Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena

Ukuran: px
Mulai penontonan dengan halaman:

Download "Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena"

Transkripsi

1 Lecture 2: Optimization of Function of One Variable A. Pendahuluan Ide dasar dari masalah optimisasi adalah mengoptimumkan (memaksimumkan/ meminimumkan) suatu besaran skalar yang merupakan harga suatu fungsi dari n variabel x, x,, x. Bentuk masalah minimisasi: Minimumkan: z = f(x, x,, x ). (2.1) Masalah maksimisasi dapat ditinjau dari metode minimisasi, karena Maksimum f(x, x,, x ) = minimum f(x, x,, x ). (2.2) Sehingga tanpa mengurangi keumuman, pada penyelesaian masalah optimasi berikutnya hanya dibahas masalah minimisasi. Jika jumlah variabel n = 1, maka (2.1) menjadi Minimumkan: z = f(x) (2.3) yang merupakan masalah optimasi fungsi satu variabel. B. Fungsi Unimodal dan Fungsi Konveks Unimodal. Fungsi satu variabel f adalah unimodal jika pada selang (daerah definisi) kurvanya hanya mempunyai satu titik minimum/maksimum relatif x. Gambar 2.1 Ilustrasi fungsi unimodal, bimodal dan multimodal

2 Himpunan Konveks. Definisi 2.1 Suatu himpunan S dikatakan konveks jika dan hanya jika x, x S dan [0,1] berlaku x = x + (1 )x S. Dengan kata lain S merupakan himpunan konveks jika garis hubung (line segment) antara sebarang dua titik di S juga berada di S. Untuk selanjutnya, titik x = x + (1 )x dengan 0 1 disebut kombinasi konveks (convex combination) dari titik x dan x. x x (a) Konveks (b) Tidak konveks Gambar 2.2 Ilustrasi himpunan konveks The following are some examples of convex sets. 1. Hyperplane S = {(x, x, x ): x + 2x x = 4} E This is an equation of a plane in E. In general, S = {x: p x = α} is called a hyperplane in E, where p is a nonzero vector in E, usually referred to as the normal to the hyperplane, and α is a scalar. sol = Solve[x + 2y z == 4, z] Plot3D[Evaluate[z/. sol], {x, 50,50}, {y, 50,50}] Gambar 2.3 Illustration of hyperplane.

3 2. Halfspace S = {(x, x, x ): x + 2x x 4} E These are points on one side of the hyperplane defined above. These points form a half space. In general S = {x: p x α} in E is a convex set. RegionPlot3D[x + 2y z 4, {x, 10,10}, {y, 10,10}, {z, 10,10}] 3. Polyhedral set Gambar 2.4 Illustration of half space. S = (x, x, x ): x + 2x x 4, E 2x x + x 6 This set is the intersection of two half spaces. In general, the set S = {x: Ax b} is a convex set, where A is an m n matrix, and b is an m vector. This set is the intersec-tion of m half spaces and is usually called a polyhedral set. RegionPlot3D[x + 2y z 4&&2x y + z 6, {x, 10,10}, {y, 10,10}, {z, 10,10}]

4 Gambar 2.5 Illustration of polyhedral set. 4. Convex cone S = {(x, x ): x x } E This set represents a convex cone in E. RegionPlot[y Abs[x], {x, 10,10}, {y, 10,10}] Gambar 2.6 Illustration of convex cone. 5. Points on and inside a circle S = {(x, x ): x + x 4} E This set represents points on and inside a circle with center (0,0) and radius 2. RegionPlot[x + y 4, {x, 2,2}, {y, 2,2}]

5 Gambar 2.7 Illustration of points on and inside a circle 6. Linear programming problem S = {x: x solves problem P below} Problem P Minimize Subject to c x Ax = b x 0 Here c is an n vector, b is an m vector, A is an m n matrix, and x is an n vector. The set S gives all optimal solutions of the linear programming problem of minimizing the linear function c x over the polyhedral region defined by Ax = b and x 0. The following lemma is an immediate consequence of the definition of convexity. It states that the intersection of two convex sets is convex and that the algebraic sum of two convex sets is also convex. Lema 2.2 Misal S and S merupakan himpunan konveks di E. Maka 1. S S konveks 2. S + S = {x + x : x S, x S } konveks 3. S S = {x x : x S, x S } konveks. Fungsi Konveks. Definisi 2.3 Suatu fungsi f adalah konveks pada suatu selang S (berhingga ataupun tidak), jika x 1, x 2 S dan [0,1] berlaku ( x 1 + (1 )x 2 ) f(x ) + (1 )f(x ). (2.4)

6 Gambar 2.8 Ilustrasi fungsi konveks Fungsi Konveks Tegas. Jika (2.4) berlaku dengan tanda ketidaksamaan tegas (strict inequality), yaitu f( x + (1 )x ) < f(x ) + (1 )f(x ) (2.5) untuk x x dan (0,1), maka fungsi f tersebut dikatakan konveks tegas (strictly convex). Fungsi Konkav. Jika (2.4) berlaku dengan tanda ketidaksamaan terbalik, yaitu f( x + (1 )x ) f(x ) + (1 )f(x ). (2.6) maka fungsi f dikatakan konkav (concave). Gambar 2.9 Ilustrasi fungsi konkav Fungsi Konveks Tegas. Jika (2.6) berlaku dengan tanda ketidaksamaan tegas (strict inequality), yaitu f( x + (1 )x ) > f(x ) + (1 )f(x ) (2.7) untuk x x dan (0,1), maka fungsi f tersebut dikatakan konkav tegas (strictly concave).

