapat dilakukan secara serentak dan satu persatu. Pengujian secara serentak menggunakan uji sebagai berikut: 1. Hipotesis: H 0 : β i = 0; i = 1, 2, 3,..., k H 1 : Paling sedikit terdapat satuβ i 0 2. Statistik uji yang berkaitan adalah F hitung = MS R MS E 3. Berkaitan dengan keputusan yang diambil, diberikan Daerah penolakan Tolak H 0 jika F hitung > F v1,v 2 ;α, untuk v 1 sebagai derajat bebas untuk faktor perlakuan dan v 2 sebagai derajat bebas dari error.

21 10 Sedangkan untuk menguji apakah suatu faktor atau koefisien regresi secara individu berpengaruh secara nyata atau tidak terhadap variabel repsonnya, dilakukan dengan menggunakan uji t sebagai berikut: 1. Hipotesis: H 0 : β i = 0; i = 1, 2, 3,..., k H 1 : β i 0 2. Statistik uji yang berkaitan adalah t hitung = β i se( β i ) 3. Berkaitan dengan keputusan yang diambil, diberikan Daerah penolakan Tolak H 0 jika t hitung > t α/2,db. 2.2 Rancangan Fraksional Faktorial Dalam suatu eksperimen, rancangan faktorial adalah suatu rancangan yang mengikutkan seluruh kombinasi perlakuan dari k faktor atau variabel input. Apabila jumlah dari k faktor ini cukup besar, maka akan berakibat pada besarnya jumlah kombinasi perlakuan yang akan dilakukan, dan ini tidak cukup efisien. Rancangan yang sering digunakan untuk menanggulangi hal tersebut, adalah dengan menggunakan rancangan faktorial fraksional dalam rangka menurunkan jumlah kombinasi perlakuan, dan beberapa diantaranya dilakukan tanpa pengulangan. 2.3 Fraksional Faktorial Dua-Level, 2 k p Secara umum, notasi yang digunakan dalam rancangan faktorial fraksional mengikuti notasi yang digunakan dalam rancangan faktorial. Untuk keperluan interpretasi hasil dari eksperimen, akan dijelaskan beberapa pengertian yang berkaitan dengan penyusunan rancangan eksperimen faktorial fraksional.

22 11 Tabel 2.1: Susunan Rancangan Faktorial 2 3 Kontras Kombinasi Perlakuan I A B AB C AC BC ABC (1) a b ab c ac bc abc a. One-Half Fractional dari Rancangan 2 k Andaikan eksperimen dengan tiga faktor, masing-masing terdiri atas dua level. Karena suatu kondisi, hanya sebagian kombinasi perlakuan yang dapat dilakukan dalam eksperimen, yaitu empat dari delapan kombinasi perlakuan. Tabel 2.2: Susunan Rancangan Faktorial Kontras Kombinasi Perlakuan I A B AB C AC BC ABC a b c abc ab ac bc (1) Pada Tabel 2.1, jika dipisahkan interaksi tingkat tingginya, berdasarkan tanda plus dan minusnya, maka akan terbentuk dua kelompok kontras yang masingmasing terdiri dari empat kombinasi perlakuan, sebagaimana yang ditunjukkan pada Tabel 2.2. Dimana, kolom kontras berkaitan dengan efek faktor, sedangkan kolom I mewakili mean total untuk pengamatan dan disebut kolom identitas dan ABC dan +ABC disebut generator atau defining relation.

23 b. Estimasi Efek Perlakuan 12 Karena hanya akan dilakukan pengamatan sebanyak = 4 kombinasi perlakuan, maka akan terdapat d.f T otal = 4 1 = 3 derajat bebas untuk menaksir efek faktor. Estimasi efek didasarkan pada koefisien kontras. sebagai contoh, dari Tabel 2.2 untuk defining relation positif, I = ABC. Namun sebelum menentukan penaksir efek dari masing-masing faktor terlebih dahulu akan ditentukan kontras untuk masing-masing faktor, baik faktor utama maupun faktor interaksinya. Kontras A = C A = (a b c + abc) Kontras B = C B = ( a + b c + abc). Kontras BC = C BC = (a b c + abc) Dari kontras tiap faktor tersebut kemudian dapat ditentukan penaksir efek dari masing-masing faktor, sebagai berikut ini, Estimasi efek utama, Estimasi efek interaksi dua faktor, Â = 1 2 C 3 2 A = 1 (a b c + abc) 2 B = 1 2 C 3 2 B = 1 ( a + b c + abc) 2 Ĉ = 1 2 C 3 2 C = 1 ( a b + c + abc) 2 BC = 1 2 C 3 2 A = 1 (a b c + abc) 2 ÂC = 1 2 C 3 2 B = 1 ( a + b c + abc) 2 ÂB = 1 2 C 3 2 C = 1 ( a b + c + abc) 2 Dari Penaksir efek di atas, nampak bahwa penaksir efek utama A dan interaksi BC, B dengan interaksi AC, dan C dengan interaksi AB adalah sama, sehingga tidak mungkin untuk menyatakan ada perbedaan antara A dan BC,

24 13 B dan AC, dan C dan AB. Oleh karena itu, A disebut alias dengan BC, atau dibaurkan (confounded), demikian halnya dengan B alias dengan AC, dan C alias dengan AB. c. Alias dan Kombinasi Linear dari Efek Faktor Struktur alias untuk rancangan faktorial fraksional dapat diperoleh melalui defining relation. Dalam contoh sebelumnya, rancangan 2 3 dengan a, b, c dan abc sebagai kombinasi perlakuan yang diamati dan I = ABC didefinisikan sebagai defining relation Untuk mendapatkan alias dari suatu efek dapat dilakukan dengan mengalikan kolom dari suatu efek tertentu dari matriks rancangan dengan defining relation, akan diperoleh alias untuk efek tersebut. Sebagai contoh, untuk mendapatkan alias untuk AB, kalikan AB dengan I = ABC, maka: AB.I = AB.ABC = A 2 B 2 C = C d. Jenis Khusus Rancangan Fraksional Faktorial 2 k Rancangan faktorial fraksional dibagi dalam beberapa jenis, yaitu (i) Rancangan resolusi III, dimana tidak ada efek utama yang dibaurkan dengan efek utama yang lainnya, tapi efek utama dibaurkan dengan interaksi dua faktor. sebagai contoh rancangan resolusi III. (ii) Rancangan resolusi IV, dimana tidak ada efek utama yang dibaurkan dengan efek utama yang lain atau efek interaksi dua faktor, tapi interaksi dua faktor dibaurkan dengan sesamanya. Contoh rancangan resolusi IV. (iii) Rancangan resolusi V, dimana tidak ada efek utama atau interaksi dua faktor yang dibaurkan efek faktor utama dan interaksi dua faktor yang lainnya. Tapi interaksi dua faktor dibaurkan dengan interaksi tiga faktor. Contoh rancangan resolusi V.

