Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

dokumen-dokumen yang mirip
Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah AK5161 MATEMATIKA KEUANGAN AKTUARIA. Insure and Invest! Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

AK5161 Matematika Keuangan Aktuaria

Catatan Kuliah. MA5181 Proses Stokastik

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 7 Ekspektasi dan Fungsi Pembangkit Momen: Cintailah Mean

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik

Pengantar Proses Stokastik

Pengantar Statistika Matematik(a)

MA5181 PROSES STOKASTIK

MA3081 STATISTIKA MATEMATIKA We love Statistics

Pengantar Proses Stokastik

Pengantar Proses Stokastik

MA2082 BIOSTATISTIKA Bab 3 Peubah Acak dan Distribusi

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Pengantar Proses Stokastik

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

Peubah Acak dan Distribusi Kontinu

Minggu 1 Review Peubah Acak; Karakteristik Time Series. Minggu 4-6 Model Moving Average (MA), Autoregressive (AR)

Pengantar Statistika Matematik(a)

Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting. Minggu 8-9 Analisi Model ARI, IMA, ARIMA

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Pengantar Statistika Matematika II

Peubah Acak dan Distribusi

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

MA4181 MODEL RISIKO Enjoy the Risks

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

BAB III PROSES POISSON MAJEMUK

CNH3E3 PROSES STOKASTIK Peubah Acak & Pendukungnya

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

TEORI DASAR DERET WAKTU M A T O P I K D A L A M S T A T I S T I K A II 22 J A N U A R I 2015 U T R I W E N I M U K H A I Y A R

MA4181 MODEL RISIKO Enjoy the Risks

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4181 MODEL RISIKO Risk is managed, not avoided

Sebaran Peubah Acak Bersama

Catatan Kuliah. MA4183 Model Risiko

Peubah acak adalah suatu fungsi dari ruang contoh ke bilangan nyata, f : S R

STATISTIK PERTEMUAN VI

MA2081 Statistika Dasar

MA4181 MODEL RISIKO Risk is managed, not avoided

Pengantar Statistika Matematika II

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Bab 2. Landasan Teori. 2.1 Fungsi Convex

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

Sebaran Peubah Acak Bersama

/ /16 =

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

(HARAPAN MATEMATIKA) BI5106 Analisis Biostatistik 20 September 2012 Utriweni Mukhaiyar

Catatan Kuliah. MA4183 Model Risiko

MA3081 STATISTIKA MATEMATIKA We love Statistics

Catatan Kuliah. MA4183 Model Risiko

MINGGU KE-8 HARGA HARAPAN DAN BEBERAPA KETAKSAMAAN DALA

MINGGU KE-11 HUKUM BILANGAN BESAR LEMAH DAN KUAT

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk!

MA5181 PROSES STOKASTIK

MA4183 MODEL RISIKO Control your Risk!

MA6281 Topik Lanjut dalam Statistika ANALISIS DATA DENGAN COPULA Dependency is not necessarily bad

MA1201 KALKULUS 2A Do maths and you see the world

STATISTIKA. Muhamad Nursalman Pendilkom/Ilkom UPI

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. return, mean, standard deviation, skewness, kurtosis, ACF, korelasi, GPD, copula,

Catatan Kuliah MA3081 STATISTIKA MATEMATIKA Statistika Mengalahkan Matematika. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

BEBERAPA DISTRIBUSI KHUSUS DKINTINU DIKENAL

A. Distribusi Gabungan

CATATAN KULIAH PENGANTAR PROSES STOKASTIK

REVIEW: DISTRIBUSI PELUANG KHUSUS & UJI HIPOTESIS. Utriweni Mukhaiyar MA2281 Statistika Nonparametrik Kamis, 21 Januari 2016

PROSES POISSON MAJEMUK. 1. Pendahuluan

Catatan Kuliah. MA4283 Teori Risiko dan Kredibilitas Forecasting Risk: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