7 Jadi berlaku pernyataan berikut: Jika fungsi f konveks, maka f konkav. dan Jika fungsi f konveks tegas, maka f konkav tegas. Demikian juga sebaliknya. Catatan. 1. Fungsi konveks/konkav adalah fungsi yang unimodal. 2. Fungsi linear (linear function) merupakan fungsi konveks dan fungsi konkav. (a) Fungsi konveks dan konkav (b) Fungsi not conveks not concave Gambar 2.10 Ilustrasi fungsi konveks dan fungsi konkav serta tidak keduanya C. Minimum Mutlak (Global) dan Minimum Relatif (Lokal) Definisi 2.4. Fungsi f dikatakan memiliki minimum relatif (minimum lokal) di x D jika terdapat ε > 0 sedemikian sehingga f(x) f(x ), x D\{x } dan x x < ε. (2.8) Definisi 2.5. Fungsi f dikatakan memiliki minimum mutlak (minimum global) di x D jika x D, f(x) f(x ). (2.9) Definisi maksimum lokal dan maksimum global berturut-turut dengan membalik tanda Ketidaksamaan (2.8) dan (2.9), yaitu " " diganti " ". Catatan: Suatu minimum/maksimum global juga merupakan minimum/maksimum lokal, sebab D juga merupakan persekitaran dari x. Tetapi, tidak setiap minimum lokal adalah minimum global.

8 Gambar 2.11 Ilustrasi minimum lokal minimum global D. Beberapa Metode Optimasi Menentukan letak optimum dengan kalkulus pada prakteknya ada yang tidak berhasil. Hal ini dimungkinkan karena fungsi objektifnya tidak analitik sehingga diferensiasinya tidak mungkin dihitung, atau titik-titik stasionernya tidak dapat diperoleh secara aljabaris. Dalam kasus-kasus seperti ini, maka metode-metode numerik digunakan untuk menghitung nilai-nilai pendekatan terhadap satu atau beberapa optimum relatif hingga suatu toleransi yang dapat diterima. Terdapat 2 jenis metode optimasi fungsi satu variabel, yaitu 1. Metode Penyelidikan (search method). Dapat diaplikasikan untuk sembarang fungsi unimodal tanpa menggunakan derivatif fungsi. Ide dasar: Penyusutan selang yang mengandung minimum lokal hingga mencapai selang yang dibatasi dalam limit-limit yang dapat diterima (toleransi yang diberikan). 2. Metode Pendekatan (approximation method). Hanya dapat diaplikasikan untuk fungsi-fungsi unimodal yang diferensiabel kontinu, yaitu menggunakan derivatif fungsi tersebut. E. Metode Penyelidikan Asumsi. Perhatikan fungsi f: D R dengan D R. Jadi f adalah fungsi satu variabel yang didefinisikan pada domain D. Diasumsikan f mempunyai minimum, yaitu untuk setiap [p, q] D(= [a, b]) terdapat suatu x [p, q] sehingga f(x ) = min [, ] f(x). (2.10) Jadi ada suatu minimum untuk f pada [p, q]. Ide dasar. Diberikan suatu fungsi f: [a, b] R dengan asumsi (2.10) dan ditentukan suatu bilangan kecil α > 0 (sebagai toleransi). Akan dicari suatu selang I = [p, q] dengan I = q p α yang mempunyai suatu titik minimum lokal.

9 Teorema. Ditentukan f: [a, b] R yang memenuhi asumsi (2.10) dan a < p < q < b. Maka i. Jika f(p) f(q), maka (p, b] mempunyai titik minimum lokal. ii. Jika f(p) f(q), maka [a, q) mempunyai titik minimum lokal. Bukti: i. Andai f(p) > f(q) Dari asumsi (2.10): ii. x [p, b] sehingga f(x ) = min [, ] f(x), maka x p. Sehingga x (p, b] yang berarti x adalah titik minimum lokal. Andai f(p) = f(q) Dari asumsi (2.10): 1. Jika f(x ) = f(p), maka dapat ditulis juga f(x ) = f(q), sehingga dapat ditentukan x = q (p, b] yang berarti q adalah titik minimum lokal. 2. Jika f(x ) > f(q), dari asumsi (2.10) hal ini tidak mungkin terjadi. 3. Jika f(x ) < f(q), maka x (p, b], berarti x titik minimum lokal. Bukti analog. Langkah untuk mengerjakan proses pengurangan selang. [a, b ] : selang awal yang mengandung minimum lokal. p, q : pasangan titik yang diselidiki untuk menentukan minimum lokal. 1. Jika f(p) f(q), maka [a, q] adalah selang kedua: pilih titik a = a, b = q, q = p, dan pilih titik baru p < q. f(p ) f(q ) a i p i q i b i a i+1 p i+1 q i+1 b i+1 Gambar 2.12 Ilustrasi untuk f(p ) < f(q ) 2. Jika f(p) f(q), maka [p, b] adalah selang kedua: pilih titik a = p, b = b, p = q dan pilih titik baru q > p.