25 14 Secara umum, suatu rancangan resolusi R adalah keadaan dimana tidak ada efek faktor p yang dibaurkan dengan efek lainnya yang memuat kurang lebih R p faktor. Untuk mengidentifikasi resolusi dari rancangan faktorial fraksional, digunakan angka romawi sebagai indeks Identifikasi Struktur Alias Box dan Wilson (1951), Bisgaard (1991) menunjukkan bahwa konsep alias didasarkan pada struktur kelompok antara kolom-kolom ekuivalen yang memungkinkan adanya penyimpangan dari penaksir kuadrat terkecil dari efek utama yang muncul akibat dari dihilangkannya efek interaksi tingkat tinggi. Selanjutnya, struktur alias dari rancangan dapat diperoleh dengan menggunakan defining relation. Misalkan, rancangan faktorial fraksional 2 3, dengan faktor-faktornya A, B, dan C. Defining relation dari rancangan tersebut adalah interaksi tingkat tingginya yaitu, ABC, dengan mengalikan setiap faktor utama dengan ABC dan faktor interaksi, maka akan diperoleh faktor yang akan diikutkan dalam perhitungan selanjutnya dan struktur alias dari faktor tersebut. Akan tetapi, metode penentuan struktur alias dengan menggunakan defining relation hanya dapat bekerja dengan baik pada rancangan yang sederhana, dan tidak dapat digunakan pada rancangan yang kompleks, seperti irregular fraction dan partial fold-over design. Lebih lanjut, terdapat beberapa rancangan faktorial fraksional yang tidak mempunyai defining relation, seperti Plackett-Burman designs, sedemikian hingga metode ini, tidak mungkin untuk digunakan. Dalam suplemen buku Design and Analysis of Experiment, Montgomery (2005) mengemukakan bahwa, terdapat suatu metode yang secara umum dapat bekerja dengan baik dalam banyak keadaan. Metode tersebut menggunakan polynomial atau model regresi yang merupakan representasi dari model. Secara formal, faktor yang diikutkan dalam penelitian adalah β 1 dan X 1 matriks rancangan yang berkaitan dengan β 1. Diberikan model linear sebagai berikut ; y = X 1 β 1 + ɛ

26 15 dimana y vektor respon n 1, X 1 matriks berukuran n p 1 yang memuat rancangan matriks yang telah diperluas pada model yang ditetapkan oleh peneliti berdasarkan faktor yang dipilih, β 1 vektor dari parameter model berukuran p 1 1, dan ɛ vektor error. Diketahui taksiran dari β 1 adalah β 1 = (X T 1 X 1 ) 1 X T 1 y Andaikan model lengkapnya adalah y = X 1 β 1 + X 2 β 2 + ɛ dimana X 2 matriks berukuran n p 2 yang memuat variabel tambahan yang tidak diikutkan dalam model dan β 2 vektor berukuran p 2 1 dari parameter yang berkaitan dengan variabel yang terpilih. Struktur aliasnya dapat ditunjukkan sebagai berikut: β 1 = (X T 1 X 1 ) 1 X 1 y E( β 1 ) = E{(X T 1 X 1 ) 1 X 1 y} = (X T 1 X 1 ) 1 X 1 E(y) = (X T 1 X 1 ) 1 X 1 E(X 1 β 1 + X 2 β 2 + ɛ) = (X T 1 X 1 ) 1 X 1 E(X 1 β 1 ) + (X T 1 X 1 ) 1 XE(X 2 β 2 ) + (X T 1 X 1 ) 1 X 1 E(ɛ) = (X T 1 X 1 ) 1 X 1 X 1 β 1 + (X T 1 X 1 ) 1 X 1 X 2 β = β 1 + (X T 1 X 1 ) 1 X 1 X 2 β 2 E( β 1 ) = β 1 + (X T 1 X 1 ) 1 (X T 1 X 2 )β 2 Ambil (X T 1 X 1 ) 1 (X T 1 X 2 ) = A, selanjutnya persamaan di atas menjadi E( β 1 ) = β 1 + Aβ 2 dengan A disebut matriks alias. Contoh penerapannya, pada Tabel 2.2 diberikan rancangan faktorial fraksional 2 3 1, dengan I = ABC atau I = x 1 x 2 x 3 sebagai defining relation, dengan mengacu pada persamaan (2.2), bahwa model yang hanya memperhatikan faktor

27 utama, dapat dinyatakan sebagai berikut: 16 y = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + ɛ dimana x 1 merupakan komponen kolom faktor A, x 2 komponen kolom faktor B, dan x 3 komponen kolom faktor C yang dinyatakan dalam bentuk matriks X 1. Model diatas dapat dinyatakan β 1 = β 0 β 1 β 2 β , dan X = Andaikan bahwa, model yang sebenarnya memuat seluruh interkasi dua faktor, sedemikian hingga modelnya adalah y = β 0 + β 1 x 1 +β 2 x 2 + β 3 x 3 + β 12 x 1 x 2 + β 13 x 1 x 3 + β 23 x 2 x 3 + ɛ (2.16) dan untuk bagian interaksi dua faktor dari persamaan (2.16), dimana x 1 x 2, x 1 x 2, dan x 2 x 3 berturut menyatakan komponen kolom faktor AB, AC, dan BC, yang dinyatakan dalam bentuk matriks X 2, yaitu β 2 = β 12 β 13 β , dan X 2 = Selanjutnya, diketahui bahwa (X T 1 X 1 ) 1 = 1 4 I dan XT 1 X 2 = Oleh karena itu, E( β 1 ) = β 1 + (X T 1 X 1 ) 1 X T 1 X 2 β 2

