Catatan Kuliah. MA4183 Model Risiko

dokumen-dokumen yang mirip
MA4183 MODEL RISIKO Control your Risk!

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided

Catatan Kuliah. MA4183 Model Risiko

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematik(a)

MA4183 MODEL RISIKO Control your Risk!

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Enjoy the Risks

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4181 MODEL RISIKO Enjoy the Risks

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA5181 Proses Stokastik

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Misalkan X peubah acak dengan fungsi distribusi berikut: + x, 0 x < 1. , 1 x < 2. , 2 x < 3. 1, x 3

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Bab 5 Teori Kebangkrutan

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Prosiding Statistika ISSN:

Prosiding Statistika ISSN:

UKURAN RISIKO BERDASARKAN PRINSIP PENENTUAN PREMI : PROPORTIONAL HAZARD TRANSFORM. Aprida Siska Lestia

Pengantar Statistika Matematik(a)

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Uji Hipotesis dan Aturan Keputusan

Pengantar Proses Stokastik

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Prosiding Statistika ISSN:

/ /16 =

MA5181 PROSES STOKASTIK

Pengantar Proses Stokastik

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

MA2081 Statistika Dasar

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB II TINJAUAN PUSTAKA

Pengantar Proses Stokastik

M-2 PERHITUNGAN PREMI ASURANSI KENDARAAN MENGGUNAKAN PENDEKATAN DISTRIBUSI PELUANG

BAB I PENDAHULUAN. banyak orang agar mau menjadi pemegang polis pada perusahaan tersebut. Salah

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

MODEL DISTRIBUSI TOTAL KERUGIAN AGGREGAT MANFAAT RAWAT JALAN BERDASARKAN SIMULASI

BAB I PENDAHULUAN 1.1. Latar Belakang

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah. MA5181 Proses Stokastik

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

ESTIMASI TOTAL DAYA LISTRIK YANG HILANG MELALUI PROSES POISSON TERPANCUNG MAJEMUK

BI5106 ANALISIS BIOSTATISTIK Bab 3 Peubah Acak dan Dist

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

Pengantar Statistika Matematika II

MODEL ASURANSI KENDARAAN BERMOTOR MENGGUNAKAN DISTRIBUSI MIXED POISSON ABSTRACT

Pengantar Proses Stokastik

Pemodelan Data Besar Klaim Asuransi Kendaraan Bermotor Menggunakan Distribusi Mixture Erlang

MA2082 BIOSTATISTIKA Orang Biologi Tidak Anti Statistika

Peubah Acak dan Distribusi

STK 203 TEORI STATISTIKA I

AK5161 Matematika Keuangan Aktuaria

Membangkitkan Data Klaim Individu Pemegang Polis Asuransi Kendaraan Bermotor Berdasarkan Data Klaim Agregat

PERSATUAN AKTUARIS INDONESIA

BAB I PENDAHULUAN Latar Belakang

Pengantar Proses Stokastik

Pengantar Statistika Matematika II

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

STK 203 TEORI STATISTIKA I

PEMBANGKIT RANDOM VARIATE

MA5181 PROSES STOKASTIK

BAB I PENDAHULUAN. 1.1 Latar Belakang

Pr { +h =1 = } lim. Suatu fungsi dikatakan h apabila lim =0. Dapat dilihat bahwa besarnya. probabilitas independen dari.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

PERSATUAN AKTUARIS INDONESIA

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

UJIAN A70 PERIODE JUNI 2014 SOLUSI UJIAN PAI A70. A70-Pemodelan dan Teori Risiko 9/14/2014

MA2081 Statistika Dasar

MA5181 PROSES STOKASTIK

DISTRIBUSI DISKRIT KHUSUS

Transkripsi:

Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1

Tentang MA4183 Model Risiko Jadwal kuliah: Selasa, 7-; Rabu, 15- Ujian: 22/9/15; 27/10/15; 1/12/15 (@ 25%) Buku teks: Yiu-Kuen Tse, 2009, Nonlife Actuarial Models: Theory, Methods and Evaluation Stuart Klugman, Harry Panjer, Gordon Willmot, 2004, Loss Models Jadwal Perkuliahan: M1 (24/8): Pengantar: risiko dan statistika; Distribusi frekuensi klaim M2 (31/8): Peubah acak Poisson*, Binomial dan Geometrik M3 (7/9): Zero-modified and zero-truncated distributions M4 (14/9): Compound distribution M5 (21/9): Ujian 1, Selasa 22/9 [Kamis 24/9 libur] 2

Pengantar: Risiko dan Statistika Risiko adalah sistem yang dapat dikendalikan. Salah satu kegiatan penting dalam (men)transfer risiko adalah berasuransi; pemegang polis (insured) menitipkan atau memindahkan risiko kepada pihak lain yaitu perusahaan asuransi (insurer) dan sebaliknya. Kedua subyek memiliki risiko, pemegang polis membayar premi sedangkan perusahaan asuransi membayar klaim. Untuk memahami risiko diperlukan kemampuan ilmu statistika yang baik, khususnya teori peluang dan proses stokastik. Ilmu-ilmu tersebut mengajar logika ketidakpastian yang menjadi roh risiko. 3

Bab 1 - Distribusi Frekuensi Klaim Silabus: Distribusi binomial, geometrik dan Poisson; kelas distribusi (a, b, 0); zero-modified and zero-truncated distributions; compound distribution Asuransi berkaitan erat dengan risiko karena dengan produk asuransi-lah terjadi perpindahan (tranfer) risiko dari pemegang polis kepada pihak asuransi. Pada pemodelan kerugian klaim (claim losses) terdapat dua ukuran penting yang harus diperhatikan yaitu frekuensi klaim (claim frequency) dan besar atau severitas klaim (claim severity). 1.1 Distribusi Binomial Distribusi yang tepat untuk memodelkan frekuensi klaim adalah distribusi diskrit, antara lain binomial, geometrik, negatif binomial dan Poisson. Misalkan peubah acak X menyatakan banyak klaim yang diproses dari semua klaim yang masuk. Misalkan X B(n, θ), maka fungsi peluangnya P (X = k) = C n k θ k (1 θ) n k, k = 0, 1, 2,..., n Sifat momen, atau momen ke-m, dapat ditentukan dengan memanfaatkan fungsi peluang (fp), yaitu E(X m ) = n x m P (X = k). k=0 Untuk m = 1, misalnya, didapat E(X) =, dst. Momen ke-m dapat pula ditentukan dengan menggunakan fungsi pembangkit momen (fpm): M X (t) = Catatan: Fpm suatu peubah acak berkorespondensi satu-satu dengan distribusi peubah acak tersebut. Bagaimana dengan fungsi pembangkit peluang (fpp), manfaat apa yang dapat diperoleh dengan fpp? Bagaimana menentukan peluang secara rekursif? Dapatkah ditentukan hubungan antara fpm dan fpp? 4

Misalkan X 1, X 2,..., X n sampel acak dari X yang berdistribusi binomial dengan parameter (n, θ). Parameter θ dapat ditaksir dengan menggunakan metode likelihood maksimum sbb: Fungsi likelihood dan log-likelihood:... Turunan pertama terhadap parameter dan normalisasi:... Penaksir θ:... Turunan kedua terhadap parameter:... Tugas: Pandang data berdistribusi binomial dengan berbagai nilai parameter. Lakukan analisis statistika deskriptif dan inferensial terhadap data tersebut. 1.2 Distribusi Geometrik Distribusi lain yang dapat digunakan untuk memodelkan frekuensi klaim adalah distribusi geometrik. Pertanyaannya, definisi peubah acak apakah yang tepat untuk menggambarkan distribusi ini? Misalkan X Geo(α) dengan fungsi peluang p(x) = (1 α) x 1 α, x = 1, 2,... Kita dapat menentukan sifat momen seperti sebelumnya, E(X) = 1 α, V ar(x) = 1 α 2, dan juga fpm dan fpp. Selain itu, misalkan X Geo(α), kita dapat pula menentukan sifat distribusi dari X + 1. Namun yang menarik untuk dikaji adalah apakah sifat khusus yang hanya dimiliki distribusi geometrik? Jelaskan! 5

