BAB I PENDAHULUAN 1.1. Latar Belakang
|
|
|
- Djaja Susanto
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN Bab I merupakan pendahuluan dari kajian yang akan dilakukan. Pada bab ini akan dibahas mengenai latar belakang penulis dalam pemilihan judul kajian. Selain latar belakang, dijelaskan pula mengenai rumusan masalah, batasan masalah, tujuan, serta manfaat yang diharapkan dari kajian yang akan dilakukan oleh penulis Latar Belakang Matematika merupakan salah satu ilmu yang dimanfaatkan sebagai sumber dari segala ilmu pengetahuan dan pada perkembangannya tidak tergantung pada ilmu lain. Matematika merupakan suatu bidang ilmu yang banyak digunakan untuk menyelesaikan berbagai permasalahan yang muncul dalam kehidupan sehari-hari. Sebagai contoh menghitung jarak yang ditempuh dari suatu tempat ke tempat yang lain. Matematika sendiri mempunyai beberapa cabang ilmu yang spesifik, diantaranya adalah statistik, aljabar, geometri, dan matematika diskrit. Matematika diskrit adalah cabang matematika yang membahas segala sesuatu yang bersifat diskrit. Diskrit disini dapat diartikan sebagai yang saling terpisah (lawan dari kontinu). Beberapa hal yang dibahas dalam matematika diskrit ini adalah teori himpunan, teori kombinatorial, permutasi, relasi, fungsi, rekursif, teori graf dan lain-lain (Munir, 2003). Teori graf merupakan salah satu sub cabang dari matematika diskrit yang sudah lama menjadi pokok bahasan, namun saat ini mempunyai banyak terapan. Teori graf juga mempunyai banyak aplikasi praktis dalam berbagai disiplin, misalnya dalam biologi, ilmu komputer, ekonomi, teknik, informatika, linguistik, matematika, kesehatan, dan ilmu-ilmu sosial. Graf didefinisikan sebagai pasangan himpunan ( ( ), ( )), yang dalam hal ini ( ) adalah himpunan tidak kosong dan berhingga dari objek yang disebut titik (vertice atau node), dan ( ) adalah himpunan (mungkin kosong) pasangan tak 1
2 berurutan dari titik-titik berbeda di ( ) yang disebut sisi ( edges). Graf pada umumnya dinotasikan = {, } (Abdussakir dkk, 2009). Menurut Cahyono (2000), terdapat beberapa graf khusus diantaranya graf lengkap ( complete graph), graf bipartisi ( bipartite graph), graf bipartisi lengkap (complete bipartite graph), graf Petersen, graf kubus (cube graph), dan masih banyak lagi. Graf bipartisi lengkap, disebut graf bintang (star) dan dinotasikan dengan (Abdussakir dkk, 2009). Penggabungan dua buah graf yaitu misalkan terdapat graf = ( 1, 1) dan = ( 2, 2) maka graf merupakan penggabungan dua buah graf (ditulis sebagai = yang mana himpunan simpul = dan himpunan garis = ). Salah satu materi yang banyak berkembang akhri-akhir ini dalam teori graf adalah Teori Ramsey. Teori Ramsey pertama kali diperkenalkan pada tahun 1928 dalam konteks permasalahan mencari prosedur untuk menentukan benar tidaknya suatu formula logika yang diberikan. Kemudian teori Ramsey menjadi terkenal setelah Erdös dan Szekeres (1935) mengaplikasikannya ke dalam teori graf (Surahmat, 2003). Party Problem merupakan salah satu persoalan yang terkait dengan teori Ramsey. Persoalan tersebut yaitu menentukan berapa banyak minimal orang yang harus hadir dalam suatu pesta agar dapat dengan pasti ditemukan hubungan tiga orang yang saling mengenal atau tiga orang yang saling tidak mengenal (Dickson,2011). Persoalan tersebut dapat direpresentasikan dalam bentuk graf lengkap. Menurut Robertson dan Landman (2003), Teorema Ramsey menyebutkan apabila terdapat dua buah bilangan asli a dan b dengan 2 dan 2, maka bilangan Ramsey (, ) adalah bilangan asli terkecil n, sedemikian sehingga jika graf lengkap dengan n titik diwarnai dengan warna merah atau biru, maka graf tersebut akan selalu memuat graf lengkap dengan a titik merah atau dengan b titik biru sebagai subgraf. Bilangan (, ) ini disebut sebagai bilangan Ramsey klasik. 2