10 a i p i q i b i a i+1 p i+1 q i+1 b i+1 Gambar 2.13 Ilustrasi untuk f(p ) > f(q ) Misal interval pada iterasi ke-i, yaitu [a, b ] mempunyai panjang l. Panjang l seharusnya independen (tidak bergantung) terhadap pemilihan interval pada iterasi ke-i (iterasi sebelumnya). Oleh karena itu titik p dan q dapat dipilih sedemikian sehingga panjang interval [a, q ] sama dengan [p, b ], yaitu l = q a = b p. (2.11) Karena q a = (p a ) + (q p ) b p = (q b ) + (q p ), akibatnya p a = b q. Perhaikan ilustrasi berikut. p a b q ai pi qi bi q a Perhatikan ilustrasi berikut. b p l a i p i q i b i l l a i+1 p i+1 q i+1 b i+1 Gambar 2.14 Ilustrasi untuk f(p ) < f(q )

11 l a i p i q i b i l l a i+1 p i+1 q i+1 b i+1 Gambar 2.15 Ilustrasi untuk f(p ) > f(q ) Sehingga diperoleh persamaan rekursif l = l + l

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta

Staff Pengajar Jurusan Teknik Mesin, FT-Universitas Sebelas Maret Surakarta DESAIN OPTIMASI UNGSI TAK LINIER MENGGUNAKAN METODE PENYELIDIKAN IBONACCI Yemi Kuswardi Nurul Muhayat Abstract: optimum design is an action to design the best product based on the problem. Theoretically,

Lebih terperinci

II. TINJAUAN PUSTAKA. Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan

II. TINJAUAN PUSTAKA. Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan II. TINJAUAN PUSTAKA Pada bab ini akan didiskusikan tentang istilah-istilah, teorema-teorema yang akan digunakan dalam penelitian ini. 2.1 Himpunan Himpunan adalah kumpulan objek-objek yang memiliki karakteristik

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Derivatif memegang peranan penting dalam syarat optimalitas fungsi, yaitu untuk mencapai ekstrim, derivatif order satu fungsi tersebut harus bernilai nol.

Lebih terperinci

BAB II KAJIAN PUSTAKA

BAB II KAJIAN PUSTAKA BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas

Lebih terperinci

BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear

BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear BAB I Sekilas tentang Teori-teori sebagai Dasar Program Linear. Himpunan konveks Sebuah himpunan X dalam R n disebut himpunan konveks apabila memenuhi sifat berikut: jika diberikan sebarang dua titik x

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,

BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn

Lebih terperinci

BAB II TEOREMA NILAI RATA-RATA (TNR)

BAB II TEOREMA NILAI RATA-RATA (TNR) BAB II TEOREMA NILAI RATA-RATA (TNR) Teorema nilai rata-rata menghubungkan nilai suatu fungsi dengan nilai derivatifnya (turunannya), dimana TNR merupakan salah satu bagian penting dalam kuliah analisis

Lebih terperinci

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika

BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan

Lebih terperinci

Optimasi Desain. Dhimas Satria Website : No HP :

Optimasi Desain. Dhimas Satria   Website :  No HP : Optimasi Desain Dhimas Satria Email : dhimas@untirta.ac.id Website : www.mesin.untirta.ac.id/dhimas No HP : 081327744433 Daftar Pustaka Arora, J.S., 1989, Introduction to Optimum Design, McGraw-Hill, International

Lebih terperinci

asimtot.wordpress.com BAB I PENDAHULUAN

asimtot.wordpress.com BAB I PENDAHULUAN BAB I PENDAHULUAN. Latar Belakang Kalkulus Differensial dan Integral sangat luas penggunaannya dalam berbagai bidang seperti penentuan maksimum dan minimum. Suatu fungsi yang sering digunakan mahasiswa

Lebih terperinci

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan

BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks

Lebih terperinci

OPTIMASI (Pemrograman Non Linear)

OPTIMASI (Pemrograman Non Linear) OPTIMASI (Pemrograman Non Linear) 3 SKS PILIHAN Arrival Rince Putri, 013 1 Silabus I. Pendahuluan 1. Perkuliahan: Silabus, Referensi, Penilaian. Pengantar Optimasi 3. Riview Differential Calculus II. Dasar-Dasar

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI Berikut ini adalah beberapa definisi dan teorema yang menjadi landasan dalam penentuan harga premi, fungsi permintaan, dan kesetimbangannya pada portfolio heterogen. 2.1 Percobaan

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang

Lebih terperinci

II. LANDASAN TEORI ( ) =

II. LANDASAN TEORI ( ) = II. LANDASAN TEORI 2.1 Fungsi Definisi 2.1.1 Fungsi Bernilai Real Fungsi bernilai real adalah fungsi yang domain dan rangenya adalah himpunan bagian dari real. Definisi 2.1.2 Limit Fungsi Jika adalah suatu

Lebih terperinci

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com

Lebih terperinci

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI

PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM

Lebih terperinci

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada

BAB II DASAR TEORI. Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada BAB II DASAR TEORI Di dalam BAB II ini akan dibahas materi yang menjadi dasar teori pada pembahasan BAB III, mulai dari definisi sampai sifat-sifat yang merupakan konsep dasar untuk mempelajari Fungsi

