Screw Theory and Reciprocity

dokumen-dokumen yang mirip
Electric Field. Wenny Maulina

KINEMATIKA DAN DINAMIKA TEKNIK MOBILITAS DARI MEKANISME HUKUM GRASHOF

BAB 2 LANDASAN TEORI. MATLAB adalah singkatan dari MATRIX LABORATORY, yang biasanya di. Pengembangan Algoritma matematika dan komputasi

Pemrograman Lanjut. Interface

LAMPIRAN I SIGN CONVENTION

Keseimbangan Torsi Coulomb

Nama Soal Pembagian Ring Road Batas Waktu 1 detik Nama Berkas Ringroad[1..10].out Batas Memori 32 MB Tipe [output only] Sumber Brian Marshal

TRANSFORMASI SUMBU KOORDINAT

TIF APPLIED MATH 1 (MATEMATIKA TERAPAN 1) Week 3 SET THEORY (Continued)

Pertemuan Ke 3. Teori Konsumsi dan Produksi

Ahmad Tusi ( 1

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Statika & Mekanika Bahan Kode : CIV 102. Sistem Gaya. Pertemuan - 1

ABSTRAK. Toolbox Virtual Reality. Sistem robot pengebor PCB dengan batasan posisi,

Tugas Antena Balanis No (Berdasarkan Kocokan/Undian)

Konsep Keseimbangan & Pemodelan Struktur

LINEAR PROGRAMMING-1

Line VS Bezier Curve. Kurva Bezier. Other Curves. Drawing the Curve (1) Pertemuan: 06. Dosen Pembina Danang Junaedi Sriyani Violina IF-UTAMA 2

BAB II DASAR TEORI 2.1. Metode Trial and Error

Optimisasi dengan batasan persamaan (Optimization with equality constraints) Mengapa batasan relevan dalam kajian ekonomi?

Electrostatics. Wenny Maulina

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

DEFINISI APPLIED ARTIFICIAL INTELLIGENT. Copyright 2017 By. Ir. Arthur Daniel Limantara, MM, MT.

Euclidean n & Vector Spaces. Matrices & Vector Spaces

Struktur&Klasifikasi. Nuryono S.W. UAD TH22452 ROBOTIKA 1

SEBUAH TELAAH ELIPS DAN LINGKARAN MELALUI SEBUAH PENDEKATAN ALJABAR MATRIKS

Struktur Rangka Batang

EKA SETIA N,S.T.,M.T.

Nama : SUDARMAN. Nim : Kelas : FISIKA D

Gasal 2011/2012 KOMPUTER GRAFIK (3SKS)

Statistik Bisnis 1. Week 8 Basic Probability

Stress (σ) Stress. Strain

Universitas Jenderal Soedirman Purwokerto FISIKA DASAR. Pertemuan ke-3. Mukhtar Effendi

Teori Produksi. Course: Pengantar Ekonomi.

Statistik Bisnis 1. Week 9 Discrete Probability

APA ITU MEKANIKA? CABANG ILMU FISIKA YANG BERBICARA TENTANG KEADAAN DIAM ATAU GERAKNYA BENDA-BENDA YANG MENGALAMI KERJA ATAU AKSI GAYA,

Rangkaian Pembagi Tegangan dan Arus Voltage and Current Divider Circuit

STUDI PERBANDINGAN PENURUNAN KELOMPOK TIANG DITINJAU DARI FAKTOR INTERAKSI DENGAN PENDEKATAN ELASTIK TESIS

Varian Antena Dipole dan Monopole

Port or al ( Fr F am es) b) Rangka batang(trusses) c) Machines 6-3

PERANCANGAN ARM MANIPULATOR PEMILAH BARANG BERDASARKAN WARNA DENGAN METODE GERAK INVERSE KINEMATICS

Data Structures. Class 5 Pointer. Copyright 2006 by The McGraw-Hill Companies, Inc. All rights reserved.

Adam Mukharil Bachtiar English Class Informatics Engineering Algorithms and Programming Searching

LAMPIRAN A. Perhitungan Beban Gempa Statik Ekivalen

Prinsip Dasar Metode Energi

TUGAS BROWSING. Diajukan untuk memenuhi salah satu tugas Eksperimen Fisika Dasar 1. Di susun oleh : INDRI SARI UTAMI PEND. FISIKA / B EFD-1 / C

PENERAPAN ALGORITMA PENGENDALI LANGKAH ROBOT HUMANOID R2C-R9 KONDO KHR-3HV BERBASIS KINEMATIKA BALIK. Oleh Bangkit Meirediansyah NIM:

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

Struktur Statis Tertentu : Balok

B.1. Mekanisme Mekanisme berguna untuk membantu manusia melakukan kerja dengan menghasilkan gerakan yang memungkinkan usaha yang lebih mudah

METODA ELEMEN BATAS UNTUK ANALISIS PROBLEM MEDIUM INFINITE DAN SEMI-INFINITE ELASTIS DUA DIMENSI. Thesis

PENGARUH ALAT SAMBUNG DISKRET TERHADAP PERILAKU KONSTRUKSI KAYU

Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena

BAB III ANALISA DINAMIK DAN PEMODELAN SIMULINK CONNECTING ROD

Aplikasi Sistem Persamaan Linier dalam Persoalan Dunia Nyata (real world problem)

Isyarat. Oleh Risanuri Hidayat. Isyarat. Bernilai real, skalar Fungsi dari variabel waktu Nilai suatu isyarat pada waktu t harus real

ANALISA KINEMATIKA DAN DEKOMPOSISI SISTEM GAYA PADA CDDR

PRINCIPLES OF STATIC

BAHAN PRAKTIKUM GEOGEBRA

E-R Diagram. Bagian IIb Relationship Terminologi

Statistik Bisnis 1. Week 9 Discrete Probability Binomial and Poisson Distribution

Pengantar Teknologi Informasi. Komunikasi Data dan Jaringan Komputer

ANALISIS STRUKTUR BALOK NON PRISMATIS MENGGUNAKAN METODE PERSAMAAN SLOPE DEFLECTION

Tutorial Pro/ENGINEER : Merakit Mesin Torak (seri 5)

Sistem Informasi. Soal Dengan 2 Bahasa: Bahasa Indonesia Dan Bahasa Inggris

INTEGRASI MATH DAN CAD TOOL UNTUK MERANCANG KINEMATIKA MANIPULATOR SERI ROBOT INDUSTRI

Turing and State Machines. Mesin Turing. Turing Machine. Turing Machines 4/14/2011 IF_UTAMA 1

Integrity, Professionalism, & Entrepreneurship. Mata Kuliah : Statika & Mekanika Bahan Kode : CIV 102. Garis Pengaruh.

Departemen Ilmu dan Teknologi Pangan Universitas Brawijaya

KODE SOAL B (NO ABSEN GENAP) SOAL ULANGAN FORMATIF II Nama : MATA PELAJARAN : FISIKA Kelas / No Absen :.../...

Biomekanika (2) Hanna Lestari, M.Eng

Teknik Transmisi. Radio

Perancangan dan Implementasi Sistem Pola Berjalan Pada Robot Humanoid Menggunakan Metode Inverse Kinematic

PENERAPAN METODE DERET PANGKAT UNTUK MENYELESAIKAN PERSAMAAN DIFERENSIAL LINEAR ORDEDUA KHUSUS SKRIPSI

FISIKA THERMAL II Ekspansi termal dari benda padat dan cair

KAJIAN TARIF ANGKUTAN KOTA (Studi Kasus Kota Bandung)

Pertemuan 4 DEFINE, ASSIGN & ANALYZE

Analisis Multivariat Analisis multivariat adalah suatu studi tentang bb beberapa variabel random dependent d secara simultan. Analisis ini merupakan a

Informatics Class A UISI CALCULUS I WEEK 2 DAY 2

KONSTRUKSI RANGKA BATANG

STUDI HUBUNGAN KECEPATAN, VOLUME DAN KERAPATAN LALU LINTAS DENGAN PENDEKATAN EMPAT MODEL

Bahan Pelatihan GeoGebra

SIMULATOR LENGAN ROBOT ENAM DERAJAT KEBEBASAN MENGGUNAKAN OPENGL

PEMANFAATAN TRANSFORMASI WAVELET SEBAGAI EKSTRAKSI CIRI PADA KLASIFIKASI BERTINGKAT SINYAL EKG

Sequences & Series. Naufal Elang Ciptadi

SIMULASI GERAKAN BERENANG ROBOT IKAN SECARA HORIZONTAL MENGGUNAKAN MUSCLE WIRE. Disusun oleh : Nama : Michael Alexander Yangky NRP :

PERANCANGAN SISTEM KENDALI PERGERAKAN ARM MANIPULATOR BERBASIS SENSOR INERTIAL MEASUREMENT UNIT (IMU) DAN SENSOR FLEX

2.2. Fitur Produk Perangkat Lunak Fitur Pengolahan Data Fakultas Fitur Pengolahan Data Jurusan

PENGANTAR SAP2000. Model Struktur. Menu. Toolbar. Window 2. Window 1. Satuan

Ring Bus. Ring Bus System

REALISASI ROBOT MOBIL HOLONOMIC Disusun Oleh : Nama : Santony Nrp :