3 Konsep bilangan Ramsey klasik kemudian diperluas dalam berbagai bentuk. Salah satu di antaranya adalah bilangan Ramsey graf. Seperti yang dikemukakan oleh Sari (2012), diberikan dua graf dan, bilangan Ramsey graf (, ) didefinisikan sebagai bilangan asli terkecil sedemikian sehingga untuk setiap graf dengan titik memenuhi sifat : memuat graf atau komplemen dari memuat. Hasil kajian Baskoro dkk.(2002) tentang bilangan Ramsey untuk pohon dan roda menunjukkan bahwa struktur yang paling berpengaruh pada penentuan bilangan Ramsey untuk pohon adalah bintang, meskipun struktur bintang tersebut adalah struktur pohon yang paling sederhana. Penentuan bilangan Ramsey untuk graf bintang dan graf bipartit lengkap juga telah dikaji, walaupun hasilnya masih sedikit. Hal ini dilakukan oleh Chvatal dan Harary (1972), Lawrence (1973), Parsons (1975), dan Rosyida (2004). Beberapa hasil penelitian yang membuat penulis termotifasi untuk mengkaji bilangan Ramsey diantaranya hasil penelitian dari Hasmawati (2007) untuk bilangan Ramsey,, = 8 dan,, = 10. Kemudian hasil penelitian dari Rosyida (2004) untuk graf bintang dan graf bipartit lengkap di peroleh bilangan Ramsey,, = dengan, = 2,,, = + 5 untuk q genap dan = 2 serta,, = + 6 untuk q ganjil dan = 3. Berdasarkan hasil penelitian yang ada, maka penulis tertarik untuk menindaklanjuti hasil yang telah diperoleh, dengan mengkaji penentuan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 6 < < Rumusan Masalah Berdasarkan latar belakang yang telah dijelaskan di atas maka muncul beberapa permasalahan yang akan dikaji lebih lanjut. Permasalahan-permasalahan yang muncul akan menjadi acuan untuk melakukan penelitian dan memfokuskan masalah yang akan diteliti. Sebelum melakukan penelitian seorang peneliti harus menentukan rumusan masalah terlebih dahulu. Hal ini bertujuan agar penelitian yang 3
4 akan dilakukan sesuai dengan latar belakang, oleh karena itu rumusan masalah pada penulisan tugas akhir ini adalah bagaimana menentukan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 6 < < Pembatasan Masalah Bilangan Ramsey untuk bintang dan bipartit lengkap,,,, pada umumnya belum diketahui. Beberapa yang diketahui, diantaranya adalah (,, ) untuk 2 dan 2, dan (,, ) untuk 2. Untuk,, dan yang lain, nilai (,, ) belum diketahui. Bilangan Ramsey untuk bintang dan bipartit lengkap belum banyak yang mengkaji, sehingga penulis tertarik untuk mengkaji bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap. Berdasarkan rumusan masalah dan agar masalah yang dikaji tidak terlalu meluas, maka perlu dijelaskan batasan masalah. Pada kajian ini batasan masalahnya adalah penentuan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 7 hanya dibatasi pada = 7, 8, dan 9. Bilangan Ramsey yang dibahas hanya bilangan Ramsey graf dua warna. 1.4 Tujuan Kajian Tujuan pada hakikatnya adalah hal-hal yang ingin dicapai ketika melakukan suatu aktivitas. Pada kajian ini bertujuan untuk menentukan bilangan Ramsey dari gabungan suatu graf, dalam menentukan bilangan Ramsey dari suatu graf yang perlu diperhatikan adalah sifat-sifat dari graf tersebut. Bilangan Ramsey pada umumnya menentukan bilangan bulat terkecil sedemikian sehingga untuk setiap graf dengan titik memenuhi sifat : memuat graf atau komplemen dari memuat. Berdasarkan rumusan dan batasan masalah yang telah disajikan maka lebih khusus kajian ini bertujuan untuk menentukan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 7. 4
5 1.5 Manfaat Kajian Melalui kajian bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 7 diharapkan mampu memberikan masukan yang bermanfaat dalam bidang matematika khususnya pada kajian tentang teori graf. Adapun manfaat yang dapat diperoleh dari penulisan tugas akhir ini adalah : 1. Menambah informasi atau ilmu pengetahuan dibidang matematika, khususnya tentang bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk Dapat dijadikan referensi tambahan dalam menentukan bilangan Ramsey untuk gabungan graf yang lain. 1.6 Metode Kajian Metode yang digunakan dalam pembahasan skripsi ini adalah metode kajian studi literatur ( library research) atau studi kepustakaan yaitu pembahasan yang dilakukan dengan mengkaji teori-teori yang relevan untuk memecahkan masalah. Studi literatur ini dilakukan agar terjadi keselarasan antara teori yang tela ada dengan masalah kajian atau pengembangan dari teori yang ditemukan. a. Sumber Kajian Sumber penulisan kajian ini berdasarkan beberapa data literatur. Data tersebut merupakan data sekunder berasal dari tahapan-tahapan pengumpulan data dengan pembacaan secara kritis terhadap ragam literatur berupa buku, jurnal, skripsi terdahulu, disertasi terdahulu, maupun data dari internet. Selanjutnya data-data tersebut dikelompokkan dan diseleksi berdasarkan kategori dan relevansi terhadap materi penentuan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 6 < < 10. b. Cara Kajian Penulis suatu kajian skripsi selalu diawali dengan melakukan penetapan masalah dan kemudian mancari sumber informasi mengenai masalah tersebut dengan 5