MA5181 PROSES STOKASTIK

A. Distribusi Gabungan

DASAR-DASAR TEORI PELUANG

IKG4A2 Kapita Selekta Dosen: Aniq A. Rohmawati, M.Si Data Deret Waktu dan i.i.d

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

Transkripsi:

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1

Tentang AK5161 Matematika Keuangan Aktuaria Jadwal kuliah: Selasa, 13-; Kamis; 11- Ujian: 2.10.14; 30.10.14; 4.12.14 (@ 30%) Buku teks: Sheldon Ross, Introduction to Mathematical Finance 2

Bab 1 - Kejadian, Peubah Acak, Peluang Kegiatan asuransi berkaitan dengan keinginan untuk mengatur dan memindahkan risiko kepada pihak lain. Dalam praktiknya, perhitungan yang cermat tentang besar premi dan total jumlah biaya serta klaim yang kembali sangat diperlukan. Saat ini praktik asuransi mulai digabungkan dengan investasi. Hal ini dimaksudkan untuk menumbuhkan iklim asuransi dengan keuntungan dari investasi. Kuliah Matematika Keuangan Aktuaria mengajak kita untuk memahami konsep dan menghitung nilai uang, opsi dan, secara umum, bermain peluang (memahami kejadian dan peubah acak serta menghitung peluang atas keduanya menjadi sangat krusial). Ruang sampel dan kejadian Percobaan adalah kegiatan yang menghasilkan keluaran/hasil yang mungkin secara acak. Ruang sampel S adalah himpunan dari semua hasil yang mungkin dari suatu percobaan. Anggota dari S disebut kejadian elementer. Kejadian adalah himpunan bagian dari ruang sampel atau koleksi dari kejadian-kejadian elementer. Peluang kejadian A sesungguhnya adalah P (A) = lim n n(a) n Misalkan S adalah ruang sampel, A adalah kejadian. Peluang kejadian A adalah P (A) = n(a) n(s) Secara formal, peluang atau ukuran peluang P pada lap-σ A adalah suatu pemetaan dari A terhadap selang [0, 1] yang memenuhi tiga aksioma berikut: (i) 0 P (A) 1, untuk setiap A A (ii) P (S) = 1 (iii) Untuk himpunan terhitung kejadian-kejadian saling asing A 1, A 2,..., ( P i=1 A i ) = P (A i ) i=1 Teorema: 1. P (A c ) = 1 P (A) 2. Jika A B maka P (A) P (B) 3. P (A B) = P (A) + P (B) P (A B) 3

Latihan: 1. Seorang agen asuransi menawarkan asuransi kesehatan kepada calon nasabah. Nasabah dapat memilih tepat 2 jenis asuransi dari pilihan A, B, C atau tidak memilih sama sekali. Proporsi nasabah memilih jenis asuransi A, B dan C, berturut-turut, adalah 1/4, 1/3 dan 5/12. Hitung peluang seorang nasabah memilih untuk tidak memilih jenis asuransi. 2. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii) 70% pelanggan mengasuransikan lebih dari satu mobil, dan (iii) 20% mengasuransikan jenis sports car. Dari pelanggan yang mengasuransikan lebih dari satu mobil, 15% mengasuransikan sports car. Hitung peluang bahwa seorang pelanggan yang terpilih secara acak mengasuransikan tepat satu mobil dan ini bukan sports car. Peubah acak Peubah acak tidaklah acak dan bukanlah peubah. Peubah acak adalah fungsi yang memetakan anggota S ke bilangan real R. Peubah acak X dikatakan diskrit jika terdapat barisan terhitung dari bilangan {a i, i = 1, 2,... } sedemikian hingga P ( {X = a i } ) = P (X = a i ) = 1. i i Catatan: Sebuah peubah acak diskrit tidak selalu berasal ruang sampel diskrit. F X disebut fungsi distribusi (diskrit) dari X jika terdapat barisan terhitung {a i, i = 1, 2,... } dari bilangan real dan barisan {f i, i = 1, 2,... } dari bilangan positif yang bersesuaian sehingga f i = 1 dan F X (x) = f i. i a i x Jika diberikan himpunan terhitung {a i, i = 1, 2,... } dan bilangan positif {f i, i = 1, 2,... } sehingga i f i = 1, fungsi peluang f X (x) adalah f X (x) = f i = P (X = a i ), dengan x = a i. Sementara itu, fungsi distribusi (kumulatif) nya F (x) = P (X x). Sifat-sifat fungsi distribusi sebagai berikut: (a) F fungsi tidak turun (b) lim x F (x) = 1 (c) lim x F (x) = 0 (d) F fungsi kontinu kanan 4