28 β 0 β E 1 β 2 = β 3 β 0 β 1 β 2 β β 0 β 1 + β 23 = β 2 + β β 12 β 13 β β 3 + β Fraksional Faktorial Tiga-Level Konsep rancangan faktorial fraksional dua level dapat diperluas menjadi rancangan faktorial fraksional tiga-level. Bagian terbesar dari faktorial fraksional 3 k adalah rancangan faktorial fraksional 3 k 1, rancangan dibagi ke dalam tiga blok, dimana tiap blok dapat dipilih sebagai rancangan yang akan digunakan. Jika A α 1 B α 2 C α3 K α k merupakan komponen interaksi yang akan digunakan untuk mendefinisikan blok, maka I = A α 1 B α 2 C α3 K α k disebut defining relation dari rancangan faktorial fraksional. Tiap estimasi efek utama atau efek interaksi mempunyai dua alias yang dapat diperoleh dengan mengalikan efek dengan I dan I 2 modulo 3. Secara umum, untuk melakukan pembauran dalam rancangan 3 k diberikan suatu prosedur umum untuk mengkonstruksi suatu defining contrast, yaitu: L = α 1 x 1 + α 2 x α k x k mod(3) dimana α i pangkat dari faktor ke i dalam efek yang akan dibaurkan dan x i level dari faktor ke i dalam tiap kombinasi perlakuan. a. One-third fraction dari Rancangan 3 k Andaikan rancangan faktorial 3 3 yang faktor-faktornya A, B dan C, masingmasing terdiri dari tiga level. Karena suatu kondisi, hanya sebagian kombinasi perlakuan yang dapat dilakukan, maka akan terbentuk empat kelompok kontras yang masing-masing terdiri dari delapan kombinasi perlakuan, sebagaimana ditunjukkan dalam Tabel 2.3. Sebagaimana pada rancangan faktorial fraksional

METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL DENGAN ESTIMASI EFEK ALGORITMA YATES

METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL DENGAN ESTIMASI EFEK ALGORITMA YATES METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL DENGAN ESTIMASI EFEK ALGORITMA YATES SKRIPSI Disusun oleh : MUTIARA ARDIN RIFKIANI 24010211140102 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2k-p DENGAN METODE LENTH SKRIPSI Oleh : GIAN KUSUMA DIAH TANTRI NIM : 24010210130075 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

PERBANDINGAN NILAI FRAKSI PADA RANCANGAN FAKTORIAL FRAKSIONAL 2 k MELALUI METODE BISSELL. Kata Kunci : Faktorial Fraksional dua level, Metode Bissell

PERBANDINGAN NILAI FRAKSI PADA RANCANGAN FAKTORIAL FRAKSIONAL 2 k MELALUI METODE BISSELL. Kata Kunci : Faktorial Fraksional dua level, Metode Bissell September 03 PERBANDINGAN NILAI FRAKSI PADA RANCANGAN FAKTORIAL FRAKSIONAL k MELALUI METODE BISSELL IRAWATY, ANISA DAN HERDIANI, E.T. 3 Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,

Lebih terperinci

(D.6) PENAKSIRAN DATA HILANG PADA DESAIN FAKTORIAL FRAKSIONAL DUA LEVEL TANPA RAPLIKASI DENGAN CARA MEMINIMUMKAN JUMLAH KUADRAT RESIDU

(D.6) PENAKSIRAN DATA HILANG PADA DESAIN FAKTORIAL FRAKSIONAL DUA LEVEL TANPA RAPLIKASI DENGAN CARA MEMINIMUMKAN JUMLAH KUADRAT RESIDU (D.6) PENAKSIRAN DATA HILANG PADA DESAIN FAKTORIAL FRAKSIONAL DUA LEVEL TANPA RAPLIKASI DENGAN CARA MEMINIMUMKAN JUMLAH KUADRAT RESIDU Martinnus Oetama, 2 Budhi Handoko, 3 Sri Winarni Mahasiswa Jurusan

Lebih terperinci

BAB II KAJIAN PUSTAKA. sehingga dapat diamati dan diidentifikasi alasan-alasan perubahan yang terjadi

BAB II KAJIAN PUSTAKA. sehingga dapat diamati dan diidentifikasi alasan-alasan perubahan yang terjadi BAB II KAJIAN PUSTAKA A. Rancangan Percobaan Rancangan percobaan dapat diartikan sebagai serangkaian uji dimana perubahan yang berarti dilakukan pada variabel dari suatu proses atau sistem sehingga dapat

Lebih terperinci

METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL ESTIMASI EFEK ALGORITMA YATES.

METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL ESTIMASI EFEK ALGORITMA YATES. ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 4, Tahun 2015, Halaman 947-956 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian METODE LENTH PADA RANCANGAN FAKTORIAL FRAKSIONAL ESTIMASI EFEK

Lebih terperinci

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH. Mahasiswa Jurusan Statistika FSM UNDIP. Staf Pengajar Jurusan Statistika FSM UNDIP

ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH. Mahasiswa Jurusan Statistika FSM UNDIP. Staf Pengajar Jurusan Statistika FSM UNDIP ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 497-505 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian ANALISIS DESAIN FAKTORIAL FRAKSIONAL 2 k-p DENGAN METODE LENTH

Lebih terperinci

BAB I PENDAHULUAN. Rancangan percobaan (eksperimen) adalah suatu tes atau serangkaian tes

BAB I PENDAHULUAN. Rancangan percobaan (eksperimen) adalah suatu tes atau serangkaian tes BAB I PENDAHULUAN A. Latar Belakang Rancangan percobaan (eksperimen) adalah suatu tes atau serangkaian tes dengan maksud mengamati dan mengidentifikasi perubahan-perubahan pada output respons yang disebabkan

Lebih terperinci

PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK

PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK TESIS ST 2309 PENGUJIAN HIPOTESIS DALAM MODEL SPLINE PADA REGRESI NONPARAMETRIK AHMAD ZAKI NRP. 1305 201 015 DOSEN PEMBIMBING Dr. Drs. I Nyoman Budiantara, M.S. Ir. Mutiah Salamah Chamid, M.Kes. PROGRAM

Lebih terperinci

RANCANGAN FAKTORIAL FRAKSIONAL 2 k-p (Aplikasi dengan Program SPSS)

RANCANGAN FAKTORIAL FRAKSIONAL 2 k-p (Aplikasi dengan Program SPSS) RANCANGAN FAKTORIAL FRAKSIONAL 2 k-p (Aplikasi dengan Program SPSS) skripsi disajikan sebagai salah satu syarat untuk memperoleh gelar Sarjana Sain Matematika oleh Endah Prasetia Nengrum 4150406539 JURUSAN

Lebih terperinci

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan

TINJAUAN PUSTAKA. Analisis regresi adalah suatu metode analisis data yang menggambarkan II. TINJAUAN PUSTAKA 2.1 Analisis Regresi Analisis regresi adalah suatu metode analisis data yang menggambarkan hubungan fungsional antara variabel respon dengan satu atau beberapa variabel prediktor.