6 mengkaji materi yang mendukung dalam pembahasan. Materi yang dipelajari dalam skripsi ini yaitu graf, berdekatan dan terkait, derajat titik, isomorfik, subgraf, komplemen suatu graf, gabungan graf, graf khusus, pewarnaan graf, bilangan kromatik, dan bilangan Ramsey. Selanjutnya data-data tersebut akan diolah sehingga dapat menjawab permasalahan mengenai penentuan bilangan Ramsey untuk gabungan graf bintang dan graf bipartit lengkap (,, ) untuk 6 < < 10. 6
BAB I PENDAHULUAN. Seiring perkembangan zaman dan kemajuan teknologi, aplikasi teori graf
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Seiring perkembangan zaman dan kemajuan teknologi, aplikasi teori graf telah merambah ke aneka disiplin ilmu dan membantu memudahkan orang untuk menyelesaikan
I.1 Latar Belakang Masalah
Bab I Pendahuluan I.1 Latar Belakang Masalah Teori Ramsey adalah suatu area penelitian dalam teori graf yang sedang berkembang pesat dan mempunyai banyak aplikasi. Dalam makalah Rosta (2004) disebutkan
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin
ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin [email protected] Abstract Graf yang memuat semua siklus dari yang terkecil sampai
Konsep Dasar dan Tinjauan Pustaka
Bab II Konsep Dasar dan Tinjauan Pustaka Pembahasan bilangan Ramsey pada bab-bab berikutnya menggunakan definisi, notasi, dan konsep dasar teori graf yang sesuai dengan rujukan Chartrand dan Lesniak (1996),
Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda
Vol. 9, No.2, 114-122, Januari 2013 Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda Hasmawati 1 Abstrak Graf yang memuat semua siklus dari yang terkecil sampai ke
TEKNIK MENENTUKAN BILANGAN RAMSEY R(M, N) DENGAN M DAN N ADALAH 1, 2, DAN 3 SKRIPSI OLEH AGUS FAJARMAN ZALUKHU BP
TEKNIK MENENTUKAN BILANGAN RAMSEY R(M, N) DENGAN M DAN N ADALAH 1, 2, DAN 3 SKRIPSI OLEH AGUS FAJARMAN ZALUKHU BP. 07134064 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS
Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap
Vol.4, No., 49-53, Januari 08 Bilangan Ramsey untuk Graf Bintang Genap erhadap Roda Genap Hasmawati Abstrak Untuk sebarang graf G dan H, bilangan Ramsey R(G,H) adalah bilangan asli terkecil n sedemikian
BILANGAN RAMSEY UNTUK GRAF BINTANG S n DAN GRAF RODA W m
BILANGAN RAMSEY UNTUK GRAF BINTANG S n DAN GRAF RODA W m ISNAINI RAMADHANI Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis
Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu
Bab III Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu Kajian penentuan bilangan Ramsey untuk bintang dan bintang telah tuntas, dilakukan Burr dkk. (1973). Penentuan bilangan Ramsey
Aplikasi Teori Ramsey dalam Teori Graf
Aplikasi Teori Ramsey dalam Teori Graf Hasmawati Jurusan Matematika FMIPA Universitas Hasanuddin (UNHAS), Jalan Perintis Kemerdekaan Km.10 Makassar 90245, Indonesia hasma [email protected]. Abstract. Teori
Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio
Aplikasi Pewarnaan Graf untuk Sistem Penjadwalan On-Air Stasiun Radio Muhamad Irfan Maulana - 13515037 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
Bilangan Ramsey untuk Graf Gabungan
Bab IV Bilangan Ramsey untuk Graf Gabungan Kajian penentuan bilangan Ramsey untuk suatu graf dengan gabungan saling lepas beberapa graf telah dilakukan oleh Burr dkk. (1975). Burr dkk. menunjukkan bahwa
BAB I PENDAHULUAN. Misalkan diberikan graf G dan H sebarang. Notasi F (G, H) menyatakan
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Misalkan diberikan graf G dan H sebarang. Notasi F (G, H) menyatakan bahwa pada sebarang pewarnaan merah-biru terhadap semua sisi graf F, senantiasa diperoleh
INF-104 Matematika Diskrit
Jurusan Informatika FMIPA Unsyiah February 13, 2012 Apakah Matematika Diskrit Itu? Matematika diskrit: cabang matematika yang mengkaji objek-objek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)?