Implementasi Robot Lengan Pemindah Barang 3 DOF Menggunakan Metode Inverse Kinematics

PENERAPAN METODE DENAVIT-HARTENBERG PADA PERHITUNGAN INVERSE KINEMATICS GERAKAN LENGAN ROBOT

SISTEM KENDALI ROBOT MANIPULATOR PEMINDAH BARANG DENGAN UMPAN BALIK VISUAL

Teknik Informatika Universitas Trunojoyo

Algoritma Pencarian Blind. Breadth First Search Depth First Search

Arsitektur Komputer. Pertemuan ke-2 - Aritmatika Komputer >>> Sistem bilangan & Format Data - Perkembangan Perangkat Keras Komputer

KODE SOAL A (NO ABSEN GANJIL) SOAL ULANGAN FORMATIF II Nama : MATA PELAJARAN : FISIKA Kelas / No Absen :.../...

DAFTAR ISI. HALAMAN PENGESAHAN... i. PERNYATAAN... ii. HALAMAN PERSEMBAHAN... iii. KATA PENGANTAR...iv. DAFTAR ISI...vi. DAFTAR TABEL...

Teknik Pengolahan Data

Pelabelan Pseudo Edge-Magic dan Pseudo Vertex-Magic pada Graf Sebarang

Transkripsi:

1 crew Theory and Reciprocity Latifah Nurahmi Definition of crew A spatial displacement of a rigid body can be expressed as a combination of a rotation about a line and a translation along the same line. This combined motion is called screw displacement. A unit screw $ is defined as: 6 5 4 3 2 1 s s r s $

Definition of crew A unit screw $ is defined as: s $ r s s 1 3 5 2 4 6 s = a unit vector along the axis of the screw $ r = a position vector of any point on the screw axis of $ λ = pitch Definition of crew A unit screw : (λ = 0), $ 0 s r s s $ r s s Zero-pitch screw 0 (λ = ), $ s Infinite-pitch screw s (λ, λ 0), $ h Finite-pitch screw r s s 2

crew ystems A screw system of order n (0 n 6) comprises all the screws that are linearly dependent on n given linearly independent screw. crew ystems 3

Definition of Twist and Wrench Twist A twist represents an instantaneous motion of a rigid body. Zero-pitch twist Infinite-pitch twist Wrench 0 pure rotation. pure translation. A wrench represents a system of forces and moments acting on a rigid body. Zero-pitch wrench F pure force Infinite-pitch wrench M pure moment 3 0 system Relations to Kinematic Joints 1 0 system 1 0 2 system 1 system 1 0 1 system 4

Relations to erial Kinematic Chain A rigid body constrained to move in the plane Available twists The end effector is constrained to rotate and translate in the plane. The screw system associated with the available twists is of order 3. Relations to erial Kinematic Chain Two rigid bodies connected by three prismatic joints Body 1 Body 2 The screw system describing all the available twists consists of all screws with infinite pitch. All translatory motions are instantaneously (in this particular example, also finite translatory motions) possible. The set of all twists is a third order screw system. 5

Definition of Reciprocity Work done by a wrench on a twist The rate of work done by a wrench w = [f T, m T ] T on a twist t = [w T, v T ] T is given by P f v mw Alternatively, f P v w m T t w 0 I I 0 3 3 33 33 33 Reciprocity Two screws are said to be reciprocal if a wrench applied about one does no work on a twist about the other. Reciprocal crews f m v w f d 1 2 Two screws 1 (pitch h 1 ) 2 (pitch h 2 ) are reciprocal if and only if (h 1 + h 2 ) cos f - d sin f = 0 Remarks A wrench applied about 1 does no work on a twist about 2. A wrench applied about 2 does no work on a twist about 1. The condition for reciprocity is a purely geometric relationship 6

Reciprocal crews (continued) y f m x v w f z d 1 2 Derivation 1 cosf 0 sinf 0 0 1, 2 h 1 h2 cosf d sinf 0 h2 sinf d cosf 0 0 1 cosf 0 sinf f w t m 0 w v 0 f, w h h d 1 2 cosf sinf 0 h2 sinf d cosf 0 0 f v mw 0 h1 h2 cosf d sinf 0 Examples crews reciprocal to a zero pitch screw 1 q f m f d 2 (h 1 + h 2 ) cos f - d sin f = 0 A wrench acting on a rigid body free to rotate about a revolute joint does no work on the rigid body if one of the following is true The wrench is of zero pitch and the axis intersects the axis of rotation The wrench of infinite pitch is perpendicular to the axis of rotation The pitch is non zero but equal to d tan f Note: If m cosf f d sin f, the wrench does no work. 7