Jika X adalah peubah acak sehingga fungsi peluangnya ada (turunan dari fungsi distribusi) maka X dikatakan sebagai peubah acak kontinu. Perhatikan: 1 = F X ( ) = P (a X b) = F X (b) F X (a) = P (X = a) = a a f X (t) dt = 0 f X (t) dt b a f X (t) dt Latihan: 1. Tentukan fungsi peluang dari fungsi distribusi berikut: 0, x < 3.1 3/5, 3.1 x < 0 F (x) = 7/10, 0 x < 1 1, 1 x 2. Diketahui, untuk peubah acak X, fungsi distribusi berikut: 0, x < 0 x 4, 0 x < 1 F (x) = 1 2 + x 1 4, 1 x < 2 11 12, 2 x < 3 1, x 3 Hitung (i) P (1 X < 5/2), (ii) E(X) Ekspektasi Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit dan kontinu X, berturut-turut, adalah E(X) = x x f X (x) dan E(X) = x f X (x) dx, dengan f X adalah fungsi peluang dari X. Catatan: 1. Ekspektasi adalah rata-rata tertimbang (weighted average) dari nilai yang mungkin dari X 2. Ekspektasi = mean = momen pertama 3. Ekspektasi suatu peubah acak adalah nilai rata-rata (long-run average value) 5

dari percobaan bebas yang berulang 3. Apakah ekspektasi harus berhingga? (Diskusi!) Sifat-sifat ekspektasi: 1. E(g(X)) = g(x) f X(x) dx 2. E(a X + b Y ) = a E(X) + b E(Y ) 3. E(XY ) = E(X) E(Y ), jika X dan Y saling bebas. 4. E(X) = 0 P (X > x) dx, untuk X > 0 (*) 5. E(X r ) = xr f X (x) dx (momen ke-r) 6. E((X µ X ) r ) = (x µ X) r f X (x) dx (momen pusat ke-r) 7. E((X µ X ) 2 ) = V ar(x) = E(X 2 ) (E(X)) 2 Deviasi standar dari X adalah akar kuadrat Variansi dari X. 8. E(e tx ) = etx f X (x) dx = M X (t) (fungsi pembangkit momen) 9. M X (0) = E(X), M X (0) = E(X2 ) Fungsi peluang bersama Misalkan kita punyai dua peubah acak, X dan Y. Kita dapat mengkaji peluang dan ekspektasi bersyarat suatu peubah acak, diberikan peubah acak yang lain. Fungsi peluang (distribusi) atas dua peubah acak dikatakan sebagai fungsi peluang (distribusi) bivariat. Secara umum, sering disebut sebagai fungsi peluang (distribusi) bersama. Misalkan X dan Y ada peubah acak-peubah acak diskrit yang terdefinisi di ruang sampel yang sama. Fungsi peluang bersama dari X dan Y adalah f X,Y (x, y) = P (X = x, Y = y). Kondisi bahwa X dan Y terdefinisi pada ruang sampel yang sama berarti dua peubah acak tsb memberikan informasi secara bersamaan terhadap keluaran (outcome) dari percobaan yang sama. Kejadian X bernilai x dan Y bernilai y, {X = x, Y = y}, adalah irisan kejadian {X = x} dan {Y = y}. Fungsi peluang bersama f X,Y memenuhi sifat-sifat berikut: (i) f X,Y (x, y) 0, (x, y), (ii) (x, y) R 2 : f X,Y (x, y) 0 terhitung, (iii) x,y f X,Y (x, y) = 1. Misalkan X dan Y peubah acak-peubah acak diskrit yang didefinisikan pada ruang sampel yang sama. Maka, f X (x) = y f X,Y (x, y), x R dan f Y (y) = x f X,Y (x, y), y R adalah, berturut-turut, fungsi peluang marginal dari X dan fungsi peluang marginal dari Y. Untuk dua peubah acak kontinu, fungsi peluang dan fungsi distribusi bersama didefinisikan sebagai... ; fungsi peluang marginalnya adalah... 6

