EFEK MESON σ PADA PERSAMAAN KEADAAN BINTANG NEUTRON

dokumen-dokumen yang mirip
KARAKTERISTIK SYMMETRIC NUCLEAR MATTER PADA TEMPERATUR NOL

PENGARUH TEKANAN ANISOTROPIK PADA BINTANG NEUTRON

PROTON DRIPLINE PADA ISOTON N = 28 DALAM MODEL RELATIVISTIC MEAN FIELD (RMF)

EFEK SEBARAN BOSON INHOMOGEN PADA BINTANG BOSON

FENOMENA HALO BERDASARKAN MODEL RELATIVISTIC MEAN FIELD (RMF)

TRANSISI FASA MATERI HADRONIK KE MATERI KUARK PADA INTI BINTANG NEUTRON EFENDI

Efek Relativistik Pada Hamburan K + n

Verifikasi Perhitungan Partial Wave untuk Hamburan!! n

Sifat-sifat Bintang Neutron Berotasi Lambat

BAB I PENDAHULUAN. akibat dari interaksi di antara penyusun inti tersebut. Penyusun inti meliputi

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

EFEK PAIRING PADA ISOTOP Sn (N>82) DALAM TEORI BCS MENGGUNAKAN SEMBILAN TINGKAT ENERGI

BAB I PENDAHULUAN. 1.1 Latar Belakang

MEDAN SKALAR DENGAN SUKU KINETIK POWER LAW

DAFTAR SIMBOL. : permeabilitas magnetik. : suseptibilitas magnetik. : kecepatan cahaya dalam ruang hampa (m/s) : kecepatan cahaya dalam medium (m/s)

SOAL LATIHAN PEMBINAAN JARAK JAUH IPhO 2017 PEKAN VIII

BAB II TINJAUAN PUSTAKA

PELATIHAN OSN JAKARTA 2016 LISTRIK MAGNET (BAGIAN 1)

KB.2 Fisika Molekul. Hal ini berarti bahwa rapat peluang untuk menemukan kedua konfigurasi tersebut di atas adalah sama, yaitu:

UNIVERSITAS INDONESIA MODEL POINT-KOPLING DENGAN KONSTANTA KOPLING BERGANTUNG DENSITAS TESIS

Superfluiditas pada Materi Nuklir

FENOMENA ELEKTROKINETIK DALAM SEISMOELEKTRIK DAN PENGOLAHAN DATANYA DENGAN MENGGUNAKAN METODE PENGURANGAN BLOK. Tugas Akhir

PENDAHULUAN RADIOAKTIVITAS TUJUAN

KAJIAN BAURAN NEUTRINO TRI-BIMAKSIMAL- CABIBBO (TBC)

ANALISIS DAN VISUALISASI PERSAMAAN KLEIN-GORDON PADA ELEKTRON DALAM SUMUR POTENSIAL DENGAN MENGGUNAKAN PROGRAM MATHEMATIC 10

DAFTAR ISI LEMBAR PENGESAHAN ABSTRAK ABSTRACT

Setelah Anda mempelajari KB-1 di atas, simaklah dan hafalkan beberapa hal penting di. dapat dihitung sebagai beriktut: h δl l'

Jumlah Proton = Z Jumlah Neutron = A Z Jumlah elektron = Z ( untuk atom netral)

Adapun manfaat dari penelitian ini adalah: 1. Dapat menambah informasi dan referensi mengenai interaksi nukleon-nukleon

UNIVERSITAS INDONESIA LINTASAN BEBAS RATA-RATA NEUTRINO DI BINTANG QUARK SKRIPSI SAIPUDIN

UNIVERSITAS INDONESIA LINTASAN BEBAS RATA-RATA NEUTRINO DI BINTANG QUARK SKRIPSI SAIPUDIN

Simulasi Geometri Nanoserat Hasil Pemintalan Elektrik

Statistik + konsep mekanika. Hal-hal yang diperlukan dalam menggambarkan keadaan sistem partikel adalah:

KOMPARASI LAJU KONVERGENSI METODE EULER DAN RUNGE-KUTTA DALAM PENENTUAN MASSA DAN RADIUS TERSKALA WHITE DWARFS

Chap 7a Aplikasi Distribusi. Fermi Dirac (part-1)

Perkuliahan Fisika Dasar II FI-331. Oleh Endi Suhendi 1

Model Korespondensi Spinor-Skalar

BAB II LANDASAN TEORI

BAB IV HASIL DAN PEMBAHASAN. dan medan hidrodinamik. Pertama, dengan menentukan potensial listrik V dan

MAKALAH APLIKASI NUKLIR DI INDUSTRI

ENERGETIKA KESTABILAN INTI. Sulistyani, M.Si.

2.6. Pengaruh Pemecah Gelombang Sejajar Pantai / Krib (Offshore Breakwater) terhadap Perubahan Bentuk Garis Pantai Pada Pantai Pasir Buatan...

SOAL PEMBINAAN JARAK JAUH IPhO 2017 Pekan V Dosen Penguji : Dr. Rinto Anugraha

Lembar Pengesahan JURNAL. Telaah Fundamental Weak Interaction dan Nambu-Goldstone. ( Suatu Penelitian Teori Berupa Studi Pustaka )

UM UGM 2017 Fisika. Soal

Elektron Bebas. 1. Teori Drude Tentang Elektron Dalam Logam

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN : Analisis Lintasan Foton Dalam Ruang-Waktu Schwarzschild

PERHITUNGAN NUMERIK DALAM MENENTUKAN KESTABILAN SOLITON CERAH ONSITE PADA PERSAMAAN SCHRÖDINGER NONLINIER DISKRIT DENGAN PENAMBAHAN POTENSIAL LINIER

TENSOR KONTRAVARIAN MEDAN ELEKTROMAGNETIK BINTANG NEUTRON YANG BEROTASI CEPAT DIUKUR OLEH PENGAMAT ZAMO (ZERO ANGULAR MOMENTUM OBSERVERS)

SIMAK UI Fisika

Analisis Kestabilan Aliran Fluida Viskos Tipis pada Model Slip di Bawah Pengaruh Gaya Gravitasi

Kaji Ulang Model Nilsson untuk Proton atau Neutron dengan Z, N 50

KAJIAN KOMPUTASI PENGARUH UKURAN SUPERKONDUKTOR TERHADAP SIFAT MAGNET SUPERKONDUKTOR TIPE II

BAB II PROSES-PROSES PELURUHAN RADIOAKTIF

BAB II PERAMBATAN GELOMBANG SEISMIK

KONSEP DASAR STATISTIK

LATIHAN UJIAN NASIONAL

PENERAPAN PERSAMAAN PROCA DAN PERSAMAAN MAXWELL PADA MEDAN ELEKTROMAGNETIK UNTUK ANALISIS MASSA FOTON

SIFAT-SIFAT INTI. PERTEMUAN KEEMPt

FOTOPRODUKSI MESON-ETA PADA PROTON

UNIVERSITAS NEGERI YOGYAKARTA F A K U L T A S M I P A SILABI

MUATAN ELEMENTER ABSTRAK

Fungsi distribusi spektrum P (λ,t) dapat dihitung dari termodinamika klasik secara langsung, dan hasilnya dapat dibandingkan dengan Gambar 1.

BAB I PENDAHULUAN. 1.1 Latar Belakang

: Dr. Budi Mulyanti, MSi. Pertemuan ke-16

OPTIMASI PARAMETER POTENSIAL NUKLIR BAGI REAKSI FUSI ANTAR INTI-INTI BERAT

PENYELESAIAN MASALAH STURM-LIOUVILLE DARI PERSAMAAN GELOMBANG SUARA DI BAWAH AIR DENGAN METODE BEDA HINGGA

KAJIAN NUMERIK PENGARUH DIMENSI PADA PARAMETER BENAHAN SUPERKONDUKTOR TIPE II BERBENTUK PERSEGI PANJANG

BAB I Jenis Radiasi dan Interaksinya dengan Materi

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR

SOAL DAN PEMBAHASAN FINAL SESI I LIGA FISIKA PIF XIX TINGKAT SMA/MA SEDERAJAT PAKET 1

T 19 Kerapatan Keadaan pada Struktur Nano Berbentuk Sumur Nano, Kawat Nano dan Titik Nano