Lebih terperinci

DESAIN FAKTORIAL FRAKSIONAL 2 k-p SERTA ANALISISNYA BERBASIS WEB. Candra Aji dan Dadan Dasari 1 Universitas Pendidikan Indonesia ABSTRAK

DESAIN FAKTORIAL FRAKSIONAL 2 k-p SERTA ANALISISNYA BERBASIS WEB. Candra Aji dan Dadan Dasari 1 Universitas Pendidikan Indonesia ABSTRAK DESAIN FAKTORIAL FRAKSIONAL k-p SERTA ANALISISNYA BERBASIS WEB Candra Aji dan Dadan Dasari Universitas Pendidikan Indonesia ABSTRAK Dalam eksperimen faktorial k, yakni eksperimen yang melibatkan k buah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Populasi dan Sampel Populasi adalah kelompok besar individu yang mempunyai karakteristik umum yang sama atau kumpulan dari individu dengan kualitas serta ciri-ciri yang telah ditetapkan.

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Analisis Regresi adalah analisis statistik yang mempelajari bagaimana memodelkan sebuah model fungsional dari data untuk dapat menjelaskan ataupun meramalkan suatu

Lebih terperinci

Pengujian One-Way ANOVA dengan manual dan dilengkapi analisis dengan SPSS 19 SOWANTO-KEMPO ANALYSIS OF VARIANS (ANOVA)

Pengujian One-Way ANOVA dengan manual dan dilengkapi analisis dengan SPSS 19 SOWANTO-KEMPO ANALYSIS OF VARIANS (ANOVA) ANALYSIS OF VARIANS (ANOVA) A. Memahami ANOVA Analysis of variance (ANOVA) atau Analisis Variansi (ANAVA) adalah tehnik statistik yang dikembangkan dan diperkenalkan pertama kali oleh Sir. R. A. Fisher.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Matriks Matriks adalah himpunan bilangan real yang disusun secara empat persegi panjang, mempunyai baris dan kolom dengan bentuk umum : Tiap-tiap bilangan yang berada didalam

Lebih terperinci

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG

PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG PENERAPAN RANCANGAN BLOK RANDOM TIDAK LENGKAP SEIMBANG TERHADAP KOMBINASI PUPUK NANOSILIKA DAN PUPUK NPK PADA PERTUMBUHAN TANAMAN JAGUNG SKRIPSI Disusun Oleh : ASISMARTA 24010210141004 JURUSAN STATISTIKA

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Regresi Linier Sederhana Dalam beberapa masalah terdapat dua atau lebih variabel yang hubungannya tidak dapat dipisahkan karena perubahan nilai suatu variabel tidak selalu terjadi

Lebih terperinci

BAB II KAJIAN TEORI. Percobaan pada umumnya dilakukan untuk menemukan sesuatu. Menurut

BAB II KAJIAN TEORI. Percobaan pada umumnya dilakukan untuk menemukan sesuatu. Menurut BAB II KAJIAN TEORI A. Rancangan Percobaan Percobaan pada umumnya dilakukan untuk menemukan sesuatu. Menurut Suhaemi (2011) secara teoritis, percobaan diartikan sebagai tes atau penyelidikan terencana

Lebih terperinci

BAB I PENDAHULUAN. 1.1.Latar Belakang dan Permasalahan

BAB I PENDAHULUAN. 1.1.Latar Belakang dan Permasalahan 1 BAB I PENDAHULUAN 1.1.Latar Belakang dan Permasalahan Response Surface Methodology sudah dikenalkan oleh Box dan Wilson sejak tahun 1951. Dalam buku Design and Analysis of Experiment, Montgomerry (2001),

Lebih terperinci

II. TINJAUAN PUSTAKA. dengan kendala menjadi model penuh tanpa kendala,

II. TINJAUAN PUSTAKA. dengan kendala menjadi model penuh tanpa kendala, 4 II. TINJAUAN PUSTAKA Dalam penelitian ini akan didiskusikan tentang transformasi model tak penuh dengan kendala menjadi model penuh tanpa kendala, pendugaan parameter, pengujian hipotesis dan selang

Lebih terperinci

Magister Manajemen Univ. Muhammadiyah Yogyakarta

Magister Manajemen Univ. Muhammadiyah Yogyakarta Analisis Regresi Linier Wihandaru Sotya Pamungkas Pendahuluan 1 Pendahuluan A. Pengertian Regresi dan Korelasi Istilah regresi diperkenalkan oleh Francis Galton tahun 1886 diperkuat oleh Karl Pearson tahun

Lebih terperinci

BAB III. Model Regresi Linear 2-Level. Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat

BAB III. Model Regresi Linear 2-Level. Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat BAB III Model Regresi Linear 2-Level Sebuah model regresi dikatakan linear jika parameter-parameternya bersifat linear. Untuk data berstruktur hirarki 2 tingkat, analisis regresi yang dapat digunakan adalah

Lebih terperinci

REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA

REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA REGRESI ROBUST MM-ESTIMATOR UNTUK PENANGANAN PENCILAN PADA REGRESI LINIER BERGANDA SKRIPSI Disusun Oleh : SHERLY CANDRANINGTYAS J2E 008 053 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. INJAUAN PUSAKA.1 Penduga Area Kecil Rao (003) mengemukakan bahwa suatu area disebut kecil apabila contoh yang diambil pada area tersebut tidak mencukupi untuk melakukan pendugaan langsung dengan hasil

Lebih terperinci

Bab 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI 17 Bab 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

DESAIN EKSPERIMEN TERSARANG

DESAIN EKSPERIMEN TERSARANG DESAIN EKSPERIMEN TERSARANG PENDAHULUAN 1-1. Latar Belakang Bab ini memperkenalkan desain eksperimental yaitu desain yang bersarang. Desain ini cukup luas aplikasinya dalam penggunaan industri. Desain

Lebih terperinci

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi

BAB II TINJAUAN PUSTAKA. Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi BAB II TINJAUAN PUSTAKA Dalam bab ini dibahas tentang matriks, metode pengganda Lagrange, regresi linear, metode kuadrat terkecil, restriksi linear, multikolinearitas, regresi ridge, uang primer, dan koefisien

Lebih terperinci

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI

PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI PENDUGAAN ANGKA PUTUS SEKOLAH DI KABUPATEN SEMARANG DENGAN METODE PREDIKSI TAK BIAS LINIER TERBAIK EMPIRIK PADA MODEL PENDUGAAN AREA KECIL SKRIPSI Disusun Oleh: NANDANG FAHMI JALALUDIN MALIK NIM. J2E 009