Lebih terperinci

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES

Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Chapter 5 GENERAL VECTOR SPACE 5.1. REAL VECTOR SPACES 5.2. SUB SPACES Definisi : VECTOR SPACE Jika V adalah ruang vektor dimana u,v,w merupakan objek dalam V sebagai vektor, dan terdapat skalar k dan

Lebih terperinci

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI

OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI OPTIMISASI PEMROGRAMAN CEMBUNG MENGGUNAKAN SYARAT KUHN-TUCKER SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta untuk Memenuhi Sebagian Persyaratan Guna

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Turunan Pertemuan - 4 a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 SKS : 3 SKS Turunan Pertemuan - 4 a home base to excellence TIU : Mahasiswa dapat memahami turunan fungsi dan aplikasinya TIK : Mahasiswa

Lebih terperinci

Prosiding Matematika ISSN:

Prosiding Matematika ISSN: Prosiding Matematika ISSN: 2460-6464 Optimisasi Fungsi Nonlinier Dua Variabel Bebas dengan Satu Kendala Pertidaksamaan Menggunakan Syarat Kuhn-Tucker Optimization of Nonlinear Function of Two Independent

Lebih terperinci

III RELAKSASI LAGRANGE

III RELAKSASI LAGRANGE III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya.

BAB 2 TINJAUAN PUSTAKA. ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah. dalam hal pembahasan hasil utama berikutnya. BAB 2 TINJAUAN PUSTAKA Pada bab ini akan dijelaskan mengenai teori-teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan

Lebih terperinci

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan

BAB II LANDASAN TEORI. Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan BAB II LANDASAN TEORI Pada Bab Landasan Teori ini akan dibahas mengenai definisi-definisi, dan teorema-teorema yang akan menjadi landasan untuk pembahasan pada Bab III nanti, diantaranya: fungsi komposisi,

Lebih terperinci

Non Linear Estimation and Maximum Likelihood Estimation

Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation and Maximum Likelihood Estimation Non Linear Estimation We have studied linear models in the sense that the parameters are

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun dari berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program

BAB II KAJIAN TEORI. Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai teori himpunan fuzzy, program linear, metode simpleks, dan program linear fuzzy untuk membahas penyelesaian masalah menggunakan metode fuzzy

Lebih terperinci

Kata Pengantar. Medan, 11 April Penulis

Kata Pengantar. Medan, 11 April Penulis Kata Pengantar Puji syukur penulis panjatkan kepada Tuhan YME, bahwa penulis telah menyelesaikan tugas mata kuliah Matematika dengan membahas Numerical Optimization atau Optimasi Numerik dalam bentuk makalah.

Lebih terperinci

DASAR-DASAR ANALISIS MATEMATIKA

DASAR-DASAR ANALISIS MATEMATIKA (Bekal untuk Para Sarjana dan Magister Matematika) Dosen FMIPA - ITB E-mail: hgunawan@math.itb.ac.id. December 26, 2007 Misalkan f kontinu pada interval [a, b]. Apakah masuk akal untuk membahas luas daerah

Lebih terperinci

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan

BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK. A. Transformasi Matriks Mengawetkan Kekonvergenan BAB III TRANSFORMASI MATRIKS DERET DIRICHLET HOLOMORFIK A. Transformasi Matriks Mengawetkan Kekonvergenan Pada bagian A ini pembahasan dibagi menjadi dua bagian, yang pertama membahas mengenai transformasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2. Program linier (Linier Programming) Pemrograman linier merupakan metode matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan

Lebih terperinci

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS

ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS ALJABAR LINEAR SUMANANG MUHTAR GOZALI KBK ANALISIS UNIVERSITAS PENDIDIKAN INDONESIA BANDUNG 2010 2 KATA PENGANTAR Bismillahirrahmanirrahim Segala puji bagi Allah Rabb semesta alam Shalawat serta salam

Lebih terperinci

Matematika Bisnis (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM.

Matematika Bisnis (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM. (Linear Programming-Metode Grafik Minimisasi) Dosen Febriyanto, SE, MM. www.febriyanto79.wordpress.com - Linear Programming Linear programing (LP) adalah salah satu metode matematis yang digunakan untuk

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Optimasi Non-Linier Suatu permasalahan optimasi disebut nonlinier jika fungsi tujuan dan kendalanya mempunyai bentuk nonlinier pada salah satu atau keduanya. Optimasi nonlinier

Lebih terperinci

OPTIMISASI KONVEKS: Konsep-konsep

OPTIMISASI KONVEKS: Konsep-konsep OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak Pada masalah optimisasi konveks

Lebih terperinci

METODE STEEPEST DESCENT

METODE STEEPEST DESCENT METODE STEEPEST DESCENT DENGAN UKURAN LANGKAH BARU UNTUK PENGOPTIMUMAN NIRKENDALA D. WUNGGULI 1, B. P. SILALAHI 2, S. GURITMAN 3 Abstrak Metode steepest descent adalah metode gradien sederhana untuk pengoptimuman.

Lebih terperinci

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak

Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 wcaturiyati@yahoo.com 2 himmawatipl@yahoo.com Abstrak

Lebih terperinci

Optimisasi dengan batasan persamaan (Optimization with equality constraints) Mengapa batasan relevan dalam kajian ekonomi?