K 1. h = 0,75 H. y x. O d K 2

Sintesis Komposit TiO 2 /Karbon Aktif Berbasis Bambu Betung (Dendrocalamus asper) dengan Menggunakan Metode Solid State Reaction

I. Pendahuluan Listrik Magnet Listrik berkaitan dengan teknologi modern: komputer, motor dsb. Bukan hanya itu

BAB V PERAMBATAN GELOMBANG OPTIK PADA MEDIUM NONLINIER KERR

KONSEP DASAR STATISTIK

BAB I PENDAHULUAN. 1.1 Latar Belakang

Fisika Umum (MA 301) Topik hari ini. Fisika Atom & Inti

Lampiran 1. Beberapa Definisi dan Lema Teknis

PERHITUNGAN PENAMPANG HAMBURAN ELASTIK PADA REAKSI ep ep DENGAN DUA MACAM FAKTOR BENTUK : GALSTER DAN MILLER ADI AGUS KURNIAWAN

BAB II TINJAUAN PUSTAKA. Sebagai bintang yang paling dekat dari planet biru Bumi, yaitu hanya berjarak sekitar

PERSAMAAN PERTAMA MAXWELL RELATIVISTIK BINTANG NEUTRON YANG BEROTASI CEPAT DIUKUR OLEH PENGAMAT ZAMO (ZERO ANGULAR MOMENTUM OBSERVERS)

PENDAHULUAN. Di dalam modul ini Anda akan mempelajari Gas elektron bebas yang mencakup: Elektron

Pembahasan Simak UI Fisika 2012

ENERGI TOTAL KEADAAN DASAR ATOM BERILIUM DENGAN TEORI GANGGUAN

RENCANA PROGRAM SEMESTER (RPS) : Pendahuluan Fisika Inti. Semester : Genap 2016/2017

Kestabilan Aliran Fluida Viskos Tipis pada Bidang Inklinasi

Prosiding Seminar Nasional Meneguhkan Peran Penelitian dan Pengabdian kepada Masyarakat dalam Memuliakan Martabat Manusia

Pendahuluan. Setelah mempelajari bab 1 ini, mahasiswa diharapkan

RENCANA PELAKSANAAN PEMBELAJARAN ( RPP 01 )

Fisika Partikel: Tinjauan Kualitatif

Rekayasa Bahan untuk Meningkatkan Daya Serap Terhadap Gelombang Elektromagnetik dengan Matode Deposisi Menggunakan Lucutan Korona

BAB I PENDAHULUAN. 1.1 Latar Belakang

Hukum Gauss. Pekan #2. Hukum Gauss Pekan #2 1 / 17

BAB II TINJAUAN PUSTAKA

KEMENTERIAN RISET, TEKNOLOGI DAN PENDIDIKAN TINGGI UNIVERSITAS NEGERI YOGYAKARTA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Inti Atom dan Penyusunnya. Sulistyani, M.Si.

PERHITUNGAN ARAS-ARAS TENAGA PARTIKEL TUNGGAL INTI BOLA DENGAN POTENSIAL SAXON-WOODS

Chap. 8 Gas Bose Ideal

Transkripsi:

DOI: doi.org/10.21009/0305020501 EFEK MESON σ PADA PERSAMAAN KEADAAN BINTANG NEUTRON Alrizal 1), A. Sulaksono 2) 1,2 Departemen Fisika FMIPA UI, Kampus UI Depok, 16424 1) alrizal91@gmail.com, 2) anto.sulaksono@sci.ui.ac.id 1. Pendahuluan Abstrak Keberadaan partikel hyperon di dalam bintang neutron telah dipelajari dengan menggunakan model medan rata-rata relativistik (RMF). Dengan mengasumsikan adanya hyperon di dalam bintang neutron akan berdampak kepada persamaan keadaan dan sifat-sifat dari bintang neutron. Pada kajian ini akan dibahas bagaimana pengaruh variasi konstanta kopling meson σ terhadap persamaan keadaan bintang neutron dengan menggunakan model medan rata-rata relativistik dan parameter set GM1 yang kemudian dikomparasikan dengan hasil yang didapat dengan menggunakan parameter set BSP. Terlihat dengan memvariasikan konstanta kopling σ berpengaruh terhadap persamaan keadaan bintang neutron. Kata-kata kunci: Bintang Neutron, Hyperon, Meson σ, Persamaan Keadaan Abstract The existence of hyperon in neutron stars has been studied by relativistic mean field model. By assuming the hyperon in a neutron star will affect the equation of state and properties of neutron star. In this study, we will discuss how σ meson coupling constant variation affecting the equation of state of neutron stars by using relativistic mean field model and GM1 parameter which later will be compared with BSP parameter. It can be seen that by varying the σ coupling constants affecting the equation of state of neutron stars. Keywords : Neutron star, Hyperon, σ meson, Equation of state Bintang neutron merupakan salah satu jenis bintang padat yang memiliki massa sekitar 1,4M (M merupakan massa matahari) dengan jari-jari yang hanya berkisar 10 km. Kerapatan rata-rata bintang neutron adalah (2 3)ρ 0 namun kerapatan pada inti bintang neutron bisa mencapai (10 20)ρ 0. Dengan ρ 0 merupakan kerapatan nuklir normal [1]. Kemungkinan struktur dari bintang neutron dapat dilihat pada gambar 1. Terdiri dari bagian permukaan, kulit luar, kulit dalam, dan inti. Materi penyusun bagian dalam inti masih menjadi pertanyaan. kerapatan yang tinggi pada inti bintang neutron memungkinkan adanya materi seperti quark, kaon, hyperon, dan lain-lain. Pada kajian ini, inti bintang neutron diasumsikan terdiri dari hyperon [2]. Gambar 1. Struktur bintang neutron [2] Hyperon merupakan partikel jenis barion yang mengandung satu atau lebih quark strange. Hyperon yang digunakan dalam kajian ini adalah hyperon Λ, Σ, Σ 0, Σ +, Ξ 0, dan Ξ. Untuk menjelaskan interaksi antar hyperon diperkenalkan dua medan meson baru yaitu meson σ dan φ [3]. Pada kajian ini akan dilihat bagaimana pengaruh variasi konstanta kopling meson σ terhadap persamaan keadaan bintang neutron dengan menggunakan parameter set GM1 yang kemudian akan dikomparasikan dengan hasil yang didapat dengan menggunakan parameter set BSP. SNF2016-TPN-1

2. Metode Penelitian Seperti yang telah dijelaskan sebelumnya konstanta kopling meson σ akan divariasikan dan akan dilihat bagaimana pengaruhnya terhadap persamaan keadaan bintang neutron dengan menggunakan model RMF. Parameter yang digunakan adalah parameter set GM1 [4] yang kemudian akan dikomparasikan dengan hasil yang didapat dengan menggunakan parameter set BSP. Konstanta kopling hyperon dengan ω, ρ, dan φ ditentukan dengan menggunakan simetri SU(6) [5] 1 g 1 1 g g 3 N 2 2 1 g 1 1 g g 3 N 2 2 g g 2 2 2g 2g g gn, gn 0 3 (1) Sementara konstanta kopling hyperon dengan meson σ diperoleh dari perhitungan kedalaman potensial dalam keadaan saturasi. U N Y ( 0 Y 0 Y 0 ) g ( ) g ( ) (2) Dengan batasan U N 28MeV, U N 30MeV dan U N 18MeV [3]., Kerapatan Lagrangian total untuk model RMF terdiri dari kerapatan Lagrangian barion, meson, interaksi, dan lepton. Dapat ditulis dengan [6] L = L B + L M + L int + L L. (3) Dimana kerapatan Lagrangian barion dapat ditulis, i Bin Qi e. (8) Dengan B i = bilangan barion patrikel i, dan Q i =muatan listrik partikel i. Dengan menggunakan hubungan (8) diperoleh hubungan (9) [8] 0 0 p n n e 3. Hasil dan Pembahasan n e (9) Nilai variasi konstanta kopling meson σ dapat dilihat pada tabel 1. Tabel 1. Variasi nilai kopling. No. 1 Tanpa σ dan φ 2 0,725 3 0,775 4 0,9 5 1 Pertama akan kita lihat bagaimana pengaruh variasi konstanta kopling meson σ, seperti yang ditunjukkan pada tabel 1, terhadap persamaan keadaan bintang neutron dengan menggunakan parameter set GM1. Diperoleh hasil hubungan tekanan dan kerapatan energi seperti yang ditunjukkan pada gambar 2. Sementara gambar 3 menunjukkan hubungan tekanan dan kerapatan energi dengan menggunakan parameter set BSP. L B = ψ B(iγ μ μ m B )ψ B, (4) B kerapatan Lagrangian meson, L M = L σ + L ω + L ρ + L δ + L σ + L φ (5) kerapatan Lagrangian interaksi, L = L lin + L non lin, (6) dan kerapatan Lagrangian lepton, L L = ψ L(iγ μ μ m L )ψ L. (7) L Gambar 2. Hubungan P dan ε menggunakan parameter set GM1. Dalam kesetimbangan β, potensial kimia dari partikel dihubungkan melalui persamaan [7] SNF2016-TPN-2