Latihan: 1. Misalkan X dan Y memiliki fungsi peluang bersama f(x, y) = c (y 2 x 2 ) e y, y x y, 0 < y < a. Tentukan c b. Tentukan fungsi peluang marginal X dan Y c. Hitung P (Y > 2X) d. Apakah X dan Y saling bebas? 2. Ketika kebakaran terjadi dan dilaporkan ke perusahaan asuransi, perusahaan asuransi tersebut segera membuat perkiraan awal X yaitu besar nilai klaim yang akan diberikan. Setelah klaim dihitung secara lengkap, perusahaan harus melunasi pembayaran klaim sebesar Y. Perusahaan menentukan bahwa X dan Y memiliki fungsi peluang bersama f X,Y (x, y) = 2 x 2 (x 1) y (2x 1)/(x 1), x > 1, y > 1 a. Tentukan f X (x) b. Jika besar klaim awal yang diberikan adalah 2, tentukan peluang bahwa klaim yang diterima berikutnya adalah antara 1 dan 3. Misalkan X dan Y adalah peubah acak-peubah acak, dengan f X (x) > 0. Fungsi peluang bersyarat dari Y diberikan X = x adalah f Y X (y x) = f X,Y (x, y), y R f X (x) Jika f X (x) = 0, kita definiskan f Y X (y x) = 0 namun tidak dikatakan sebagai fungsi peluang bersyarat. Fungsi peluang bersyarat adalah fungsi peluang! Dua peubah acak dikatakan saling bebas jika... Ekspektasi bersyarat Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Jika f X (x) > 0 maka ekspektasi bersyarat dari Y diberikan X = x adalah ekspektasi dari Y relatif terhadap distribusi bersyarat Y diberikan X = x, E(Y X = x) = y f X,Y (x, y) f X (x) dy = y f Y X (y x) dy Misalkan X dan Y adalah peubah acak-peubah acak kontinu dengan fungsi peluang bersama f X,Y (x, y). Misalkan ekspektasi dari Y hingga. Maka E(Y ) = E(Y X = x) f X (x) dx 7

atau E(Y ) = E(E(Y X = x)) Latihan: Misalkan X dan Y peubah acak kontinu dengan fungsi peluang bersama f(x, y) = e x(y+1), 0 x, 0 y e 1 a. Tentukan f Y (y) b. Hitung P (X > 1 Y = 1 2 ) c. Hitung E(X Y = 1 2 ) Kovariansi Kita ketahui bahwa jika X dan Y saling bebas maka f X,Y (x, y) = f X (x) g Y (y). Akibatnya, E(XY ) = E(X) E(Y ). Konsekuensi ini juga berlaku untuk setiap fungsi g dan h, E ( g(x)h(y ) ) = E ( g(x) ) E ( h(y ) ). Kovariansi antara peubah acak X dan Y, dinotasikan Cov(X, Y ), adalah ( (X ) ( ) ) Cov(X, Y ) = E E(X) Y E(Y ) Catatan: Jika X dan Y saling bebas maka Cov(X, Y ) = 0 (implikasi). Sifat-sifat kovariansi 1. Cov(X, Y ) = Cov(Y, X) 2. Cov(X, X) = V ar(x) 3. Cov(a X, Y ) = a Cov(X, Y ) ( n 4. Cov i=1 X i, ) m j=1 Y j = n m i=1 j=1 Cov(X i, Y j ) Perhatikan bahwa: ( n ) n n V ar X i = Cov X i, i=1 i=1 j=1 X j n n = Cov(X i, X j ) = i=1 i=1 j=1 n V ar(x i ) + Cov(X i, X j ). i j 8

