MEKANISME PENUMBUHAN LAPISAN TIPIS ALLOY TERNARY GaAs 1-x Sb x DARI SUMBER-SUMBER METALORGANIK TMGa, TDMAAs DAN TDMASb PADA REAKTOR MOCVD ABSTRAK

dokumen-dokumen yang mirip

BAB III EKSPERIMEN & KARAKTERISASI

Universitas Pendidikan Indonesia, Bandung 2) Kelompok Keilmuan Fisika Material Elektronik, Fakultas Matematika dan Ilmu Pengetahuan Alam

KARAKTERISTIK FILM TIPIS GaAs YANG DITUMBUHKAN DENGAN METODE MOCVD MENGGUNAKAN SUMBER METALORGANIK BARU TDMAAs (Trisdimethylaminoarsenic)

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sangat mempengaruhi peradaban

Struktur kristal dan Morfologi film tipis GaN yang ditumbuhkan dengan metoda Hot-Wire Pulsed Laser Deposition

BAB I PENDAHULUAN. Pada saat ini dunia elektronika mengalami kemajuan yang sangat pesat, hal ini

PENUMBUHAN FILM TIPIS SEMIKONDUKTOR

BAB I PENDAHULUAN. Perkembangan teknologi yang semakin maju dalam beberapa dekade ini

BAB I PENDAHULUAN. Indonesia merupakan negara berkembang yang berada dikawasan Asia

BAB I PENDAHULUAN. disamping memberikan dampak positif yang dapat. dirasakan dalam melakukan aktifitas sehari hari, juga dapat memberikan beberapa

Berkala Fisika ISSN : Vol 4, No. 2, April 2001, hal 40-44

STRUKTUR DAN KOMPOSISI KIMIA LAPIS TIPIS BAHAN SEMIKONDUKTOR Sn(Se 0,2 S 0.8 ) HASIL PREPARASI TEKNIK VAKUM EVAPORASI UNTUK APLIKASI SEL SURYA

RINGKASAN HIBAH BERSAING

Diterima Januari 2005, disetujui untuk dipublikasikan Pebruari 2005

Deskripsi METODE UNTUK PENUMBUHAN MATERIAL CARBON NANOTUBES (CNT)

BAB III METODE PENELITIAN. Pelaksanaan penelitian ini pada dasarnya meliputi tiga tahapan proses

BAB I PENDAHULUAN 1.1 LatarBelakang

BAB I PENDAHULUAN. Sel surya merupakan alat yang dapat mengkonversi energi matahari menjadi

Analisis Numerik Resonansi Tunneling Pada Sruktur Lapis Tiga GaAs / Al x Ga 1-x As Menggunakan Algoritma Numerov.

Modul - 4 SEMIKONDUKTOR

Pembuatan Sel Surya Film Tipis dengan DC Magnetron Sputtering

III. METODE PENELITIAN

STRUKTUR DAN KOMPOSISI KIMIA LAPISAN TIPIS Sn(So,4Te0,6) HASIL PREPARASI DENGAN TEKNIK EVAPORASI VAKUM

BAB V HASIL DAN PEMBAHASAN. karakterisasi luas permukaan fotokatalis menggunakan SAA (Surface Area

PENELITIANFUNDAMENTAL SIFAT TRANSPORT LISTRIK PADA DAHAN SEMIKONDUKTOR PADUAN TERNARYIII-V

SINTESIS LAPISAN TIPIS SEMIKONDUKTOR DENGAN BAHAN DASAR TEMBAGA (Cu) MENGGUNAKAN CHEMICAL BATH DEPOSITION

Pengaruh ketebalan lapisan penyangga pada struktur kristal film GaN yang ditumbuhkan dengan Pulsed Laser Deposition Dadi Rusdiana

HASIL DAN PEMBAHASAN. Struktur Karbon Hasil Karbonisasi Hidrotermal (HTC)

PENGARUH SUHU SUBSTRAT TERHADAP KUALITAS KRISTAL LAPISAN TIPIS Sn(Se 0,4 Te 0,6 ) HASIL PREPARASI DENGAN TEKNIK EVAPORASI VAKUM

Bab III Metodologi Penelitian

BAB II KAJIAN PUSTAKA. Sejak ditemukan oleh ilmuwan berkebangsaan Jerman Christian Friedrich

I. PENDAHULUAN. Lapisan tipis adalah suatu lapisan yang sangat tipis terbuat dari bahan organik,

I. PENDAHULUAN. kimia yang dibantu oleh cahaya dan katalis. Beberapa langkah-langkah fotokatalis

Homogenitas Ketebalan, Konduktivitas Listrik dan Band Gap Lapisan Tipis a-si:h tipe-p dan tipe-p Doping Delta yang dideposisi dengan Sistem PECVD