Gambar 3. Hubungan P dan ε menggunakan parameter set BSP. Berdasarkan pada gambar 2, kita dapat melihat untuk setiap nilai variasi mengalami percabangan pada energi densitas dan tekanan tertentu. Percabangan pada grafik menandakan adanya transisi fase dari materi nukleon menjadi hyperon. Berdasarkan kepada grafik kita juga dapat melihat pada variasi nilai = 0,9 dan = 1 akan muncul second minimum yang menandakan adanya kestabilan dari materi. Dengan kata lain pada keadaan tersebut materi hyperon lebih banyak atau menjadi lebih dominan. Sementara berdasarkan pada gambar 3, kita dapat menyimpulkan tidak ada perubahan yang signifikan ketika pamater set BSP digunakan. Selanjutnya akan ditampilkan hubungan energi ikat dengan kerapatan saat saturasi dengan menggunakan parameter set GM1 seperti yang ditunjukkan oleh gambar 4 dan BSP pada gambar 5. Gambar 5. Hubungan energi ikat dan kerapatan saat saturasi menggunakan parameter set BSP. Berdasarkan kepada hubungan energi ikat dan kerapatan saat saturasi seperti yang ditunjukkan oleh grafik 4 dan 5, kita dapat melihat adanya kemunculan second minimum pada ρ B =4.5 ρ 0 untuk kedua parameter set yang menandakan adanya suatu kestabilan dari materi pada nilai konstanta kopling = 1. Catatan, adanya energi ikat minimum pada relasi energi versus kerapatan mengindikasikan kestabilan pada titik tersebut. Dimana kestabilan suatu materi ditandai dengan keadaan energi paling minimum. Hal ini juga mengkonfirmasi apa yang telah didapat pada hubungan tekanan dan rapat energi sebelumnya. Selanjutnya, untuk mengetahui distribusi partikel untuk masing-masing variasi konstanta kopling dan partikel apa yang berperan paling dominan dalam terjadinya transisi fase akan ditampilkan hubungan fraksi dengan kerapatan saat saturasi dengan menggunakan parameter set GM1 seperti yang ditunjukkan oleh gambar 6-10. Gambar 4. Hubungan energi ikat dan kerapatan saat saturasi menggunakan parameter set GM1. SNF2016-TPN-3