Optimisasi dengan batasan persamaan (Optimization with equality constraints) Mengapa batasan relevan dalam kajian ekonomi? Optimisasi dengan batasan persamaan (Optimization with equality constraints) Mengapa batasan relevan dalam kajian ekonomi? Masalah ekonomi timbul karena kelangkaan (scarcity). Kelangkaan menyebabkan keputusan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pemrograman Non Linier Pemrograman Non linier merupakan pemrograman dengan fungsi tujuannya saja atau bersama dengan fungsi kendala berbentuk non linier yaitu pangkat dari variabelnya

Lebih terperinci

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap

Misal, dan diberikan sebarang, terdapat sehingga untuk setiap PROGRAM STUDI PENDIDIKAN MATEMATIKA FKIP UNMUH PONOROGO PENYELESAIAN SOAL UJIAN AKHIR SEMESTER GENAP TA 2012/2013 Mata Ujian : Analisis Real 1 Tipe Soal : Reguler Dosen : Dr. Julan HERNADI Waktu : 90 menit

Lebih terperinci

a. untuk (n+1) genap: terjadi ekstrem, dan jika (ii) f (x ) > 0, maka f(x) mencapai minimum di titik x.

a. untuk (n+1) genap: terjadi ekstrem, dan jika (ii) f (x ) > 0, maka f(x) mencapai minimum di titik x. Lecture I: Introduction A. Masalah Optimisasi Dalam kehidupan sehari-hari, manusia cenderung untuk berprinsip ekonomi, yaitu dengan sumber daya terbatas dapat memperoleh hasil sebanyak-banyaknya. Banyak

Lebih terperinci

MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA

MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA MENENTUKAN NILAI EKSTREM SUKU BANYAK TERTENTU DENGAN PERTIDAKSAMAAN RATA-RATA Kasiyah M. Junus Fakultas Ilmu Komputer, Universitas Indonesia, Depok 16424, Indonesia E-mail: kasiyah@cs.ui.ac.id Abstrak

Lebih terperinci

PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND

PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND Seminar Nasional Aplikasi Teknologi Informasi 009 (SNATI 009) Yogyakarta, 0 Juni 009 ISSN:1907-50 PENCARIAN SOLUSI PEMROGRAMAN NON LINIER MENGGUNAKAN ALGORITMA BRANCH-AND-BOUND Victor Hariadi Jurusan Teknik

Lebih terperinci

PROGRAM FRAKSIONAL LINIER DENGAN KOEFISIEN INTERVAL. Annisa Ratna Sari 1, Sunarsih 2, Suryoto 3. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang

PROGRAM FRAKSIONAL LINIER DENGAN KOEFISIEN INTERVAL. Annisa Ratna Sari 1, Sunarsih 2, Suryoto 3. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang PROGRAM FRAKSIONAL LINIER DENGAN KOEFISIEN INTERVAL Annisa Ratna Sari 1, Sunarsih 2, Suryoto 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang Semarang Abstract.

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN 1.1 Latar Belakang Salah satu observasi yang berguna dalam bidang komputasi di tahun 1970 adalah observasi terhadap permasalahan relaksasi Lagrange. Josep Louis Lagrange merupakan tokoh ahli

Lebih terperinci

PROGRAM LINEAR. sudir15mks

PROGRAM LINEAR. sudir15mks PROGRAM LINEAR A. Sistem Pertidaksamaan Linear Dua Variabel Suatu garis dalam bidang koordinat dapat dinyatakan dengan persamaan yang berbentuk: x a x b a1 1 2 2 Persamaan semacam ini dinamakan persamaan

Lebih terperinci

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,.

II LANDASAN TEORI. suatu fungsi dalam variabel-variabel. adalah suatu fungsi linear jika dan hanya jika untuk himpunan konstanta,. II LANDASAN TEORI Pada pembuatan model penjadwalan pertandingan sepak bola babak kualifikasi Piala Dunia FIFA 2014 Zona Amerika Selatan, diperlukan pemahaman beberapa teori yang digunakan di dalam penyelesaiannya,

Lebih terperinci

Bab 2 TINJAUAN PUSTAKA

Bab 2 TINJAUAN PUSTAKA Bab 2 TINJAUAN PUSTAKA 2.1 Masalah Transportasi Masalah transportasi pertama kali digunakan pada awal perang dunia kedua untuk menentukan bagaimana mengirimkan pasukan yang terletak disuatu tempat latihan

Lebih terperinci

Linear Discrimant Model

Linear Discrimant Model (update 1 Februari 01) Lecture 3 Linear Discrimant Model Learning a Class from Examples (Alpaydin 009) Class C of a family car Prediction: Is car x a family car? Knowledge extraction: What do people expect

Lebih terperinci

BAB II KAJIAN TEORI. Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan

BAB II KAJIAN TEORI. Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan BAB II KAJIAN TEORI Pada bab ini akan dibahas mengenai beberapa definisi dan teori yang akan digunakan pada pembahasan berdasarkan literatur yang relevan. A. Program Linear Model Program Linear (MPL) merupakan

Lebih terperinci

1. Fungsi Objektif z = ax + by

1. Fungsi Objektif z = ax + by Nilai Optimum Suatu Fungsi Objektif, Program Linear, Fungsi Objektif, Cara Menentukan, Contoh Soal, Rumus, Pembahasan, Metode Uji Titik Sudut, Metode Garis Selidik, Matematika Nilai Optimum Suatu Fungsi

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I..