BAB V HASIL DAN PEMBAHASAN. cahaya matahari.fenol bersifat asam, keasaman fenol ini disebabkan adanya pengaruh

PENGARUH DAYA PLASMA PADA STRUKTUR MIKRO DAN SIFAT OPTIK FILM TIPIS CdTe YANG DITUMBUHKAN DENGAN DC MAGNETRON SPUTTERING

BAB 1 PENDAHULUAN Latar Belakang

PENUMBUHAN LAPISAN TIPIS SILIKON MIKROKRISTAL (µc Si:H) TIPE-P DENGAN METODE HOT WIRE PLASMA ENHANCED CHEMICAL VAPOR DEPOSITION (HW-PECVD)

PENENTUAN PANJANG GELOMBANG EMISI PADA NANOPARTIKEL CdS DAN ZnS BERDASARKAN VARIASI KONSENTRASI MERCAPTO ETHANOL

Bab IV. Hasil dan Pembahasan

PENGARUH WAKTU ALUR PEMANASANTERHADAP KUALITAS KRISTAL Sn(S 0,4 Te 0,6 ) HASIL PREPARASI DENGAN TEKNIK BRIDGMAN

Karakterisasi XRD. Pengukuran

Oleh Budi Mulyanti NIM : Tim Pembimbing Dr. Sukirno Prof. Dr. M. Barmawi Dr. Pepen Arifin Dr. Maman Budiman

STUDI PENGARUH SUHU SUBSTRAT TERHADAP SIFAT LISTRIK DAN OPTIK BAHAN SEMIKONDUKTOR LAPISAN TIPIS SnSe HASIL PREPARASI TEKNIK VAKUM EVAPORASI

BAB II DASAR TEORI. FeO. CO Fe CO 2. Fe 3 O 4. Fe 2 O 3. Gambar 2.1. Skema arah pergerakan gas CO dan reduksi

Studi Optimasi Parameter Daya RF untuk Penumbuhan Lapisan Tipis Mikrokristal Silikon dengan Metode Hot Wire Cell PECVD

Penumbuhan Lapisan Tipis µc-si:h Tipe-P dengan Metode HW-PECVD untuk Aplikasi Sel Surya

Bab 1 Bahan Semikonduktor. By : M. Ramdhani

BAB I PENDAHULUAN 1.1 Latar Belakang

Mekanisme Hamburan Defek Statis Dan Vibrasi Termal Terhadap Mobilitas Elektron Pada Film Tipis GaN

4 Hasil dan Pembahasan

Bab 1. Semi Konduktor

PENGARUH KETEBALAN LAPISAN PENYANGGA TERHADAP KUALITAS FILM TIPIS GaN

BAB I PENDAHULUAN. I.1 Latar Belakang Kebutuhan akan energi semakin berkembang seiring dengan

CHARACTERISTIC OF GaAs 1-x Sb x LAYERS GROWN BY MOCVD ON SI-GaAs SUBSTRATE USING TDMAAs AND TDMASb

STUDI TENTANG PENGARUH JARAK (SPACER) TERHADAP KUALITAS KRISTAL LAPISAN TIPIS Sn ) HASIL PREPARASI TEKNIK EVAPORASI VAKUM

Oleh: Tyas Puspitaningrum, Tjipto Sujitno, dan Ariswan

HASIL DAN PEMBAHASAN. Gambar 11. Rangkaian pengukuran karakterisasi I-V.

Sintesis Nanopartikel ZnO dengan Metode Kopresipitasi

BAB I PENDAHULUAN 1.1. Latar Belakang

Studi Pengaruh Temperatur Penumbuhan terhadap Struktur Kristal dan Morfologi Film Tipis TiO 2 :Eu yang Ditumbuhkan dengan Metode MOCVD

PENGARUH PENGOTOR Co PADA STRUKTUR DAN KONDUKTIVITAS FILM TIPIS TiO 2

KARAKTERISASI DIFRAKSI SINAR X DAN APLIKASINYA PADA DEFECT KRISTAL OLEH: MARIA OKTAFIANI JURUSAN FISIKA

BAB I PENDAHULUAN. modern pada fotokonduktor ultraviolet (UV) membutuhkan material

BAB I 1 PENDAHULUAN. kemampuan mengubah bentuk radiasi cahaya menjadi sinyal listrik. Radiasi yang