1.3 Distribusi Poisson Misalkan X peubah acak yang menyatakan banyaknya/frekuensi klaim pada suatu periode waktu. Distribusi untuk X adalah Poisson dengan parameter λ. Ciri khas distribusi ini adalah nilai mean dan variansi yang sama yaitu λ, E(X) = V ar(x) = λ. Dalam praktiknya, mungkinkah kita memperoleh data dengan nilai mean sama dengan variansi? (selanjutnya nanti akan dipelajari konsep overdispersion dan underdispersion) Bagaimana kaitan antara distribusi Poisson dan Binomial? adakah manfaat yang dapat kita ambil? Teorema Jika X 1,..., X n peubah acak-peubah acak yang saling bebas dengan X i P OI(λ i ) maka X = X 1 + + X n P OI(λ 1 +... + λ n ). Misalkan X dan Y peubah acak Poisson dengan parameter, berturut-turut, λ 1 dan λ 2. Kita dapat menentukan distribusi X X + Y = n sebagai berikut P (X = k X + Y = n) P (X = k, X + Y = n) = P (X + Y = n) P (X = k, Y = n k) = P (X + Y = n) P (X = k) P (Y = n k) = P (X + Y = n) = exp( λ 1) λ k 1 (k!) 1 exp( λ 2 ) λ n k 2 ((n k)!) 1 exp( (λ 1 + λ 2 )) (λ 1 + λ 2 ) n (n!) 1 = n! k!(n k)! ( λ1 λ 1 + λ 2 ) k ( λ2 λ 1 + λ 2 ) n k. Dengan kata lain, X X + Y = n B(n, λ 1 /(λ 1 + λ 2 )). 6

1.4 Kelas Distribusi (a, b, 0) Perhatikan fungsi peluang dari peubah acak Poisson(λ): f(x) = e λ λ x, x = 0, 1, 2,... x! yang dapat dituliskan rekursif dengan memperhatikan fungsi peluang untuk X = x 1, Diperoleh f(x 1) = e λ λ x 1 (x 1)!. f(x) f(x 1) = e λ λ x / e λ λ x 1 x! (x 1)! = λ x atau f(x) = ( ) λ f(x 1), x = 1, 2,... x Distribusi-distribusi diskrit yang sudah dikenalkan sebelumnya (binomial, geometrik, binomial negatif, Poisson) dapat dikelompokkan menjadi sebuah Kelas Distribusi (a, b, 0) dengan fungsi peluang memenuhi sifat rekursif: f(x) = ( a + b ) f(x 1), x = 1, 2,..., x dengan a, b konstanta dan f(0) diberikan. Catatan: Kelas distribusi (a, b, 1) dapat pula dibentuk dengan analogi. 1.5 Zero-Modified and Zero-Truncated Distributions Misalkan X B(3, 0.4). Kita dapat menentukan distribusi peluang sebagai berikut: Dalam aplikasi teori peluang, seringkali kita dihadapkan pada fenomena dimana peluang terjadinya 0 telah ditentukan, misalnya P (X = 0) = 0.3, atau bahkan mungkin tidak ada, P (X = 0) = 0. Untuk itu, perlu adanya modifikasi fungsi peluang diatas. Distribusi yang dihasilkan dikatakan sebagai zero-modified and zero-truncated distributions. 7