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA 5 BAB 2 TINJAUAN PUSTAKA 2.1 Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemenelemen yang disusun secara teratur menurut baris dan kolom berbentuk

Lebih terperinci

PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA

PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA E-Jurnal Matematika Vol. 2, No.4, Nopember 2013, 1-5 ISSN: 2303-1751 PERBANDINGAN REGRESI KOMPONEN UTAMA DAN ROBPCA DALAM MENGATASI MULTIKOLINEARITAS DAN PENCILAN PADA REGRESI LINEAR BERGANDA NI WAYAN

Lebih terperinci

Simulasi Komputer Untuk Menentukan Kombinasi Perlakuan Dengan Disain Faktorial Setengah Replikasi

Simulasi Komputer Untuk Menentukan Kombinasi Perlakuan Dengan Disain Faktorial Setengah Replikasi Simulasi Komputer Untuk Menentukan Kombinasi Perlakuan Dengan Disain Faktorial Setengah Replikasi M. Haviz Irfani STMIK MDP Palembang haviz@stmikmdp.net Abstrak: Eksperimen faktorial adalah eksperimen

Lebih terperinci

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Pada Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung) ISSN: 2339-2541 JURNAL GAUSSIAN, Volume 4, Nomor 3, Tahun 2015, Halaman 697-704 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. 1 Fungsi Permintaan Fungsi permintaan menunjukkan hubungan antara jumlah produk yang diminta oleh konsumen dengan harga produk (Nicholson, 2005). Tugas eksperimen ini adalah melakukan

Lebih terperinci

BAB I PENDAHULUAN. dependen disebut dengan regresi linear sederhana, sedangkan model regresi linear

BAB I PENDAHULUAN. dependen disebut dengan regresi linear sederhana, sedangkan model regresi linear BAB I PENDAHULUAN A. Latar Belakang Analisis regresi linear merupakan metode statistika yang digunakan untuk membentuk model hubungan antara variabel dependen (terikat; respon) dengan satu atau lebih variabel

Lebih terperinci

BAB III METODE WEIGHTED LEAST SQUARE

BAB III METODE WEIGHTED LEAST SQUARE BAB III METODE WEIGHTED LEAST SQUARE 3.1 Uji White Salah satu asumsi dari model regresi linear klasik adalah varian error ε i pada setiap nilai variabel bebas adalah sama (konstan). Asumsi ini disebut

Lebih terperinci

Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf

Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf Jurnal Gradien Vol 8 No 1 Januari 2012: 763.-774 Pembauran (Confounding) Pada Percobaan Faktorial Tiga Taraf Nur Afandi, Sigit Nugroho dan Pepi Novianti Jurusan Matematika, Fakultas Matematika dan Ilmu

Lebih terperinci

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER

ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER ESTIMASI REGRESI ROBUST M PADA FAKTORIAL RANCANGAN ACAK LENGKAP YANG MENGANDUNG OUTLIER Siswanto 1, Raupong 2, Annisa 3 ABSTRAK Dalam statistik, melakukan suatu percobaan adalah salah satu cara untuk mendapatkan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Himpunan Fuzzy Tidak semua himpunan yang dijumpai dalam kehidupan sehari-hari terdefinisi secara jelas, misalnya himpunan orang miskin, himpunan orang pandai, himpunan orang tinggi,

Lebih terperinci

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan

BAB II LANDASAN TEORI. Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan BAB II LANDASAN TEORI 2.1 Data Data merupakan bentuk jamak dari datum. Data merupakan sekumpulan datum yang berisi fakta-fakta serta gambaran suatu fenomena yang dikumpulkan, dirangkum, dianalisis, dan

Lebih terperinci

PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI

PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI PENDUGA RASIO PADA PENGAMBILAN SAMPEL ACAK SEDERHANA MENGGUNAKAN KOEFISIEN REGRESI, KURTOSIS, DAN KORELASI oleh EKO BUDI SUSILO M0110022 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan

Lebih terperinci

BAB 1 PENDAHULUAN. banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan

BAB 1 PENDAHULUAN. banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan BAB 1 PENDAHULUAN 1.1. Latar Belakang Masalah Dalam masyarakat modern seperti sekarang ini, metode statistika telah banyak diterapkan pada berbagai bidang sebagai dasar bagi pengambilan keputusan / kebijakan.

Lebih terperinci

Matematika dan Statistika

Matematika dan Statistika ISSN 4-6669 Volume, Juni 0 MAJALAH ILMIAH Matematika dan Statistika DITERBITKAN OLEH: JURUSAN MATEMATIKA FMIPA UNIVERSITAS JEMBER Model Permukaan Respon pada(4 3) MODEL PERMUKAAN RESPON PADA PERCOBAAN

Lebih terperinci

REGRESI LINIER BERGANDA

REGRESI LINIER BERGANDA REGRESI LINIER BERGANDA 1. PENDAHULUAN Analisis regresi merupakan salah satu teknik analisis data dalam statistika yang seringkali digunakan untuk mengkaji hubungan antara beberapa variabel dan meramal

Lebih terperinci

BAB I PENDAHULUAN. yang saling berhubungan atau berpengaruh satu sama lain. Ilmu statistika

BAB I PENDAHULUAN. yang saling berhubungan atau berpengaruh satu sama lain. Ilmu statistika BAB I PENDAHULUAN A. Latar Belakang Masalah Dalam kehidupan, seringkali peneliti dihadapkan dengan suatu kejadian yang saling berhubungan atau berpengaruh satu sama lain. Ilmu statistika mengenal metode

Lebih terperinci

BAB III METODE PENELITIAN. dan penguasaan keterampilan kognitif baik secara sendiri-sendiri atau bersama -

BAB III METODE PENELITIAN. dan penguasaan keterampilan kognitif baik secara sendiri-sendiri atau bersama - 36 BAB III METODE PENELITIAN A. Jenis Penelitian Penelitian ini bertujuan untuk mengetahui pengaruh penguasaan konsep dan penguasaan keterampilan kognitif baik secara sendiri-sendiri atau bersama - sama

Lebih terperinci

RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA

RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA RATA-RATA KUADRAT SESATAN PENDUGA REGRESI DENGAN KOMBINASI LINIER DUA VARIABEL BANTU PADA SAMPEL ACAK SEDERHANA oleh INTAN LISDIANA NUR PRATIWI NIM. M0110040 SKRIPSI ditulis dan diajukan untuk memenuhi

Lebih terperinci

METODE PENELITIAN. deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi

METODE PENELITIAN. deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi III. METODE PENELITIAN Variabel-variabel yang digunakan dalam penelitian ini adalah tingkat suku bunga deposito berjangka terhadap suku bunga LIBOR, suku bunga SBI, dan inflasi pada bank umum di Indonesia.