(b) M merupakan nilai minimum (mutlak) f apabila M f(x) x I.. 3. Aplikasi Turunan a. Nilai ekstrim Bagian ini dimulai dengan pengertian nilai ekstrim suatu fungsi yang mencakup nilai ekstrim maksimum dan nilai ekstrim minimum. Definisi 3. Diberikan fungsi f: I R,

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan, kekonvergenan

Lebih terperinci

ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI

ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI ALGORITMA MODIFIKASI BROYDEN-FLETCHER-GOLDFARB-SHANNO (MBFGS) PADA PERMASALAHAN OPTIMASI Nama Mahasiswa : Rahmawati Erma.S. NRP : 1208100030 Jurusan : Matematika Dosen Pembimbing : 1. Subchan, M.Sc, Ph.D

Lebih terperinci

KARAKTERISTIK RUANG HASIL KALI DALAM PADA FUNGSI KONVEKS KUAT TUGAS AKHIR

KARAKTERISTIK RUANG HASIL KALI DALAM PADA FUNGSI KONVEKS KUAT TUGAS AKHIR KARAKTERISTIK RUANG HASIL KALI DALAM PADA FUNGSI KONVEKS KUAT TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh: DESI HARTUTI 10754000066

Lebih terperinci

BAB I VEKTOR DALAM BIDANG

BAB I VEKTOR DALAM BIDANG BAB I VEKTOR DALAM BIDANG I. KURVA BIDANG : Penyajian secara parameter Suatu kurva bidang ditentukan oleh sepasang persamaan parameter. ; dalam I dan kontinue pada selang I, yang pada umumnya sebuah selang

Lebih terperinci

BAB II KAJIAN TEORI. masalah fuzzy linear programming untuk optimasi hasil produksi pada bab

BAB II KAJIAN TEORI. masalah fuzzy linear programming untuk optimasi hasil produksi pada bab BAB II KAJIAN TEORI Berikut diberikan landasan teori mengenai program linear, konsep himpunan fuzzy, program linear fuzzy dan metode Mehar untuk membahas penyelesaian masalah fuzzy linear programming untuk

Lebih terperinci

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi

kita menggunakan variabel semu untuk memulai pemecahan, dan meninggalkannya setelah misi terpenuhi Lecture 4: (B) Supaya terdapat penyelesaian basis awal yang fisibel, pada kendala berbentuk = dan perlu ditambahkan variabel semu (artificial variable) pada ruas kiri bentuk standarnya, untuk siap ke tabel

Lebih terperinci

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR

PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR PENERAPAN LOGIKA FUZZY PADA PROGRAM LINEAR T-11 RIVELSON PURBA 1 1 FAKULTAS KEGURUAN DAN ILMU PENDIDIKAN UNIVERSITAS MUSAMUS MERAUKE etong_extreme@yahoo.com ABSTRAK Purba, Rivelson. 01. Penerapan Logika

Lebih terperinci

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f).

Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah. f merupakan fungsi baru yang disebut turunan dari f (derivative of f). Lecture 5. Derivatives C A. Turunan (derivatives) Sebagai Fungsi Definisi. Turunan (derivative) suatu fungsi f di sebarang titik x adalah f ()() (x) = lim. f merupakan fungsi baru yang disebut turunan

Lebih terperinci

3 LIMIT DAN KEKONTINUAN

3 LIMIT DAN KEKONTINUAN Menurut Bartle dan Sherbet (1994), Analisis matematika secara umum dipahami sebagai tubuh matematika yang dibangun oleh berbagai konsep limit. Pada bab sebelumnya kita telah mempelajari limit barisan,

Lebih terperinci

Algoritma Simpleks Dan Analisis Kepekaan

Algoritma Simpleks Dan Analisis Kepekaan Modul 1 Algoritma Simpleks Dan Analisis Kepekaan Prof. Bambang Soedijono P PENDAHULUAN ada Modul 1 ini dibahas metode penyelesaian suatu masalah program linear. Pada umumnya masalah program linear mengkaitkan

Lebih terperinci

Teori Dualitas dan Penerapannya (Duality Theory and Its Application)

Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Kuliah 6 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Teori dualitas 2 Metode simpleks dual TI2231 Penelitian Operasional I 2

Lebih terperinci

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc

Aplikasi Turunan. Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc Aplikasi Turunan Diadaptasi dengan tambahan dari slide Bu Puji Andayani, S.Si, M.Si, M.Sc 1 Menggambar Grafik Fungsi Informasi yang dibutuhkan: A. Titik potong dengan sumbu dan sumbu y B. Asimtot fungsi

Lebih terperinci

BAB 2 OPTIMISASI KOMBINATORIAL

BAB 2 OPTIMISASI KOMBINATORIAL BAB 2 OPTIMISASI KOMBINATORIAL Optimisasi kombinatorial merupakan suatu cara yang digunakan untuk mencari semua kemungkinan nilai real dari suatu fungsi objektif. Proses pencarian dapat dilakukan dengan

Lebih terperinci

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI

KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Jurnal LOG!K@ Jilid 7 No 1 2017 Hal 52-60 ISSN 1978 8568 KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Khoerunisa dan Muhaza