GRAF RAMSEY (K 1,2, C 4 )-MINIMAL DENGAN DIAMETER 2
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 67 72 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND GRAF RAMSEY (K 1,2, C 4 )-MINIMAL DENGAN DIAMETER 2 DEBBY YOLA CRISTY Program Studi Matematika, Fakultas
LAPORAN TUGAS AKHIR. Topik Tugas Akhir : Kajian Matematika. Perumuman Bilangan Ramsey untuk Gabungan Graf Bintang dan Graf Bipartit Lengkap
LAPORAN TUGAS AKHIR Topik Tugas Akhir : Kajian Matematika Perumuman Bilangan Ramsey untuk Gabungan Graf Bintang dan Graf Bipartit Lengkap R(S n, K 2,2 ) untuk 6 < n < 10 TUGAS AKHIR Diajukan Kepada Fakultas
SYARAT PERLU UNTUK GRAF RAMSEY (2K 2, C n )-MINIMAL
SYARAT PERLU UNTUK GRAF RAMSEY (2K 2, C n )-MINIMAL Jondesi Program Studi Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Andalas Padang, Kampus UNAND Limau Manis Padang 25163, Indonesia
PENENTUAN ANGGOTA KELAS RAMSEY MINIMAL UNTUK PASANGAN (2K 2, C 4 )
Jurnal Matematika UNAND Vol. 2 No. 4 Hal. 83 90 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENENTUAN ANGGOTA KELAS RAMSEY MINIMAL UNTUK PASANGAN (2K 2, C 4 ) LIZA HARIYANI Program Studi Matematika,
ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH
ALTERNATIF PEMBUKTIAN PENGEMBANGAN TEOREMA DIRAC UNTUK GRAF BERORDE KURANG ATAU SAMA DENGAN SEPULUH Hasmawati, Jusmawati Massalesse, Hendra, Muhamad Hasbi Jurusan Matematika FMIPA Universitas Hasanudin
TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada
II. TINJAUAN PUSTAKA Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada suatu graf sebagai landasan teori penelitian ini. 2. Konsep Dasar Graf Teori dasar mengenai graf
ABSTRAK BILANGAN RAMSEY UNTUK GRAF GABUNGAN BINTANG. Oleh. Hasmawati NIM :
ABSTRAK BILANGAN RAMSEY UNTUK GRAF GABUNGAN BINTANG Oleh Hasmawati NIM : 30104001 Bilangan Ramsey R(G, H) untuk suatu graf G dan H adalah bilangan bulat terkecil n sedemikian sehingga untuk sebarang graf
Algoritma Penentuan Graf Bipartit
Algoritma Penentuan Graf Bipartit Zain Fathoni - 13508079 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Kampus ITB Jln. Ganesha No. 10 Bandung e-mail:
KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS
KAJIAN MENGENAI SYARAT CUKUP POLYNOMIAL KROMATIK GRAF TERHUBUNG MEMILIKI AKAR-AKAR KOMPLEKS STUDY ON SUFFICIENT CONDITION FOR THE CHROMATIC POLYNOMIAL OF CONNECTED GRAPH HAS COMPLEX ROOTS Yuni Dewi Purnama
Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu? Logika... 1
Daftar Isi Kata Pengantar... Daftar Isi... Apakah Matematika Diskrit Itu?... iii v xi 1. Logika... 1 1.1 Proposisi... 2 1.2 Mengkombinasikan Proposisi... 4 1.3 Tabel kebenaran... 6 1.4 Disjungsi Eksklusif...
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkebangsaan Swiss pada Tahun 1736 melalui tulisan Euler yang berisi tentang
Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf
Memanfaatkan Pewarnaan Graf untuk Menentukan Sifat Bipartit Suatu Graf Gianfranco Fertino Hwandiano - 13515118 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi
MATEMATIKA MATEMATIK A DISKRIT : : MAT-3615/ 3 : : VI
Nama Kode /SKS Program Studi Semester : : MAT-3615/ 3 sks : Pendidikan : VI (Enam) Oleh : Nego Linuhung, M.Pd Nurain Suryadinata, M.Pd Penyajian materi dalam mata kuliah ini tidak hanya berpusat pada dosen,
LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.