Lebih terperinci

PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Agustini Tripena Br.Sb.

PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER. Agustini Tripena Br.Sb. JMP : Volume 3 Nomor 1, Juni 2011 PEMILIHAN PARAMETER PENGHALUS DALAM REGRESI SPLINE LINIER Agustini Tripena Br.Sb. Fakultas Sains dan Teknik, Universitas Jenderal Soedirman Purwokerto, Indonesia ABSTRAK.

Lebih terperinci

PEMODELAN UPAH MINIMUM KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN FAKTOR-FAKTOR YANG MEMPENGARUHINYA MENGGUNAKAN REGRESI RIDGE

PEMODELAN UPAH MINIMUM KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN FAKTOR-FAKTOR YANG MEMPENGARUHINYA MENGGUNAKAN REGRESI RIDGE PEMODELAN UPAH MINIMUM KABUPATEN/KOTA DI JAWA TENGAH BERDASARKAN FAKTOR-FAKTOR YANG MEMPENGARUHINYA MENGGUNAKAN REGRESI RIDGE SKRIPSI Disusun Oleh: HILDAWATI 24010211130024 JURUSAN STATISTIKA FAKULTAS

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Repeated Measurement Dalam repeated measurement setiap perlakuan menunjukkan pengukuran terhadap satu sampel (unit eksperimen ) atau beberapa sampel yang memiliki karakter sama

Lebih terperinci

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu

III. METODE PENELITIAN. Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu III. METODE PENELITIAN A. Jenis dan Data Jenis data yang digunakan dalam penelitian ini adalah data sekunder deret waktu (time-series data) bulanan dari periode 2004:01 2011:12 yang diperoleh dari PT.

Lebih terperinci

ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES )

ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES ) ANALISIS VARIAN DUA FAKTOR DALAM RANCANGAN PENGAMATAN BERULANG ( REPEATED MEASURES ) SKRIPSI Disusun Oleh: ALIF HARTATI J2E009036 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO

Lebih terperinci

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung)

PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung) PENERAPAN REGRESI LINIER MULTIVARIAT PADA DISTRIBUSI UJIAN NASIONAL 2014 (Studi Kasus Nilai Ujian Nasional 2014 SMP Negeri 1 Sayung) SKRIPSI Oleh : VICA NURANI 24010211130033 JURUSAN STATISTIKA FAKULTAS

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data

II. TINJAUAN PUSTAKA. Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data 5 II. TINJAUAN PUSTAKA Dalam proses penelitian untuk mengkaji karakteristik penduga GMM pada data panel ini, penulis menggunakan definisi, teorema dan konsep dasar yang berkaitan dengan pendugaan parameter,

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Deret Fourier Dalam bab ini akan dibahas mengenai deret dari suatu fungsi periodik. Jenis fungsi ini sering muncul dalam berbagai persoalan fisika, seperti getaran mekanik, arus

Lebih terperinci

BAB III MODEL REGRESI DATA PANEL. Pada bab ini akan dikemukakan dua pendekatan dari model regresi data

BAB III MODEL REGRESI DATA PANEL. Pada bab ini akan dikemukakan dua pendekatan dari model regresi data BAB III MODEL REGRESI DATA PANEL Pada bab ini akan dikemukakan dua pendekatan dari model regresi data panel, yaitu pendekatan fixed effect dan pendekatan random effect yang merupakan ide pokok dari tugas

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 21 Analisis Regresi Perubahan nilai suatu variabel tidak selalu terjadi dengan sendirinya, namun perubahan nilai variabel itu dapat disebabkan oleh berubahnya variabel lain yang berhubungan

Lebih terperinci

ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS)

ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS) ESTIMASI PARAMETER MODEL REGRESI M-KUANTIL MENGGUNAKAN METODE ITERATIVE REWEIGHTED LEAST SQUARE (IRLS) oleh Lisa Apriana Dewi M0108055 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratanmemperoleh

Lebih terperinci

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat

BAB II KAJIAN PUSTAKA. dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat BAB II KAJIAN PUSTAKA 2.1 Konsep Dasar Runtun Waktu Data runtun waktu (time series) merupakan data yang dikumpulkan, dicatat, atau diobservasi sepanjang waktu secara berurutan. Periode waktu dapat berupa

Lebih terperinci

PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA

PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA PERBANDINGAN METODE MCD-BOOTSTRAP DAN LAD- BOOTSTRAP DALAM MENGATASI PENGARUH PENCILAN PADA ANALISIS REGRESI LINEAR BERGANDA Ni Luh Putu Ratna Kumalasari 1, Ni Luh Putu Suciptawati 2,, Made Susilawati

Lebih terperinci

BAB ΙΙ LANDASAN TEORI

BAB ΙΙ LANDASAN TEORI 7 BAB ΙΙ LANDASAN TEORI Berubahnya nilai suatu variabel tidak selalu terjadi dengan sendirinya, bisa saja berubahnya nilai suatu variabel disebabkan oleh adanya perubahan nilai pada variabel lain yang

Lebih terperinci

PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO 2 dan Gross Nation Product di Malaysia, Bhutan, dan Nepal)

PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO 2 dan Gross Nation Product di Malaysia, Bhutan, dan Nepal) PENGUJIAN KESAMAAN BEBERAPA MODEL REGRESI NON LINIER GEOMETRI (Studi Kasus : Data Emisi CO dan Gross Nation Product di Malaysia, Bhutan, dan Nepal) Yanti I 1, Islamiyati A, Raupong 3 Abstrak Regresi geometrik

Lebih terperinci

Status Daerah SMA 5, 4, 4, 2, 3 2, 2, 3, 2, 1 PT 4, 3, 3, 2, 2 2, 1, 2, 0, 1

Status Daerah SMA 5, 4, 4, 2, 3 2, 2, 3, 2, 1 PT 4, 3, 3, 2, 2 2, 1, 2, 0, 1 UGAS MODEL LINEAR Dosen: Dr. Purhadi, M.Sc Kasus: Menurut hasil penelitian, terdapat perbedaan ukuran (size) rumah tangga antara pedesaan dan perkotaan. Selain itu, pendidikan ibu turut andil dalam menentukan

