PROSIDING ISBN : 978 979 65 KOMPLEMEN GRAF FUZZY A Lucia Ratnasari, Y.D. Sumanto dan Tina Anggitta Novia Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam Universiats Diponegoro Abstrak Graf fuzzy merupakan graf yang terdiri dari pasangan himpunan titik impunan garis, dimana setiap titik dan garis tersebut memiliki derajat keanggotaan yang mencakup bilangan real dalam selang tertutup [0,]. Komplemen dari graf fuzzy pertama kali didefinisikan oleh Mordeson, namun kemudian disempurnakan oleh M.S Sunitha dan Vijayakumar. Berdasarkan komplemen dari graf fuzzy yang telah disempurnakan tersebut didapatkan bahwa dobel komplemen dari suatu graf fuzzy adalah graf fuzzy itu sendiri serta akan ditunjukkan bahwa grup automorfisma dari graf fuzzy dan komplemennya adalah identik. Kata kunci : graf fuzzy, komplemen graf fuzzy I. Pendahuluan.. Latar Belakang Penelitian mengenai teori himpunan fuzzy berkembang dengan pesat baik dalam bidang matematika maupan aplikasinya. Teori himpunan fuzzy pertama kali diperkenalkan oleh Prof. Lotti A Zadeh pada tahun 965. Dalam teori himpunana fuzzy nilai keanggotaannya diperluas jangkauannya sehingga mencakup bilangan real pada interval [0,]. Aplikasi dari teori himpunan fuzzy sangat luas seperti dalam operasi research, teori informasi, neural network, di bidang kedokteran, bidang ekonomi dll. Oleh karena itu teori himpunan fuzzy merupakan suatu bidang potensial untuk penelitian antar cabang ilmu pengetahuan. Salah satunya yang menjadi perhatian baru dewasa ini adalah Teori graf fuzzy. Penelitian mengenai teori graf fuzzy dipelopori oleh Rosenfeld yang menggunakan relasi fuzzy pada himpunan fuzzy untuk membangun teori graf fuzzy di tahun 975. Dalam waktu yang sama Yeh dan Bang memperkenalkan konsep Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009
PROSIDING ISBN : 978 979 65 konsep yang berhubungan dengan graf fuzzy. Setelah konsep konsep dasar dari teori graf fuzzy ditemukan maka hasil hasil yang lebih mendalam banyak ditemukan. Dalam makalah ini ini akan dibahas suatu permasalahan dari teori graf fuzzy yaitu komplemen dari graf fuzzy. Definisi komplemen graf fuzzy telah diberikan oleh Mordeson, dengan menggunakan definisi ini ternyata ditemukan dobel komplemen dari graf fuzzy tidak selalu sama dengan grafnya dan grup automorfisma dari graf fuzzy dan komplemennya tidak identik. Hal tersebut diatas memotivasi M.S. Sunitha dan Vjayakumar untuk memformulasikan definisi baru untuk komplemen dari graf fuzzy sehingga diperoleh hasil yang sesuai dengan sifatsifat yang ada dalam teori graf... Perumusan Masalah Dari latar belakang diatas maka permasalahan yang akan dibahas dalam makalah ini adalah:. Bagaimana komplemen graf fuzzy menurut Mordeson serta sifat sifatnya.. Bagaimana komplemen graf fuzzy menurut M.S Sunitha dan Vjayakumar serta sifat sifatnya... Tujuan dan Manfaat Tujuan dari pembahasan mengenai judul Komplemen dari Graf Fuzzy adalah:. Mendapatkan definisi baru untuk komplemen dari graf fuzzy yang hasilnya sesuai dengan sifat sifat yang ada dalam teori graf.. Hasil yang diperoleh dapat digunakan sebagai dasar penelitian lebih lanjut yang berkaitan dengan komplemen graf fuzzy dan terapannya. Sedangka manfaatnya adalah mengembangkan, memperdalam dan memadukan cabang cabang ilmu matematika yakni aljabar dan teori graf. II. Pembahasan.. Graf Fuzzy Definisi... [] Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009