X P (X = k) 0 0.216 1 0.432 2 0.288 3 0.064 Misalkan peubah acak X dari suatu distribusi (a, b, 0) memiliki fungsi peluang f(x). Misalkan f M (x) fungsi peluang yang merupakan modifikasi dari f(x); f M (x) adalah fungsi peluang dari distribusi (a, b, 1). Untuk f M (0) yang ditentukan, hubungan antara f M (x) dan f(x) adalah f M (x) = c f(x), x = 1, 2,... dengan c konstanta. Catatan: Fungsi peluang f M (x) haruslah terdefinisi dengan baik; akibatnya, c dapat diperoleh, c = 1 f M (0) 1 f(0). Untuk distribusi Binomial dengan parameter (3, 0.4) diatas, kita dapat menghitung f M (k), k = 1, 2, 3 sebagai berikut: f M (1) = 1 f M (0) 1 f(0) f(1) = 1 0.3 1 0.216 0.432 = 0.386. Dengan cara sama, kita peroleh f M (2) = 0.258 dan f M (3) = 0.056. Untuk zero-truncated distribution, nilai P (X = 0) = 0. Diperoleh nilai seperti tabel berikut: X P (X = k) Zero-Modified Zero-Truncated 0 0.216 0.3 0 1 0.432 0.386 2 0.288 0.258 3 0.064 0.056 8

Latihan: 1. Tentukan zero-modified distribution untuk X yang berdistribusi Poisson dengan parameter 2.5 2. Misalkan X adalah zero-truncated distribution dari X. Diketahui, fungsi peluang dan fungsi pembangkit peluang X, berturut-turut, adalah f X (x) dan P X (t). Tentukan fungsi pembangkit peluang untuk X. 1.6 Compound distribution Misalkan X 1,..., X n sampel acak dari X dengan fungsi distribusi F X. Apakah yang dapat kita katakan tentang distribusi S = X 1 + + X n,? Bagaimana dengan S = X 1 + + X N,? (dimana N adalah peubah acak) Jika N peubah acak bernilai integer yang saling bebas dengan X 1,..., X N, maka peubah acak S = X 1 + + X N dikatakan memiliki compound distribution. Catatan: - Distribusi N disebut sebagai distribution pertama (primary distribution), sedangan distribusi X dikatakan distribusi kedua (secondary distribution) - Penamaan distribusi: primary-secondary distribution - Distribusi compound Poisson adalah distribusi dengan distribusi pertama adalah distribusi Poisson dan sebarang distribusi untuk distribusi kedua 9

Untuk menentukan distribusi S, perhatikan ilustrasi berikut. Misalkan X i B(1, θ) dan kita tahu X i = 0, 1. Sehingga nilai yang mungkin untuk S adalah {0, 1, 2}. P (S = 0) = P (X 1 = 0, X 2 = 0) = P (X 1 = 0)P (X 2 = 0) = f(0)f(0) P (S = 1) = P (X 1 = 0, X 2 = 1) + P (X 1 = 1, X 2 = 0) = f(0)f(1) + f(1)f(0) P (S = 2) = P (X 1 = 1, X 2 = 1) = f(1)f(1) Jadi, fungsi peluang S adalah P (S = s) = x P (X 1 = x, X 2 = s x). Dalam menentukan distribusi S dengan N peubah acak alias compound distribution, distribusi N harus ditentukan lebih dahulu. Dengan demikian, kita peroleh P (S = s) = n P (S N = n)f N (n), dengan sifat momen pertama E(S) = E(E(S N)) = dan fungsi pembangkit momen M S (t) =. Latihan: 1. Misalkan S 1 memiliki compound distribution dengan distribusi pertama Poisson dengan parameter 1 dan kedua Geometrik dengan parameter p 1. Misalkan S 2 memiliki compound distribution dengan distribusi pertama Poisson dengan parameter 2 dan kedua Geometrik dengan parameter p 2. Diketahui S 1 dan S 2 saling bebas. Misalkan S = S 1 + S 2. Hitung P (S = s), s = 0, 1, 2. 2. Tentukan fpm dan fpp dari dari geometric-binomial compound distribution. 10