Lebih terperinci

SKRIPSI. Anita Nur Qomariah NRP

SKRIPSI. Anita Nur Qomariah NRP SKRIPSI STUDI KLASIFIKASI KABUPATEN DAN KOTA DI JAWA TIMUR BERDASARKAN VARIABEL - VARIABEL SOSIAL EKONOMI DENGAN PENDEKATAN ANALISIS DISKRIMINAN DAN REGRESI LOGISTIK Oleh : Anita Nur Qomariah NRP.1302.109.017

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI

ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI ANALISIS KERAGAMAN PADA DATA HILANG DALAM RANCANGAN KISI SEIMBANG SKRIPSI Disusun oleh: NARISWARI DIWANGKARI 24010211120003 JURUSAN STATISTIKA FAKULTAS SAINS DAN MATEMATIKA UNIVERSITAS DIPONEGORO SEMARANG

Lebih terperinci

PERBANDINGAN ANALISIS KLASIFIKASI MENGGUNAKAN METODE K-NEAREST NEIGHBOR

PERBANDINGAN ANALISIS KLASIFIKASI MENGGUNAKAN METODE K-NEAREST NEIGHBOR PERBANDINGAN ANALISIS KLASIFIKASI MENGGUNAKAN METODE K-NEAREST NEIGHBOR (K-NN) DAN MULTIVARIATE ADAPTIVE REGRESSION SPLINE (MARS) PADA DATA AKREDITASI SEKOLAH DASAR NEGERI DI KOTA SEMARANG SKRIPSI Oleh

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis Korelasi adalah metode statstika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel atau

Lebih terperinci

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan.

BAB II KAJIAN TEORI. Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. BAB II KAJIAN TEORI A. Matriks 1. Definisi Matriks Sebuah Matriks adalah susunan segi empat siku-siku dari bilangan-bilangan. Bilangan-bilangan dalam susunan tersebut dinamakan entri dalam matriks (Howard

Lebih terperinci

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan

BAB III METODE THEIL. menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan 28 BAB III METODE THEIL Analisis regresi merupakan suatu metode yang digunakan untuk menganalisis hubungan antara variabel bebas dan variabel terikat yang dinyatakan dalam sebuah persamaan regresi. Dalam

Lebih terperinci

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan

TINJAUAN PUSTAKA. Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan 4 II. TINJAUAN PUSTAKA 2.1 Definisi Pencilan Dalam proses pengumpulan data, peneliti sering menemukan nilai pengamatan yang bervariasi (beragam). Keberagaman data ini, di satu sisi sangat dibutuhkan dalam

Lebih terperinci

BAB III METODE PERMUKAAN RESPON. Pengkajian pada suatu proses atau sistem sering kali terfokus pada

BAB III METODE PERMUKAAN RESPON. Pengkajian pada suatu proses atau sistem sering kali terfokus pada BAB III METODE PERMUKAAN RESPON 3.1 Pendahuluan Pengkajian pada suatu proses atau sistem sering kali terfokus pada hubungan antara respon dan variabel masukannya (input). Tujuannya adalah untuk mengoptimalkan

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Identifikasi Variabel Prediktor pada Model MGWR Setiap variabel prediktor pada model MGWR akan diidentifikasi terlebih dahulu untuk mengetahui variabel prediktor yang berpengaruh

Lebih terperinci

ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP

ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 125 130 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND ANALISIS ESTIMASI PARAMETER REGRESI KUANTIL DENGAN METODE BOOTSTRAP MESI OKTAFIA, FERRA YANUAR, MAIYASTRI

Lebih terperinci

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di

BAB II LANDASAN TEORI. landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di 5 BAB II LANDASAN TEORI Bab ini membahas pengertian-pengertian dasar yang digunakan sebagai landasan pembahasan pada bab selanjutnya. Pengertian-pengertian dasar yang di bahas adalah sebagai berikut: A.

Lebih terperinci

SKRIPSI WANDA SURIANTO

SKRIPSI WANDA SURIANTO ANALISIS PERBANDINGAN REGRESI KOMPONEN UTAMA DAN REGRESI RIDGE UNTUK MENGATASI MASALAH MULTIKOLINIERITAS PADA MODEL REGRESI LINIER BERGANDA SKRIPSI WANDA SURIANTO 120803034 DEPARTEMEN MATEMATIKA FAKULTAS

Lebih terperinci

Didonwload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN

Didonwload dari ririez.blog.uns.ac.id BAB I PENDAHULUAN BAB I PENDAHULUAN Pada bab sebelumnya telah dibahas rancangan faktorial secara umum, seringkali peneliti berhadapan pada rancangan yang melibatkan sejumlah faktor yang masing-masing faktor hanya terdiri

Lebih terperinci

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan

BAB 2 LANDASAN TEORI. 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan 7 BAB 2 LANDASAN TEORI 2.1 Defenisi Analisis Regresi dan Korelasi 1. Analisis korelasi adalah metode statistika yang digunakan untuk menentukan kuatnya atau derajat hubungan linier antara dua variabel

Lebih terperinci

Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur

Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Model Regresi Multivariat untuk Menentukan Tingkat Kesejahteraan Kabupaten dan Kota di Jawa Timur M.Fariz Fadillah Mardianto,

Lebih terperinci

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q)

KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) SIDANG TUGAS AKHIR KAJIAN METODE BOOTSTRAP DALAM MEMBANGUN SELANG KEPERCAYAAN DENGAN MODEL ARMA (p,q) Disusun oleh : Ratna Evyka E.S.A NRP 1206.100.043 Pembimbing: Dra. Nuri Wahyuningsih, M.Kes Dra.Laksmi

Lebih terperinci

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A,

II. TINJAUAN PUSTAKA. Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, II. TINJAUAN PUSTAKA 2.1 Konsep-konsep Matriks Definisi Matriks Suatu matriks didefinisikan dengan huruf kapital yang dicetak tebal, misalnya A, B, X, Y. Elemen-elemen di dalamnya disebut skalar yang berasal

Lebih terperinci

DESAIN EKSPERIMEN & SIMULASI 5

DESAIN EKSPERIMEN & SIMULASI 5 DESAIN EKSPERIMEN & SIMULASI 5 (DS.1) OPTIMISASI RESPON EKSPERIMEN MENGGUNAKAN DESAIN BOX-BEHNKEN Budhi Handoko Staf Pengajar Jurusan Statistika FMIPA Unpad Email: budhihandoko@unpad.ac.id Abstrak Salah