PROSIDING ISBN : 978 979 65 Misalkan V adalah himpunan berhingga, suatu graf fuzzy yang dinotasikan dengan : ( σ, ) G adalah graf yang terdiri dari pasangan himpunan titik σ dan himpunan garis, dengan i. σ : [ 0, ] ii. : [ 0,] Contoh... yang memenuhi ( uv) σ ( u) σ ( v) u, v V. Misalkan diberikan graf fuzzy G dengan himpunan titik σ = { v, v, v, v v } impunan garis = {( v v ), ( v v ), ( v v ), ( v v ) ( v v )},,. Derajat keanggotaan dari himpunan titiknya adalah σ ( v ) =.5, σ ( v ) = 0.5, σ ( v ) 0.5, ( v ) =.5, σ ( v ) 0. 5 0 5 = 0 = σ dan derajat keanggotaan dari himpunan garisnya adalah ( vv ) = 0.5, ( vv ) = 0.5, ( v v ) = 0.5, ( v v ) = 0. 5 maka graf fuzzy G tersebut : ( v v ) 0., = 5 G Gambar. graf fuzzy G Definisi... [] Suatu graf dasar dari : ( σ, ) ( σ, ) G : dan didefinisikan oleh : i. x σ jika σ ( x) 0, x V ii. ( xy) jika ( xy) 0, x, y V G adalah suatu graf yang dinotasikan dengan Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009
PROSIDING ISBN : 978 979 65 Definisi... [] Misalkan diberikan graf fuzzy G : ( σ ) dan : ( σ ) dan = V, G, dengan σ = V σ. Suatu homomorfisma dari graf fuzzy G : ( σ ) dan G : ( σ ) adalah suatu pemetaan h : V V yang memenuhi : ( i ). σ ( u) σ ( h( u) ) u V ( ii ). ( uv) (( h( u) )( h( v) )) u, v V,, Definisi... [] Misalkan diberikan graf fuzzy G : ( σ ) dan : ( σ ), G, dengan σ = V dan σ = V. Suatu isomorfisma antara graf fuzzy G dan G adalah pemetaan bijektif h : V V yang memenuhi : ( i ). ( u) = σ ( h( u) ) u V σ dan ( ii ). ( uv) = (( h( u) )( h( v) )) u, v V dan dituliskan dengan G G. Definisi..5. [] Suatu isomorfisma terhadap dirinya sendiri disebut automorfisma... Komplemen graf fuzzy menurut Mordeson Definisi... [] Menurut Mordeson, komplemen dari suatu graf fuzzy : ( σ,) fuzzy yang dinotasikan dengan G : ( σ, ) i. σ = σ ii. ( uv) = 0, jika ( uv) > 0 ( uv) σ ( u) σ ( v) dan =, untuk lainnya., dimana G adalah suatu graf Contoh.. : Komplemen dan dobel komplemen dari graf fuzzy G pada Gambar menurut definisi Mordeson adalah sebagai berikut: Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 5
PROSIDING ISBN : 978 979 65 G G G Gambar. graf fuzzy G, komplemen G dan dobel komplemen G. Definisi... [] Grup automorfisma dari suatu graf fuzzy G adalah himpunan dari semua automorfisma G berdasarkan grup permutasinya. Contoh.. Misalkan diberikan graf fuzzy seperti pada Gambar maka grup automorfisma dari graf fuzzy G dan komplemennya adalah sebagai berikut: Grup automorfisma dari G terdiri dari pemetaan yaitu h dimana h adalah suatu pemetaan identitas dan h adalah suatu permutasi ( )( v v )( ) v. v Tetapi grup automorfisma dari G terdiri dari pemetaan h, h, h dimana h adalah automorfisma dari G, h adalah permutasi h = ( v v )( v )( ) dan ( v v )( v ) v h =. v ( i ). Grup automorfisma dari G : h h Gambar. Grup automorfisma dari graf fuzzy G Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 6
PROSIDING ISBN : 978 979 65 ( ii ). Grup automorfisma dari G : Pemetaan h Pemetaan h V(0.5) V(0.5) V(0.5) V(0.5) 0.5 0.5 V(0.5) V(0.5) V(0.5) V(0.5) Pemetaan V(0.5) h Pemetaan h V(0.5) V(0.5) V(0.5) 0.5 0.5 V(0.5) V(0.5) V(0.5) V(0.5) Gambar. Grup automorfisma dari komplemen graf fuzzy G Dari (i) dan (ii) didapat bahwa automorfisma grup dari G dan G tidak identik. Sehingga akan dicari suatu definisi lain yang akan menyempurnakan definisi komplemen graf fuzzy dari Mordeson... Komplemen graf fuzzy menurut M.S Sunitha dan Vijayakumr Definisi... [] Menurut M.S Sunitha dan Vijayakumar, komplemen dari suatu graf fuzzy G : ( σ,) adalah suatu graf fuzzy yang dinotasikan G : ( σ, ),dimana i). σ = σ dan ii). ( uv) = σ ( u) σ ( v) ( uv) u, v V. Teorema... G adalah komplemen dari suatu graf fuzzy : ( σ,) Jika : ( σ, ) G = G. Bukti : ( i ). σ = σ = σ ( ii ). Akan dibuktikan ( uv) = ( uv) G maka Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 7