Korelasi antara peubah acak X dan Y, dinotasikan ρ(x, Y ), didefinisikan sebagai ρ(x, Y ) = Cov(X, Y V ar(x) V ar(y ), asalkan V ar(x) dan V ar(y ) bernilai positif. Dapat ditunjukkan pula bahwa 1 ρ(x, Y ) 1. Koefisien korelasi adalah ukuran dari derajat kelinieran antara X dan Y. Nilai ρ(x, Y ) yang dekat dengan +1 atau 1 menunjukkan derajat kelinieran yang tinggi. Nilai positif korelasi mengindikasikan nilai Y yang cenderung membesar apabila X membesar. Jika ρ(x, Y ) = 0 maka dikatakan X dan Y tidak berkorelasi. Latihan: 1. Tunjukkan: Cov(X, E(Y X)) = Cov(X, Y ) 2. Misalkan X peubah acak normal standar dan I (bebas dari X) peubah acak dengan sifat P (I = 1) = P (I = 0) = 1/2. Didefinisikan Y = X, jika I = 1; Y = X, jika I = 0. Tunjukkan: Cov(X, Y ) = 0 9

Bab 2 - Peubah acak normal Peubah acak normal merupakan salah satu kajian menarik dalam berbagai bidang, termasuk keuangan, karena pola yang dikenal dan dianggap dapat dipahami dengan mudah. Suatu peubah acak X dikatakan normal apabila memiliki fungsi peluang f(x) = Apa yang dapat kita lakukan terhadap X atau f(x) tersebut? (i) membuat plot f untuk berbagai nilai µ dan σ 2 (ii) menentukan sifat-sifat statistik peubah acak normal (iii) menghitung peluang; termasuk dengan akurasi yang lebih tinggi (hal 25-26) (iv) mengkaji hubungan dengan peubah acak lognormal Y = exp(x) Contoh 2.3d Misalkan X 1, X 2,..., X n sampel acak normal dengan parameter (µ, σ 2 ). Misalkan S n = n X i. i=1 Untuk n besar, S n akan mendekati peubah acak normal dengan mean nµ dan variansi nσ 2. Catatan: (peubah acak Binomial dan batas nilai) Latihan 2.9, 2.30 10

Bab 3 - Gerak Brown and GB Geometrik Sebelum kita membahas Gerak Brown (GB) lebih jauh, perhatikan koleksi peubah acak {X t } atau lebih dikenal dengan proses stokastik. Proses atau model stokastik melibatkan beberapa peubah acak dengan indeks waktu. Kalau kita mempunyai satu peubah acak, maka nilai yang mungkin dari peubah acak tersebut akan mengikuti distribusi peluang yang bersesuaian. Kini, kita akan melihat peubah acak setiap waktu. Akibatnya, tingkat kesulitan akan menjadi lebih tinggi (rumit namun menarik kok). Misalkan kita punyai proses stokastik {X t, t 0}. Proses stokastik atau deret waktu (sederhana) yang bergantung pada observasi sebelumnya adalah: X t = α X t 1 + ε t, dengan asumsi-asumsi yang ditentukan. Catatan: Proses ini dikenal dengan nama Autoregressive (AR) Pada Bab ini, proses stokastik diatas kita sederhanakan sebagai berikut: X t i.i.d. N(0, 1) Jelaskan! Kita dapat menuliskan proses ini sebagai X t = ε t, dengan {ε t } barisan peubah acak saling bebas dan berdistribusi identik (normal/gauss) dengan mean nol dan variansi satu; atau dikenal dengan proses gaussian WN (white noise) X t N(0, σ 2 t ). Apa perbedaan dengan model sebelumnya? Jika X 1, X 2,... dari proses ini saling (tidak) bebas, dapatkah kita menentukan fungsi peluang bersamanya? Mungkinkah X t dan X t+s X s yang bersifat saling bebas? Pandang koleksi peubah acak {X t, t 0} dengan sifat-sifat: (i) X 0 = 0 (ii) t > 0, X t berdistribusi normal dengan mean nol dan variansi σ 2 t (iii) X tn X tn 1, X tn 1 X tn 2,..., X t2 X t1, X t1 saling bebas (memiliki kenaikan bebas atau independent increments) (iv) X t+s X t tidak bergantung pada t (memiliki kenaikan stasioner atau stationary increments). Proses stokastik tersebut dikatakan sebagai Gerak Brown. 11