Lebih terperinci

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel

BAB 2 LANDASAN TEORI. disebut dengan bermacam-macam istilah: variabel penjelas, variabel BAB 2 LANDASAN TEORI 2.1 Pengertian Regresi Regresi dalam statistika adalah salah satu metode untuk menentukan tingkat pengaruh suatu variabel terhadap variabel yang lain. Variabel yang pertama disebut

Lebih terperinci

BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR)

BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION (MGWR) BAB III MIXED GEOGRAPHICALLY WEIGHTED REGRESSION 3.1 Mixed Geographically Weighted Regression Model Mixed Geographically Weighted Regression merupakan model kombinasi atau gabungan antara regresi global

Lebih terperinci

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP

KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF TUGAS AKHIR SM 1330 NUR SHOFIANAH NRP TUGAS AKHIR SM 1330 KAJIAN ESTIMASI PARAMETER MODEL AUTOREGRESIF NUR SHOFIANAH NRP 1203 100 009 Dosen Pembimbing Dra. Laksmi Prita W, MSi Dra. Nuri Wahyuningsih, MKes JURUSAN MATEMATIKA Fakultas Matematika

Lebih terperinci

Metode Bootstrap Untuk mengestimasi Data Hilang (missing Data) pada Eksperimen Faktorial

Metode Bootstrap Untuk mengestimasi Data Hilang (missing Data) pada Eksperimen Faktorial SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Metode Bootstrap Untuk mengestimasi Data Hilang (missing Data) pada Eksperimen Faktorial Enny Supartini Departemen Statistika, F MIPA, Universitas

Lebih terperinci

BAB III REGRESI PADA DATA SIRKULAR

BAB III REGRESI PADA DATA SIRKULAR BAB III REGRESI PADA DATA SIRKULAR Variabel dalam suatu regresi secara umum terdiri atas variabel bebas (independent variable dan variabel terikat (dependent variable. Jenis data pada variabel-variabel

Lebih terperinci

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN

PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN E-Jurnal Matematika Vol. 3, No.2 Mei 2014, 45-52 ISSN: 2303-1751 PERBANDINGAN REGRESI ROBUST PENDUGA MM DENGAN METODE RANDOM SAMPLE CONSENSUS DALAM MENANGANI PENCILAN NI PUTU NIA IRFAGUTAMI 1, I GUSTI

Lebih terperinci

II. TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema

II. TINJAUAN PUSTAKA. Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema II. TINJAUAN PUSTAKA Dalam bab ini akan dibahas beberapa konsep dasar, definisi-definisi serta teorema yang berkaitan dalam hal pendugaan parameter pada model linier campuran ini, yaitu sebagai berikut

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

BAB I PENDAHULUAN. untuk membentuk model hubungan antara variabel dependen dengan satu atau

BAB I PENDAHULUAN. untuk membentuk model hubungan antara variabel dependen dengan satu atau BAB I PENDAHULUAN A. Latar Belakang Analisis regresi linier merupakan teknik dalam statistika yang digunakan untuk membentuk model hubungan antara variabel dependen dengan satu atau lebih variabel independen.

Lebih terperinci

ESTIMASI FUNGSI PENGHALUS PADA REGRESI ISOTONIK ADITIF DENGAN METODE KUADRAT TERKECIL. oleh YULIANA SITI NURAINI M

ESTIMASI FUNGSI PENGHALUS PADA REGRESI ISOTONIK ADITIF DENGAN METODE KUADRAT TERKECIL. oleh YULIANA SITI NURAINI M ESTIMASI FUNGSI PENGHALUS PADA REGRESI ISOTONIK ADITIF DENGAN METODE KUADRAT TERKECIL oleh YULIANA SITI NURAINI M0107071 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar

Lebih terperinci

Pertemuan Ke-12. Analysis of Varians (anova)_m. Jainuri, M.Pd

Pertemuan Ke-12. Analysis of Varians (anova)_m. Jainuri, M.Pd Pertemuan Ke-1 1 Pendahuluan Statistik parametrik yang digunakan untuk mencari perbedaan atau persamaan dua rata-rata adalah Uji-t, dan analysis of varians (anova/ anova) digunakan untuk mencari perbedaan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Aljabar Matriks 2.1.1 Definisi Matriks Matriks adalah suatu kumpulan angka-angka yang juga sering disebut elemen-elemen yang disusun secara teratur menurut baris dan kolom sehingga

Lebih terperinci

PRA-PEMPROSESAN DATA LUARAN GCM CSIRO-Mk3 DENGAN METODE TRANSFORMASI WAVELET DISKRIT

PRA-PEMPROSESAN DATA LUARAN GCM CSIRO-Mk3 DENGAN METODE TRANSFORMASI WAVELET DISKRIT TUGAS AKHIR - ST 1325 PRA-PEMPROSESAN DATA LUARAN GCM CSIRO-Mk3 DENGAN METODE TRANSFORMASI WAVELET DISKRIT ANGGREINI SUPRAPTI NRP 1305 100 005 Dosen Pembimbing Dr. Sutikno, S.Si, M.Si JURUSAN STATISTIKA

Lebih terperinci

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma)

BAB III KALMAN FILTER DISKRIT. Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) BAB III KALMAN FILTER DISKRIT 3.1 Pendahuluan Kalman Filter adalah rangkaian teknik perhitungan matematika (algoritma) yang memberikan perhitungan efisien dalam mengestimasi state proses, yaitu dengan

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1 Variabel Penelitian Penelitian ini menggunakan satu definisi variabel operasional yaitu ratarata temperatur bumi periode tahun 1880 sampai dengan tahun 2012. 3.2 Jenis dan

Lebih terperinci

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 03, No. 3 (2014), hal 163-168. METODE ORDINARY LEAST SQUARES DAN LEAST TRIMMED SQUARES DALAM MENGESTIMASI PARAMETER REGRESI KETIKA TERDAPAT OUTLIER

Lebih terperinci

PERCOBAAN FAKTORIAL DENGAN RANCANGAN DASAR BUJUR SANGKAR LATIN

PERCOBAAN FAKTORIAL DENGAN RANCANGAN DASAR BUJUR SANGKAR LATIN PERCOBAAN FAKTORIAL DENGAN RANCANGAN DASAR BUJUR SANGKAR LATIN SKRIPSI Oleh: Umi Sholikha J2A 606 050 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS DIPONEGORO SEMARANG 2010

Lebih terperinci