Lebih terperinci

PEMILIHAN SUPPLIER DENGAN PENDEKATAN POSSIBILITY FUZZY MULTI-OBJECTIVE PROGRAMMING

PEMILIHAN SUPPLIER DENGAN PENDEKATAN POSSIBILITY FUZZY MULTI-OBJECTIVE PROGRAMMING PEMILIHAN SUPPLIER DENGAN PENDEKATAN POSSIBILITY FUZZY MULTI-OBJECTIVE PROGRAMMING Oleh : Heny Nurhidayanti 1206 100 059 Dosen Pembimbing : Drs. Sulistiyo, MT Jurusan Matematika Fakultas Matematika dan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Aljabar Linear Definisi 2.1.1 Matriks Matriks A adalah susunan persegi panjang yang terdiri dari skalar-skalar yang biasanya dinyatakan dalam bentuk berikut: [ ] Definisi 2.1.2

Lebih terperinci

TRANSFORMASI LINIER UNTUK PERSOALAN PROGRAM KUADRATIK NOL-SATU

TRANSFORMASI LINIER UNTUK PERSOALAN PROGRAM KUADRATIK NOL-SATU JURNAL EDUCATION BUILDING Volume 3, Nomor 2, Desember 2017: 68-72, ISSN : 2477-4898 TRANSFORMASI LINIER UNTUK PERSOALAN PROGRAM KUADRATIK NOL-SATU M Khahfi Zuhanda Universitas Me Area, Me Surel : Khahfi@staff.uma.ac.id

Lebih terperinci

Ilustrasi Persoalan Matematika

Ilustrasi Persoalan Matematika Pendahuluan Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan, seperti dalam bidang fisika, kimia, ekonomi, atau pada persoalan rekayasa (engineering), seperti

Lebih terperinci

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS)

11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11. FUNGSI MONOTON (DAN FUNGSI KONVEKS) 11.1 Definisi dan Limit Fungsi Monoton Misalkan f terdefinisi pada suatu himpunan H. Kita katakan bahwa f naik pada H apabila untuk setiap x, y H dengan x < y berlaku

Lebih terperinci

Metode Simpleks (Simplex Method) Materi Bahasan

Metode Simpleks (Simplex Method) Materi Bahasan Metode Simpleks (Simplex Method) Kuliah 03 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Rumusan Pemrograman linier dalam bentuk baku 2 Pemecahan sistem persamaan linier 3 Prinsip-prinsip metode simpleks

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa pengertian dari optimasi bersyarat dengan kendala persamaan menggunakan multiplier lagrange serta penerapannya yang akan digunakan sebagai landasan

Lebih terperinci

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE

METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE METODE ITERASI VARIASIONAL PADA MASALAH STURM-LIOUVILLE oleh HILDA ANGGRIYANA M0109035 SKRIPSI ditulis dan diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Sains Matematika JURUSAN

Lebih terperinci

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab

BAB III PEMBAHASAN. Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab BAB III PEMBAHASAN Bab III terbagi menjadi tiga sub-bab, yaitu sub-bab A, sub-bab B, dan subbab C. Sub-bab A menjelaskan mengenai konsep dasar C[a, b] sebagai ruang vektor beserta contohnya. Sub-bab B

Lebih terperinci

BAB III FUNGSI UJI DAN DISTRIBUSI

BAB III FUNGSI UJI DAN DISTRIBUSI BAB III FUNGSI UJI DAN DISTRIBUSI Bab ini membahas tentang fungsi uji dan distribusi di mana ruang yang memuat keduanya secara berturut-turut dinamakan ruang fungsi uji dan ruang distribusi. Ruang fungsi

Lebih terperinci

Discrete Time Dynamical Systems

Discrete Time Dynamical Systems Discrete Time Dynamical Systems Sheet 1 and Solution (1) Tentukan titik tetap dari fungsi berikut. (a) f(x) = x x (b) f(x) = 2x + bx (c) f(x) = e (a) Titik tetap f memenuhi persamaan f(x) = x x x = x x

Lebih terperinci

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di

BAB II TINJAUAN PUSTAKA. operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan di BAB II TINJAUAN PUSTAKA 2.1 Pemrograman Linier (Linear Programming) Pemrograman linier (linear programming) merupakan salah satu teknik riset operasi yang mampu menyelesaikan masalah optimasi sejak diperkenalkan

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA 5 BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan berikutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON

OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON OPTIMASI FUNGSI MULTIVARIABLE TANPA KENDALA DENGAN METODE NEWTON Susi Ranangga [M008067], Aeroni Dwijayanti [M008078] Hamdani Citra P. [M0003], Nafi Nur Khasana [M00058]. Pendahuluan Dalam kehidupan sehari-hari

Lebih terperinci

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI

KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR. Oleh : M.LUTHFI RUSYDI KENDALI OPTIMAL PERMAINAN NON-KOOPERATIF KONTINU SKALAR DUA PEMAIN DENGAN STRATEGI NASH TUGAS AKHIR Diajukan Sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains Pada Jurusan Matematika Oleh

Lebih terperinci

BAB 1 PENDAHULUAN Latar Belakang

BAB 1 PENDAHULUAN Latar Belakang BAB 1 PENDAHULUAN 1.1. Latar Belakang Program linier merupakan metode matematika dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan, seperti memaksimumkan keuntungan dan meminimumkan

Lebih terperinci

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY

METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01 No. 1 (2012) hal 23 30. METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Anastasia Tri Afriani

Lebih terperinci

BAB II LINIER PROGRAMMING ( LP )

BAB II LINIER PROGRAMMING ( LP ) A. Tujuan Praktikum BAB II LINIER PROGRAMMING ( LP ) Meningkatkan kemanpuan dengan mengunakan teknoligi B. Landasan Tori Dalam model LP di kenal 2 macam pungsi yaitu : a. Secara Umum : Program linier merupakan

Lebih terperinci

OPTIMISASI KONVEKS: KONSEP-KONSEP

OPTIMISASI KONVEKS: KONSEP-KONSEP Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari

Lebih terperinci

Dwijanto. Program Linear. Berbantuan Komputer: Lindo, Lingo dan Solver. Pontianak Surabaya Balikpapan. Makasar 450. Manado 450.