Examples (continued) 1 f m crews reciprocal to an infinite pitch screw r f d f v mw 0 2 A wrench acting on a rigid body free to translate along a prismatic joint does no work on the rigid body if one of the following is true The wrench is of infinite pitch. The pitch is zero or finite, but the axis is perpendicular to the axis of the prismatic joint. Reciprocal crew ystems Definition of a screw system The vector space of all screws generated by taking all possible linear combinations of a finite number of screws. Reciprocal screw systems Two screw systems are reciprocal if every screw in the first screw system is reciprocal to all screws in the second screw system. Important Property Given a screw system, the set of all screws reciprocal to every screw in the given screw system is another screw system. 8

Example The screw system consisting of all screws reciprocal to a given zero pitch screw f m Given screw system is a first order screw system defined by a zero pitch screw. w v f The reciprocal screw system consists of All screws of zero pitch such that the screw axes intersect the axis of the given zero pitch screw crews of pitch equal to d tan f d 1 2 Properties Given a screw system, the set of all screws reciprocal to every screw in the given screw system is another screw system. The screw system reciprocal to a nth order screw system is of order (6-n) A rigid body subject to constraints has the following property: Available twists dim = n Reciprocity Constraint wrenches dim = 6-n 9

Another view point A pure force F perpendicular to t, cannot produce any translation along t Twist and wrench systems for a kinematic joint The set of all twists allowed by a joint is reciprocal to the set of all wrenches that can be resisted (passively) by the joint. Available twists dim = n A n degree-of-freedom joint has a screw system of order n associated with the available twists and a screw system of order (6-n) associated with the wrenches that can be transmitted by the joint. Reciprocity Constraint wrenches dim = 6-n 10

Reciprocal Twist and Wrench in Kinematic Joints Example 1 Two rigid bodies connected by a spherical joint Fixed rigid body Moving rigid body The set of available twists for the moving rigid body is described by a screw system consisting of all screws with zero pitch passing through the center of the spherical joint. The set of all twists is a three-dimensional vector space. The screw system is order 3. The set of all wrenches that do no work is described by the reciprocal screw system The reciprocal screw system is of order (6-3=) 3 It consists of all pure forces passing through the center of the spherical joint. 11

Example 2 A serial kinematic chain, composed of P and R joints connecting link a and b. If link a is fixed and link b is moving, the twist of link b is: The screw system associated with the available twists is of order 2. The screw system associated with the constraint wrenches (the wrenches that can do no work on the end effector) is of order 4. Example 3 Two rigid bodies connected by three prismatic joints Body 1 Body 2 The screw system describing all the available twists consists of all screws with infinite pitch. All translatory motions are instantaneously (in this particular example, also finite translatory motions) possible. The set of all twists is a third order screw system. The reciprocal screw system describing all the wrenches that do no work on the constrained rigid body (Body 2) consists of all infinite pitch screws. No couple can do work on Body 2. The set of all constraint wrenches is a third order screw system. 12

Example 4 A rigid body constrained to move in the plane Constraint wrenches Available twists The end effector is constrained to rotate and translate in the plane. The screw system associated with the available twists is of order 3. The screw system associated with the constraint wrenches (the wrenches that can do no work on the end effector) is also of order 3. Rangkuman Twist Wrench 13

Type ynthesis Type synthesis adalah salah satu proses desain untuk mensintesa jenis-jenis atau tipe-tipe kaki robot. Type synthesis dapat dilakukan berdasarkan crew theory dan Virtual chain Virtual Chain adalah sebuah serial kinematic chain yang mempunyai tipe gerakan tertentu untuk menggambarkan jenis gerakan pada parallel manipulator. Virtual chain diusulkan berdasarkan analisa wrench system dan virtual chain yang paling sederhana harus dipilih. Contoh 1 virtual chain pada parallel manipulator ebuah Parallel Manipulator (PM) mempunyai 3-DOF dengan 3 system Virtual chain yang paling sederhana untuk menggambar PM tersebut adalah tiga P-joints yang terhubung secara seri. PPP-Virtual Chain 14

Contoh 2 virtual chain pada parallel manipulator ebuah Parallel Manipulator (PM) mempunyai 3-DOF dengan 3 0 system Virtual chain yang paling sederhana untuk menggambar PM tersebut adalah tiga R-joints yang terhubung secara seri atau satu -joint. -Virtual Chain Contoh 3 virtual chain pada parallel manipulator ebuah Parallel Manipulator (PM) mempunyai 4-DOF dengan 2 system Virtual chain yang paling sederhana untuk menggambar PM tersebut adalah tiga P-joints dan satu R-joint yang terhubung secara seri. PPPR-Virtual Chain 15