6 II. LANDASAN TEORI Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori pada penelitian ini. 2.1 Konsep Dasar Graf Pada sub bab ini akan diberikan
Graf dan Operasi graf
6 Bab II Graf dan Operasi graf Dalam subbab ini akan diberikan konsep dasar, definisi dan notasi pada teori graf yang dipergunakan dalam penulisan disertasi ini. Konsep dasar tersebut ditulis sesuai dengan
Matematika Diskrit. Rudi Susanto
Matematika Diskrit Rudi Susanto Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah Kuliah kita.. Matematika
BAB III PELABELAN KOMBINASI
1 BAB III PELABELAN KOMBINASI 3.1 Konsep Pelabelan Kombinasi Pelabelan kombinasi dari suatu graf dengan titik dan sisi,, graf G, disebut graf kombinasi jika terdapat fungsi bijektif dari ( himpunan titik
BAB 2. Konsep Dasar. 2.1 Definisi graf
BAB 2 Konsep Dasar 21 Definisi graf Suatu graf G = (V(G), E(G)) didefinisikan sebagai pasangan himpunan 2 titik V(G) dan himpunan sisi E(G) dengan V(G) dan E(G) [ VG ( )] Sebagai contoh, graf G 1 = (V(G
`BAB II LANDASAN TEORI
`BAB II LANDASAN TEORI Landasan teori yang digunakan sebagai materi pendukung untuk menyelesaikan permasalahan yang dibahas dalam Bab IV adalah teori graf, subgraf, subgraf komplit, graf terhubung, graf
RENCANA PEMBELAJARAN
ISO 91 : 28 Disusun Oleh Diperiksa Oleh Disetujui Oleh Tanggal Berlaku 1 September 2015 Diana, M.Kom A.Haidar Mirza, M.Kom M. Izman Hardiansyah, Ph.D Mata Kuliah : Matematika Diskrit Semester :2 Kode :
Teori Ramsey pada Pewarnaan Graf Lengkap
Teori Ramsey pada Pewarnaan Graf Lengkap Muhammad Ardiansyah Firdaus J2A 006 032 Skripsi Diajukan sebagai syarat untuk memperoleh gelar Sarjana Sains pada Program Studi Matematika PROGRAM STUDI MATEMATIKA
STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA
STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA Anis Kamilah Hayati NIM : 13505075 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016
PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH JEMBER TEORI GRAF ILHAM SAIFUDIN Selasa, 13 Desember 2016 Universitas Muhammadiyah Jember Pendahuluan 1 OUTLINE 2 Definisi Graf
Penerapan Pewarnaan Graf dalam Alat Pemberi Isyarat Lalu Lintas
Penerapan Pewarnaan Graf dalam Alat Pemberi Isyarat Lalu Lintas Mikhael Artur Darmakesuma - 13515099 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung,
DAN DIAMETER. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Tadulako Jalan Sukarno-Hatta Km. 9 Palu 94118, Indonesia
JIMT Vol. 13 No. 2 Desember 2016 (Hal 11-16) Jurnal Ilmiah Matematika dan Terapan ISSN : 2450 766X KELAS GRAF RAMSEY MINIMAL R(3K 2, F 5 ) YANG TERBATAS PADA ORDE DAN DIAMETER K. Saleh 1, I W. Sudarsana
BAB 2 LANDASAN TEORI
BAB LANDASAN TEORI. Teori Graf Teori graf merupakan pokok bahasan yang sudah tua usianya namun memiliki banyak terapan sampai saat ini. Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan
I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus
1 I. PENDAHULUAN 1.1 Latar Belakang Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus mengalami kemajuan. Salah satunya adalah cabang ilmu matematika yang sampai saat ini mengalami perkembangan
Kode MK/ Matematika Diskrit
Kode MK/ Matematika Diskrit TEORI GRAF 1 8/29/2014 Cakupan Himpunan, Relasi dan fungsi Kombinatorial Teori graf Pohon (Tree) dan pewarnaan graf 2 8/29/2014 1 TEORI GRAF Tujuan Mahasiswa memahami konsep
MateMatika Diskrit Aplikasi TI. Sirait, MT 1
MateMatika Diskrit Aplikasi TI By @Ir.Hasanuddin Sirait, MT 1 Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson
BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.
BAB II TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan kromatik lokasi sebagai landasan teori dari penelitian ini. 2.1 Konsep Dasar Graf Beberapa konsep dasar
Graf. Bekerjasama dengan. Rinaldi Munir
Graf Bekerjasama dengan Rinaldi Munir Beberapa Aplikasi Graf Lintasan terpendek (shortest path) (akan dibahas pada kuliah IF3051) Persoalan pedagang keliling (travelling salesperson problem) Persoalan
PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH
PELABELAN GRAF SIKLUS SEDERHANA UNTUK MENGKONSTRUKSI VERTEX-MAGIC GRAPH MAKALAH Disusun untuk Melengkapi salah satu Tugas Mata Kuliah Seminar Pendidikan Matematika Semester Genap Tahun Akademik 006/007
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI.1 Sejarah Graf Lahirnya teori graf pertama kali diperkenalkan oleh Leonhard Euler seorang matematikawan berkembangsaan Swiss pada tahun 1736 melalui tulisan Euler yang berisi tentang
BAB III KONSEP DASAR TEORI GRAF. Teori graf adalah salah satu cabang matematika yang terus berkembang
BAB III KONSEP DASAR TEORI GRAF Teori graf adalah salah satu cabang matematika yang terus berkembang dengan pesat. Teori ini sangat berguna untuk mengembangkan model-model terstruktur dalam berbagai keadaan.