Gambar 6. Hubungan fraksi dan kerapatan saat saturasi menggunakan parameter set GM1 tanpa σ, φ. Gambar 9. Hubungan fraksi dan kerapatan saat = 0,9. Gambar 7. Hubungan fraksi dan kerapatan saat = 0,725. Gambar 10. Hubungan fraksi dan kerapatan saat = 1,0. Gambar 8. Hubungan fraksi dan kerapatan saat = 0,775. Berdasarkan gambar 6 10, kita dapat melihat hyperon pertama yang muncul adalah hyperon Λ, kemudian diikuti oleh hyperon Ξ dan hyperon Ξ 0. Hyperon Σ + muncul Ketika nilai konstanta = 0,725. Dan hyperon Σ 0 baru muncul ketika nilai = 0,9. Sementara hyperon Σ tidak muncul sama sekali bahkan ketika nilai = 1. Berdasarkan kepada grafik, kita juga dapat melihat bahwa partikel yang berperan paling dominan dalam terjadinya transisi fase dari materi nukleon menjadi hyperon adalah partikel Σ +. Selanjutnya akan ditampilkan hubungan fraksi dengan kerapatan saat saturasi dengan menggunakan parameter set BSP seperti yang ditunjukkan oleh gambar 11-15. SNF2016-TPN-4

Gambar 11. Hubungan fraksi dan kerapatan saat saturasi menggunakan parameter set BSP tanpa σ, φ. Gambar 14. Hubungan fraksi dan kerapatan saat = 0,9. Gambar 12. Hubungan fraksi dan kerapatan saat = 0,725. Gambar 15. Hubungan fraksi dan kerapatan saat = 1. Berbeda dengan menggunakan parameter set GM1, ketika kita menggunakan parameter set BSP kita dapatkan hyperon yang pertama muncul adalah hyperon Ξ kemudian diikuti dengan hyperon Λ dan hyperon Ξ 0. Hyperon Σ muncul Ketika nilai konstanta = 0,725. Dan hyperon Σ 0 baru muncul ketika nilai = 0,9. Sementara hyperon Σ + tidak muncul sama sekali bahkan ketika nilai = 1. Berdasarkan kepada grafik, kita dapat melihat bahwa partikel yang berperan paling dominan dalam terjadinya transisi fase adalah partikel Σ. Gambar 13. Hubungan fraksi dan kerapatan saat = 0,775. 4. Simpulan Dari kajian ini, kita dapat menyimpulkan ketika nilai konstanta kopling divariasikan dari tanpa σ SNF2016-TPN-5

dan φ hingga = 1 didapat bahwa semakin besar nilai memungkin munculnya second minimum pada ρ B =4.5 ρ 0 yang menandakan adanya kestabilan materi yaitu pada nilai = 0,9 dengan kata lain pada nilai tersebut hyperon menjadi lebih dominan dibanding nukleon. Sementara untuk nilai = 1 second minimum muncul dengan nilai negatif yang menandakan ketidakstabilan. Terlihat bahwa ketika menggunakan parameter set GM1, hyperon yang berkonstribusi terhadap terjadinya transisi fase adalah hyperon Σ + sementara hyperon Σ 0 berkontribusi terhadap terjadinya transisi fase untuk parameter set BSP. Daftar Acuan [1] P.Haensel, A.Y. Potekhin, D.G Yakovlev. Neutron stars 1, 1st ed. New York, Springer (2007), p.1 [2] Heiselberg, Morten HJ, Phases of dense matter neutron stars, Elsevier. 328(2000), p.242 [3] Jurgen SB, Matthias H, Horst S, Walter G, Phase transition to hyperon matter in neutron stars, Physical Review Letter. 89(2002) p.2 [4] NK Glendenning, SA Moszkowski, Reconciliation of neutron-star masses and binding of the Λ in hypernuclei, Physical Review Letter. 67(1991) p.3 [5] Jurgen SB, Avraham G, Properties of strange hadronic matter in bulk and in finite systems, Physical Review C, 62(2000) p.2 [6] A. Sulaksono, Anisotropic pressure and hyperon in neutron stars, International Journal of Modern Physics E, (2014) p.3 [7] Jurgen SB, IN Mishustin, Hyperon-rich matter in neutron stars, Physical Review C, 53(1995) p.3 [8] I Vidana, A Polls, A Ramos, L Engvik, MH Jensen, Hyperon-hyperon interactions and properties of neutron star matter, Physical Review C, 62(2000) p.1 SNF2016-TPN-6