Dwijanto. Program Linear. Berbantuan Komputer: Lindo, Lingo dan Solver. Pontianak Surabaya Balikpapan. Makasar 450. Manado 450. Dwijanto Jakarta 300 Program Linear Pontianak 400 250 400 200 Berbantuan Komputer: Lindo, Lingo dan Solver Surabaya Balikpapan 200 600 400 Makasar 450 Manado 450 Jayapura Dwijanto Program Linear Berbantuan

Lebih terperinci

PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI

PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI Contoh TIA 310 3 Contoh TIA 310 4 TIA 310 5 TIA 310 6 TIA 310 7 TIA 310 8 Cara Perhitungan 0.2 x 7 + 0.5 x 6 + 0.3 x 3 = 5.3 0 x 0 + 0.5 x 5 + 0.5 x 1 =

Lebih terperinci

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan

Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan 4 BARISAN TAK HINGGA DAN DERET TAK HINGGA JUMLAH PERTEMUAN : 5 PERTEMUAN TUJUAN INSTRUKSIONAL KHUSUS : Memahami definisi barisan tak hingga dan deret tak hingga, dan juga dapat menentukan kekonvergenan

Lebih terperinci

Catatan Kuliah 7 Memahami dan Menganalisa Optimisasi Sederhana Tanpa Kendala dengan Satu Variabel Keputusan

Catatan Kuliah 7 Memahami dan Menganalisa Optimisasi Sederhana Tanpa Kendala dengan Satu Variabel Keputusan Catatan Kuliah 7 Memahami dan Menganalisa Optimisasi Sederhana Tanpa Kendala dengan Satu Variabel Keputusan Optimisasi Ilmu ekonomi adalah ilmu yang mempelajari bagaimana melakukan penelitian yang terbaik

Lebih terperinci

BAB II MAKALAH Makalah 1 :

BAB II MAKALAH Makalah 1 : BAB II MAKALAH Makalah 1 : Analisis penilaian kinerja karyawan menggunakan Fuzzy Linear Programming (FLP). Dipresentasikan dalam Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA 2013 yang diselenggarakan

Lebih terperinci

PEMROGRAMAN FRAKSIONAL LINEAR

PEMROGRAMAN FRAKSIONAL LINEAR PEMROGRAMAN FRAKSIONAL LINEAR FARIDA HANUM Departemen Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor Jl. Meranti, Kampus IPB Darmaga, Bogor, Indonesia ABSTRAK. Pemrograman

Lebih terperinci

PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING

PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING Jurnal Manajemen Informatika dan Teknik Komputer Volume, Nomor, Oktober 05 PENERAPAN METODE BRANCH AND BOUND DALAM PENYELESAIAN MASALAH PADA INTEGER PROGRAMMING Havid Syafwan Program Studi Manajemen Informatika

Lebih terperinci

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan

Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Materi Bahasan Metode Simpleks dalam Bentuk Tabel (Simplex Method in Tabular Form) Kuliah 04 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Metode simpleks dalam bentuk tabel 2 Pemecahan untuk masalah minimisasi

Lebih terperinci

PENDEKATAN MASALAH MULTIOBJEKTIF STOKASTIK DENGAN PENDEKTAN STOKASTIK DAN PENDEKATAN MULTIOBJEKTIF

PENDEKATAN MASALAH MULTIOBJEKTIF STOKASTIK DENGAN PENDEKTAN STOKASTIK DAN PENDEKATAN MULTIOBJEKTIF Prosiding Seminar Nasional Penelitian Pendidikan dan Penerapan MIPA Fakultas MIPA Universitas Negeri Yogyakarta 16 Mei 2009 PENDEKATAN MASALAH MULTIOBJEKTIF STOKASTIK DENGAN PENDEKTAN STOKASTIK DAN PENDEKATAN

Lebih terperinci

METODE NUMERIK ARAH KONJUGASI

METODE NUMERIK ARAH KONJUGASI METODE NUMERIK ARAH KONJUGASI 14 Mei 2016 Diajukan untuk Memenuh Tugas Ujian Akhir Semester Mata kuliah Metode Numerik Dosen Pengampu Bapak Rukmono Budi Utomo,M.Sc Nur Aliyah 1384202043 6A1 Fakultas Keguruan

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN. Latar Belakang Masalah penentuan rute bus karyawan mendapat perhatian dari para peneliti selama lebih kurang 30 tahun belakangan ini. Masalah optimisasi rute bus karyawan secara matematis

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Optimasi Menurut Nash dan Sofer (1996), optimasi adalah sarana untuk mengekspresikan model matematika yang bertujuan memecahkan masalah dengan cara terbaik. Untuk tujuan bisnis,

Lebih terperinci