PROSIDING ISBN : 978 979 65 ( uv) = σ ( u) σ () v ( uv) = σ ( u) σ ( v) (( σ ( u) σ ( v) ) ( uv) ) = σ ( u) σ ( v) ( σ ( u) σ ( v) ) + ( uv) = ( uv) ( uv) ( uv) sehingga ( uv) = ( uv) Dari (i) dan (ii) terbukti bahwa G = G Contoh...: Misalkan diberikan graf fuzzy G pada Gambar., akan ditunjukkan komplemen dan dobel komplemen dari graf fuzzy G tersebut : Sehingga G G G Gambar 5. graf fuzzy G,komplemen G dan dobel komplemen G. G = G. Teorema... Misalkan : ( σ, ) G adalah suatu graf fuzzy, maka grup automorfisma dari G dan G adalah identik. Bukti : Jika h ΓG, maka h ΓG, karena G automorfisma, maka G isomorfisma terhadap dirinya sendiri. Karena G isomorfisma maka berlaku suatu pemetaan bijektif h : V V sehingga : ( i ). σ ( h( u) ) = σ ( h( u) ) = σ ( u) = σ ( u) ( ii ). Akan dibuktikan ( h ( u), h( v) ) = ( u, v) Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 8
PROSIDING ISBN : 978 979 65 (( h( u) )( h( v) )) = ( σ ( h( u) ) σ ( h( v) )) ( ( h( u) )( h( v) )) = ( σ ( u) σ ( v) ) ( uv) = ( uv) u, v V Dari (i) dan (ii) terbuki bahwa grup automorfisma dari G dan G adalah identik. Contoh...: Misalkan diberikan graf fuzzy pada Gambar., maka grup automorfisma dari graf fuzzy G terdiri dari pemetaan yaitu h dimana h adalah suatu pemetaan identitas dan h adalah suatu permutasi ( )( v v )( ) v. Sedangkan grup v automorfisma dari G juga terdiri dari pemetaan yaitu h dimana h adalah suatu pemetaan identitas dan h adalah suatu permutasi ( )( v v )( ) ( i ). Grup automorfisma dari G dapat dilihat pada gambar berikut: h h v. v Gambar 6. Grup automorfisma dari G ( ii ). Grup automorfisma dari G : h h Gambar 7 Grup automorfisma dari G Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 9
PROSIDING ISBN : 978 979 65 Sehingga dari uraian diatas didapat bahwa menurut komplemen graf fuzzy dari M.S Sunitha dan Vijayakumar diperoleh bahwa dobel komplemen dari suatu graf fuzzy adalah graf fuzzy itu sendiri dan grup automorfisma dari suatu graf fuzzy dan komplemennya identik. Dari (i) dan (ii) diperoleh bahwa grup automorfisma dari G dan G adalah identik. III. Kesimpulan Definisi komplemen graf fuzzy pertama kali dijelaskan oleh Mordeson, namun kemudian disempurnakan oleh M.S Sunitha dan Vijayakumar. Menurut komplemen graf fuzzy yang telah disempurnakan diperoleh bahwa. jika G adalah suatu graf fuzzy maka G = G. grup automorfisma dari graf fuzzy G dan komplemennya adalah identik Saran Masih perlu dikaji lebih lanjut untuk sifat sifat komplemen graf fuzzy yang lain misalnya operasi operasi pada graf fuzzy seperti gabungan, join, komposisi dan Cartesian produk. DAFTAR PUSTAKA: [] http : www.google.com, Isomorphism on Fuzzy Graphs, (Didownload terakhir 5 Juni 009 ). [] Mao, Linfan. 005, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press : USA. [] M.S. Sunitha and Vijayakumar, 00, Complement of a Fuzzy Graph, Indian J.pure appl. Math., (9):5 6. Jurusan Pendidikan Matematika FMIPA UNY, 5 Desember 009 0