Misalkan dipunyai proses stokastik GB dengan σ 2 = 1 atau dikenal dengan GB standar. Perhatikan kasus t = 1, 2. Fungsi peluang X t adalah f Xt (x t ) = 1 ( exp 1 ) 2πt 2t x2 t, < x t <. Fungsi peluang bersama dari X 1 dan X 2 adalah... Fungsi peluang bersama dari X 1 X 0 dan X 2 X 1 adalah f X1 0,X 2 X 1 (x 1 0, x 2 x 1 ) = f(x 1 )f(x 2 x 1 ), (1) karena sifat kenaikan saling bebas. Persamaan (1) tersebut sama dengan ( 1 (2π) 2/2 exp 1 ( x 2 1 ((1 0)(2 1)) 1/2 2 1 0 + (x 2 x 1 ) 2 )), 2 1 dengan t 1 = 1, t 2 = 2 dan sifat kenaikan stasioner X 2 X 1 N(0, 2 1). Kita dapat menentukan fungsi peluang bersyarat dengan memanfaatkan fungsi peluang bersama diatas. Untuk t 1 = 1 < t 2 = 2 diatas, fungsi peluang bersyarat X t1, diberikan X t2 = x t2 adalah... f X1 X 2 (x 1 x 2 ) = f X 1,X 2 X 1 (x 1, x 2 x 1 ) f X2 (x 2 ) = f X 1 (x 1 ) f X2 X 1 (x 2 x 1 ) f X2 (x 2 ) = Dengan kata lain, distribusi dari X 1 X 2 variansi = x 2 adalah normal dengan mean dan E(X 1 X 2 = x 2 ) = ; V ar(x 1 X 2 = x 2 ) = Latihan: 1. Dapatkah kita menentukan distribusi dari X 2 X 1 = x 1? Jelaskan! 2. Pandang {X t, 0 t 1} sebagai proses stokastik yang mengikuti GB dengan parameter variansi σ 2. Misalkan X t menyatakan lama (detik) kompetitor 1 memimpin saat 100t persen dari suatu kompetisi telah diselesaikan. Jika kompetitor 1 memimpin σ detik di tengah kompetisi, berapa peluang dia adalah pemenang? Jika kompetitor 1 memenangkan kompetisi dengan margin σ detik, berapa peluang dia memimpin di tengah kompetisi? 12

Proses stokastik {X t } dikatakan GB dengan parameter drift µ dan variansi σ 2 jika... Proses stokastik adalah GB geometrik jika... Catatan: Perhatikan bahwa pada GB geometrik distribusi dari peubah acak exp(x t ) memegang peranan penting; termasuk dalam menentukan ekspektasi bersyaratnya. Latihan: 1. Tentukan E(X t X u, 0 u s) 2. Pandang GB dengan µ = 3, σ 2 = 9. Diketahui X 0 = 10. Hitung E(X 2 ), V ar(x 2 ), P (X 2 > 20), P (X 0.5 > 10) Diskusi: Pada aplikasi harga aset (saham), peubah acak harga P t tidak menarik untuk dikaji; namun tidak demikian dengan perubahan harga: P t P t 1 ; P t ; ln P t. P t 1 P t 1 Misalkan R t menyatakan return (majemuk) suatu aset. Maka, e Rt = P t P t 1 umumnya diasumsikan berdistribusi lognormal. 13