Gambar 6. Graf lengkap K n
. Jenis-jenis Graf Tertentu Ada beberapa graf khusus yang sering dijumpai. Beberapa diantaranya adalah sebagai berikut. a. Graf Lengkap (Graf Komplit) Graf lengkap ialah graf sederhana yang setiap titiknya
Graf. Program Studi Teknik Informatika FTI-ITP
Graf Program Studi Teknik Informatika FTI-ITP Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan
Pengantar Matematika Diskrit
Materi Kuliah Matematika Diskrit Pengantar Matematika Diskrit Didin Astriani Prasetyowati, M.Stat Program Studi Informatika UIGM 1 Apakah Matematika Diskrit itu? Matematika Diskrit: cabang matematika yang
DEKOMPOSISI - -ANTIAJAIB SUPER PADA GRAF GENERALIZED PETERSEN
Jurnal LOG!K@, Jilid 6, No. 2, 2016, Hal. 84-95 ISSN 1978 8568 DEKOMPOSISI - -ANTIAJAIB SUPER PADA GRAF GENERALIZED PETERSEN M. Irvan Septiar Musti, Nur Inayah, dan Irma Fauziah Program Studi Matematika,
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah
BAB I PENDAHULUAN. Latar Belakang Masalah Seiring perkembangan zaman, maka perkembangan ilmu pengetahuan berkembang pesat, begitu pula dengan ilmu matematika. Salah satu cabang ilmu matematika yang memiliki
Menghitung Jumlah Graf Sederhana dengan Teorema Polya
Menghitung Jumlah Graf Sederhana dengan Teorema Polya Hafni Syaeful Sulun NIM : 13505058 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jalan Ganesha
Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal
Aplikasi Pewarnaan Graf pada Pemecahan Masalah Penyusunan Jadwal abila As ad 1) 135 07 006 2) 1) Jurusan Teknik Informatika ITB, Bandung 40135, email: [email protected] Abstract Dalam kehidupan
Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah
Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Teori graf merupakan pokok bahasan yang memiliki banyak terapan sampai saat ini. Graf di gunakan untuk merepresentasikan objek objek diskrit dan hubungan antara
Matematika Diskret (Graf II) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Graf II) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. Beberapa Aplikasi Graf Lintasan terpendek (shortest path) Persoalan pedagang keliling (travelling salesperson problem) Persoalan
LOGIKA DAN ALGORITMA
LOGIKA DAN ALGORITMA DASAR DASAR TEORI GRAF Kelahiran Teori Graf Sejarah Graf : masalah jembatan Königsberg (tahun 736) C A D B Gbr. Masalah Jembatan Königsberg Graf yang merepresentasikan jembatan Königsberg
II. TINJAUAN PUSTAKA. disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut dari
II. TINJAUAN PUSTAKA Definisi 2.1 Graf Graf G adalah suatu struktur (V,E) dengan V(G) himpunan tak kosong dengan elemenelemenya disebut vertex, sedangkan E(G) (mungkin kosong) adalah himpunan tak terurut
Pengantar Matematika. Diskrit. Bahan Kuliah IF2120 Matematika Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG
PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2120 Matematika Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa
III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.
III BILANGAN KROMATIK LOKASI GRAF Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk 00) Konsep ini merupakan pengembangan dari konsep dimensi partisi pewarnaan graf Pewarnaan titik pada
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy
Penerapan Pewarnaan Graf pada Permainan Real- Time Strategy Kurniandha Sukma Yunastrian / 13516106 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl.
Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan. Tak kenal maka tak sayang, tak sayang maka tak cinta
Rasa ingin tahu adalah ibu dari semua ilmu pengetahuan Tak kenal maka tak sayang, tak sayang maka tak cinta Perjalanan satu mil dimulai dari satu langkah 1 Dahulu namanya.. Matematika Diskrit 2 Mengapa
Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf
JURNAL SAINS DAN SENI POMITS Vol. 2, No.1, (2013) 2337-3520 (2301-928X Print) 1 Bilangan Kromatik Graf Hasil Amalgamasi Dua Buah Graf Ridwan Ardiyansah dan Darmaji Jurusan Matematika, Fakultas Matematika
DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT
DIMENSI METRIK PADA GRAF LINTASAN, GRAF KOMPLIT, GRAF SIKEL, GRAF BINTANG DAN GRAF BIPARTIT KOMPLIT Septiana Eka R. Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam,Universitas Negeri
Graf. Matematika Diskrit. Materi ke-5
Graf Materi ke-5 Pendahuluan Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Gambar di bawah ini sebuah graf yang menyatakan peta jaringan jalan raya
Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah
BAB II KAJIAN TEORI II.1 Teori-teori Dasar Graf II.1.1 Definisi Graf Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah himpunan tak kosong dari titik graf G, dan E, himpunan sisi
Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku
Penggunaan Perwarnaan Graf dalam Mencari Solusi Sudoku Mahdan Ahmad Fauzi Al-Hasan - 13510104 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
BAB I PENDAHULUAN. himpunan bagian bilangan cacah yang disebut label. Pertama kali diperkenalkan
1 BAB I PENDAHULUAN 1.1. Latar Belakang Pelabelan graf merupakan suatu topik dalam teori graf. Objek kajiannya berupa graf yang secara umum direpresentasikan oleh titik dan sisi serta himpunan bagian bilangan
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Logika Fuzzy Logika fuzzy pertama kali dikembangkan oleh Prof. Lotfi A. Zadeh, seorang peneliti dari Universitas California, pada tahun 1960-an. Logika fuzzy dikembangkan dari
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU. Oleh: Kartika Yulianti, S.Pd., M.Si.
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID SATU Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas
Aplikasi Pewarnaan Graf Pada Pengaturan Warna Lampu Lalu Lintas Andreas Dwi Nugroho (13511051) Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF { }
TOTAL EDGE IRREGULARITY STRENGTH DARI GRAF { } Muardi 1, Qurratul Aini 2, Irwansyah 3 1 Program Studi Matematika, Fakultas MIPA Universitas Mataram [Email: [email protected]] 2 Program Studi Matematika,
MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun
MA3051 Pengantar Teori Graf Semester 1 2013/2014 Pengajar: Hilda Assiyatun Bab 1: Graf dan subgraf Graf G : tripel terurut VG, E G, ψ G ) V G himpunan titik (vertex) E G himpunan sisi (edge) ψ G fungsi
Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik
BAB II DASAR TEORI 2.1 Teori Dasar Graf 2.1.1 Graf dan Graf Sederhana Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik yang tak kosong dan E adalah himpunan sisi. Untuk selanjutnya,
BILANGAN RAMSEY UNTUK GRAF GABUNGAN BINTANG
BILANGAN RAMSEY UNTUK GRAF GABUNGAN BINTANG DISERTASI Karya tulis sebagai salah satu syarat untuk memperoleh gelar doktor dari Institut Teknologi Bandung Oleh Hasmawati NIM. 30104001 INSTITUT TEKNOLOGI
Bab 2. Teori Dasar. 2.1 Definisi Graf
Bab 2 Teori Dasar Pada bagian ini diberikan definisi-definisi dasar dalam teori graf berikut penjabaran mengenai kompleksitas algoritma beserta contohnya yang akan digunakan dalam tugas akhir ini. Berikut
Teori Dasar Graf (Lanjutan)
Teori Dasar Graf (Lanjutan) MATRIKS DAN GRAF Untuk menyelesaikan suatu permasalahan model graf dengan bantuan komputer, maka graf tersebut disajikan dalam bentuk matriks. Matriks-matriks yang dapat menyajikan
MATHunesa (Volume 3 No 3) 2014
DEKOMPOSISI GRAF SIKEL, GRAF RODA, GRAF GIR DAN GRAF PERSAHABATAN Nur Rahmawati Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Negeri Surabaya, e-mail [email protected]
I. PENDAHULUAN. Gambar 1. Contoh-contoh graf
Quad Tree dan Contoh-Contoh Penerapannya Muhammad Reza Mandala Putra - 13509003 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jalan Ganesha 10 Bandung