Prosedur Type ynthesis Parallel Manipulator Prosedur Type ynthesis Parallel Manipulator Langkah 3 Merangkai kaki robot menjadi parallel manipulator yarat-syarat yang harus dipenuhi dalam merangkai kaki robot: 1. etiap kaki harus mempunyai dof yang sama dengan virtual chain 2. Wrench system dari PM harus sama dengan virtual chain Langkah 4 eleksi joint yang akan diaktuasi Dalam memilih joint yang akan diaktuasi (diberi motor), beberapa kriteri berikut harus diikuti: 1. Harus terdistribusi diantara semua kaki 2. Lebih disukai yang berada di bas 3. ebaiknya tidak ada P-joint yang tidak diaktuasi/pasif. 16

Type ynthesis chönflies Motion Parallel Manipulator Type ynthesis chönflies Motion Parallel Manipulator Langkah 1: Dekomposisi wrench system 2 system 1 system m c Δ c 1 c 2 c 3 c 4 c 5 2 2 3 2 4 2 5 2 Kombinasi wrench system setiap kaki (2-5 kaki) 2 2 2 1 2 1 0 1 1 4 2 2 2 3 2 2 1 2 2 1 1 1 1 1 1 6 2 2 2 2 5 2 2 2 1 4 2 2 1 1 3 2 1 1 1 2 1 1 1 1 8 2 2 2 2 2 7 2 2 2 2 1 6 2 2 2 1 1 5 2 2 1 1 1 4 2 1 1 1 1 3 1 1 1 1 1 17

Type ynthesis chönflies Motion Parallel Manipulator Langkah 2: Type synthesis dari setiap kaki Kasus (1.) 2 system Menghitung jumlah joint di setiap kaki f F ( 6 c) 8 joints 8 joints termasuk PPPR Virtual chain Type ynthesis chönflies Motion Parallel Manipulator 18

Type ynthesis chönflies Motion Parallel Manipulator Langkah 2: Type synthesis dari setiap kaki Kasus (2.) 1 system Menghitung jumlah joint di setiap kaki f F ( 6 c) 9 joints 9 joints termasuk PPPR Virtual chain Type ynthesis chönflies Motion Parallel Manipulator Tabel 2. Tipe-tipe kaki c i Dof Class Type 2 4 1 5 3R-1P 2R-2P 1R-3P 5R 4R-1P 3R-2P 2R-3P Permutation PŔŔŔ Permutation PPŔŔ Permutation PPPŔ Permutation ŔŔŔȐȐ Permutation ŔŔȐȐȐ Permutation PŔŔŔȐ Permutation PŔŔȐȐ Permutation PŔȐȐȐ Permutation PPŔŔȐ Permutation PPŔȐȐ Permutation PPPŔȐ 19

Type ynthesis chönflies Motion Parallel Manipulator Langkah 3: Merangkai kaki m c Δ c 1 c 2 c 3 c 4 c 5 2 2 3 2 4 2 5 2 Table 1 Table 2 2 2 2 1 2 1 0 1 1 4 2 2 2 3 2 2 1 2 2 1 1 1 1 1 1 6 2 2 2 2 5 2 2 2 1 4 2 2 1 1 3 2 1 1 1 2 1 1 1 1 8 2 2 2 2 2 7 2 2 2 2 1 6 2 2 2 1 1 5 2 2 1 1 1 4 2 1 1 1 1 3 1 1 1 1 1 c i Dof Class Type 2 4 1 5 3R-1P 2R-2P 1R-3P 5R 4R-1P 3R-2P 2R-3P Permutation PŔŔŔ Permutation PPŔŔ Permutation PPPŔ Permutation ŔŔŔȐȐ Permutation ŔŔȐȐȐ Permutation PŔŔŔȐ Permutation PŔŔȐȐ Permutation PŔȐȐȐ Permutation PPŔŔȐ Permutation PPŔȐȐ Permutation PPPŔȐ Type ynthesis chönflies Motion Parallel Manipulator Langkah 4: election of the actuated joint Kriteria: 1. Harus terdistribusi diantara semua kaki 2. Lebih disukai yang berada di bas 3. ebaiknya tidak ada P-joint yang tidak diaktuasi/pasif. W a W c 6system Quadrupteron PM L i = P i Ȑ i 1Ȑ i 2Ȑ i 3Ŕ i i = 1, 2, 3 L 4 = PŔ 1 Ŕ 2 Ŕ 3, 20