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Konsep Dasar Simulasi Sistem didefinisikan sebagai sekumpulan entitas baik manusia ataupun mesin yang yang saling berinteraksi untuk mencapai tujuan tertentu. Dalam prakteknya,
ABSTRAK ABSTRACT
PELABELAN GRACEFUL PADA GRAF SUPERSTAR 20 Ismail Kaloko 1, Faiz Ahyaningsih2 1 Mahasiswa Program Studi Matematika, FMIPA, Universitas Negeri Medan E-mail: [email protected] 2 Jurusan Matematika,
Dimensi Metrik dan Dimensi Partisi dari Famili Graf Tangga
Dimensi Metrik Dimensi Partisi dari Famili Graf Tangga Ilham Saifudin 1) 1) Jurusan Teknik Informatika Fakultas Teknik Universitas Muhammadiyah Jember Jl Karimata No 49 Jember Kode Pos 68121 Email : 1)
v 3 e 2 e 4 e 6 e 3 v 4
5 II. TINJAUAN PUSTAKA Pada bab ini akan diberikan beberapa konsep dasar teori graf dan dimensi partisi graf sebagai landasan teori dari penelitian ini... Konsep Dasar Graf Pada bagian ini akan diberikan
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dibahas beberapa konsep dasar seperti teorema dan beberapa definisi yang akan penulis gunakan sebagai landasan berpikir dalam melakukan penelitian ini sehingga mempermudah
Pengantar Matematika. Diskrit. Bahan Kuliah IF2091 Struktur Diksrit RINALDI MUNIR INSTITUT TEKNOLOGI BANDUNG
PROGRAM STUDI TEKNIK INFORMATIKA Sekolah Teknik Elrektro dan Informatika INSTITUT TEKNOLOGI BANDUNG Pengantar Matematika Bahan Kuliah IF2091 Struktur Diksrit Diskrit RINALDI MUNIR Lab Ilmu dan Rekayasa
AUTOMORFISME GRAF LENGKAP DENGAN PENDEKATAN TEORI GRUP. Mulyono. Abstrak. ( ), dapat disimpulkan bahwa
6 AUTOMORFISME GRAF LENGKAP DENGAN PENDEKATAN TEORI GRUP Mulyono Abstrak Suatu ) terdiri dari himpunan simpul disimbolkan ) ) dan himpunan jalur disimbolkan ) ) di mana ) Menurut teorema isomorfisme dua
KOMBINATORIKA. Erwin Harahap
KOMBINATORIKA Erwin Harahap Disampaikan pada acara Sosialisasi OLIMPIADE MATEMATIKA, FISIKA, DAN KIMIA 2011 KOPERTIS WILAYAH IV JAWA BARAT Jatinangor- Bandung, 22 Maret 2011 1 KEMENTRIAN PENDIDIKAN NASIONAL
Penyelesaian Teka-Teki Sudoku dengan Didasarkan pada Teknik Pewarnaan Graf
Penyelesaian Teka-Teki Sudoku dengan Didasarkan pada Teknik Pewarnaan Graf William, 13515144 1 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha
BILANGAN DOMINASI DAN BILANGAN KEBEBASAN GRAF BIPARTIT KUBIK. Jl. Prof. H. Soedarto, S. H, Tembalang, Semarang
BILANGAN DOMINASI DAN BILANGAN KEBEBASAN GRAF BIPARTIT KUBIK Budi Santoso 1, Djuwandi 2, R Heri Soelistyo U 3 1,2,3 Jurusan Matematika FMIPA UNDIP Jl Prof H Soedarto, S H, Tembalang, Semarang Abstract
BILANGAN KROMATIK LOKASI DARI GRAF ULAT
Jurnal Matematika UNAND Vol. 5 No. 1 Hal. 1 6 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND BILANGAN KROMATIK LOKASI DARI GRAF ULAT AIDILLA DARMAWAHYUNI, NARWEN Program Studi Matematika, Fakultas Matematika
APLIKASI PEWARNAAN GRAPH PADA PEMBUATAN JADWAL
APLIKASI PEWARNAAN GRAPH PADA PEMBUATAN JADWAL Aplikasi Pewarnaan Graph pada Pembuatan Jadwal Janice Laksana / 13510035 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA. Oleh: Kartika Yulianti, S.Pd., M.Si.
HAND OUT MATA KULIAH TEORI GRAF (MT 424) JILID DUA Oleh: Kartika Yulianti, S.Pd., M.Si. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA
SILABUS MATEMATIKA DISKRIT. Oleh: Tia Purniati, S.Pd., M.Pd.
SILABUS MATEMATIKA DISKRIT Oleh: Tia Purniati, S.Pd., M.Pd. JURUSAN PENDIDIKAN MATEMATIKA FAKULTAS PENDIDIKAN MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PENDIDIKAN INDONESIA 2009 SILABUS A. Identitas
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Graf adalah salah satu metode yang sering digunakan untuk mencari solusi dari permasalahan diskrit dalam dunia nyata. Dalam kehidupan sehari-hari, graf digunakan untuk
TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB
TEORI GRAF DALAM MEREPRESENTASIKAN DESAIN WEB STEVIE GIOVANNI NIM : 13506054 Program Studi Teknik Informatika, Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung Jln, Ganesha 10, Bandung
Aplikasi Pewarnaan Graph pada Pembuatan Jadwal
Aplikasi Pewarnaan Graph pada Pembuatan Jadwal Janice Laksana / 13510035 Program Studi Teknik Informatika Sekolah Teknik Elektro dan Informatika Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132,