BAB III METODOLOGI PENELITIAN

BAB IV HASIL DAN PEMBAHASAN. Hasil preparasi bahan baku larutan MgO, larutan NH 4 H 2 PO 4, dan larutan

BAB III METODE PENELITIAN. Metode penelitian yang dilakukan adalah metode eksperimen yang dilakukan di

PREPARASI DAN KARAKTERISASI PADUAN SEMIKONDUKTOR Sn(Se 0,6 Te 0,4 ) DENGAN METODE BRIDGMAN MELALUI VARIASI WAKTU PEMANASAN

Widyanuklida, Vol. 15 No. 1, November 2015: ISSN

BAB 4 HASIL DAN PEMBAHASAN

BAB IV PERHITUNGAN & ANALSIS HASIL KARAKTERISASI XRD, EDS DAN PENGUKURAN I-V MSM

PENGARUH VARIASI MASSA BAHAN TERHADAP KUALITAS KRISTAL SEMIKONDUKTOR Sn(Se 0,2 Te 0,8 ) HASIL PREPARASI DENGAN TEKNIK BRIDGMAN

1. Semikonduktor intrinsik : bahan murni tanpa adanya pengotor bahan lain. 2. Semikonduktor ekstrinsik : bahan mengandung impuritas dari bahan lain

BAB I PENDAHULUAN Latar Belakang

Komponen Materi. Kimia Dasar 1 Sukisman Purtadi

2014 PEMBUATAN BILAYER ANODE - ELEKTROLIT CSZ DENGAN METODE ELECTROPHORETIC DEPOSITION

BAB I PENDAHULUAN Latar Belakang Masalah

IV. HASIL DAN PEMBAHASAN. sol-gel, dan mempelajari aktivitas katalitik Fe 3 O 4 untuk reaksi konversi gas

Struktur dan konfigurasi sel Fotovoltaik

Pengaruh Temperatur Penumbuhan terhadap Struktur Kristal dan Morfologi Film Tipis TiO 2 :Eu yang Ditumbuhkan dengan Metode MOCVD

HASIL DAN PEMBAHASAN

Teknologi Plasma. dalam Industri Manufaktur Semikonduktor dan Divais Elektronik. (Bagian I) Prof. Dr. Ir. Setijo Bismo, DEA.

Nama dan Gelar Lengkap : Dr. Budi Mulyanti, M.Si. Tempat/Tanggal Lahir : Pemalang, 09 Januari 1963

BAB II TINJAUAN PUSTAKA. sampai 10 atom karbon yang diperoleh dari minyak bumi. Sebagian diperoleh

pendinginan). Material Teknik Universitas Darma Persada - Jakarta

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

Bab III Metodologi Penelitian

BAB I PENDAHULUAN. Komponen elektronika seperti diode, transistor dan sebuah IC. semikonduktor. Pada zaman sekarang perkembangan piranti elektronika

Gambar 3.1 Diagram alir penelitian

BAB I PENDAHULUAN. energi cahaya (foton) menjadi energi listrik tanpa proses yang menyebabkan

LAPORAN PENELITIAN FUNDAMENTAL

BAB I PENDAHULUAN 1.1 Latar Belakang

Pengaruh Suhu Reaksi Reduksi Terhadap Pemurnian Karbon Berbahan Dasar Tempurung Kelapa

Diterima Juni 2004, disetujui untuk dipublikasikan September 2004

ALAT ANALISA. Pendahuluan. Alat Analisa di Bidang Kimia

BAB I PENDAHULUAN. kita terima bahwa pemakaian energi berbahan dasar dari fosil telah menjadi salah

BAB I PENDAHULUAN. energi listrik. Pemanfaatan energi listrik terus berkembang tidak hanya berfokus

4 Hasil dan Pembahasan

Transkripsi:

MEKANISME PENUMBUAN LAPISAN TIPIS ALLOY TERNARY As 1-x Sb x DARI SUMBER-SUMBER METALORGANIK TM, TDMAAs DAN TDMASb PADA REAKTOR MOCVD A. Suhandi 1,2), P. Arifin 2), M. Budiman 2), dan M. Barmawi 2) 1) Jurusan fisika FPMIPA UPI, Jl. Dr. Setiabudhi 229 Bandung 2) Lab. FISMATEL, Departemen Fisika FMIPA ITB, Jl. neca 10 Bandung e-mail : andisuhandi@upi.edu ABSTRAK Metarorganic chemical vapor deposition (MOCVD) merupakan metode penumbuhan bahan padat (berbentuk film tipis, terutama untuk bahan semikonduktor) dari fasa uap sumber-sumber metalorganik. Studi tentang mekanisme penumbuhan lapisan tipis bahan padat alloy ternary As 1-x Sb x dari sumber-sumber metalorganik trimethylgallium (TM), trisdimethylaminoarsenic (TDMAAs), dan trisdimethylaminoantimony (TDMASb) pada reaktor MOCVD telah dilakukan untuk memahami proses-proses fisika dan kimia yang terlibat didalamnya. Pengetahuan tentang proses-proses yang terjadi selama pembentukan alloy sangat penting guna menentukan pasangan kondisi dan parameter penumbuhan yang tepat untuk menghasilkan alloy As 1-x Sb x berkualitas baik. Mekanisme yang dipelajari meliputi dekomposisi sumber-sumber metalorganik dan reaksi kimia yang mungkin terjadi, inkorporasi unsur-unsur pembentuk alloy serta unsure-unsur kontaminan dalam lapisan yang ditumbuhkan. Paper ini memaparkan hasil-hasil penelaahan tentang mekanisme pembentukan alloy As 1-x Sb x dalam reaktor MOCVD yang telah dilakukan. Untuk memperkuat hasil penelahaan, dalam paparan ini juga dilengkapi dengan data-data hasil karakterisasi film tipis As 1-x Sb x yang ditumbuhkan. Kata kunci : Pembentukan, Ternary AsSb, Sumber metalorganik, MOCVD I. Pendahuluan Secara khusus alloy ternary As 1-x Sb x dikembangkan dalam rangka memenuhi kebutuhan akan bahan yang dapat mengemisikan cahaya dengan panjang gelombang (λ) antara 0.8 1.6 µm untuk aplikasi divais dioda laser sebagai salah satu komponen alat pada sistem komunikasi serat optik, yaitu sebagai pengemisi gelombang pemandu. Bahan ini memiliki rentang nilai energi gap (Eg) antara 0,72 ev hingga 1,42 bergantung pada kandungan unsur Sb di dalamnya. Rentang energi gap ini sesuai rentang panjang gelombang yang dibutuhkan dalam sistem komunikasi serat optic tersebut [1]. Secara sederhana proses penumbuhan film AsSb dengan metode MOCVD dapat digambarkan seperti yang ditunjukkan pada gambar 1 [2]. Karena ada gradien panas kearah atas secara vertikal akibat adanya pemanas (heater) di bagian bawah, maka precursor-prekursor metalorganik yang dimasukan ke ruang reaksi (chamber)

akan mengalami dekomposisi pirolitik di bagian atas. Reaktan-reaktan hasil dekomposisi akan bergerak melintasi lapisan boundary menuju substrat (permukaan tunbuh). Semakin mendekati substrat (pemanas) maka dekomposisi akan menjadi sempurna, dan ketika mencapai substrat akan terjadi reaksi heterogen fasa uap/padat membentuk suatu lapisan tipis bahan padat. Terdapat beberapa parameter yang mengontrol proser reaksi pembentukan film dalam reactor MOCVD, antara lain temperatur penumbuhan, tekanan rekasi, dan rasio laju alir V/III []. Sehingga untuk mendapatkan film berkualitas baik, maka perlu dilakukan optimasi ketiga parameter penumbuhan ini. Dengan menggunakan konsep-konsep fisika dan kimia, mekanisme penumbuhan MOCVD dapat dipelajari. Pengetahuan yang baik tentang mekanisme ini akan sangat bermanfaat dalam menentukan kondisi dan parameter penumbuhan yang pas pada proses penumbuhannya. TM TDMAAs TDMASb Gradien temperatur Interaksi fasa gas Pyrolysis parsial dalam lapisan boundary Pyrolysis sempurna dan reaksi permukaan Substrat Pemanas/heater mbar 1. skematik proses penumbuhan film AsSb pada reaktor MOCVD Paper ini memaparkan tentang kajian mekanisme peumbuhan film AsSb dengan MOCVD menggunakan sumber-sumber metalorganik TM, TDMAAs, dan TDMASb. Untuk menguji kecocokan hasil kajian ini, maka telah dilakukan cross check dengan data-data hasil karakterisasi film AsSb yang ditumbuhkan. II. Mekanisme penumbuhan Alloy As 1-x Sb x pada reaktor MOCVD Proses reaksi kimia dalam pembentukan lapisan semikonduktor dengan MOCVD terjadi akibat adanya dekomposisi pirolitik dari sumber-sumber metalorganik

ketika mendapat energi termal dari sistem pemanas. Struktur ikatan kimia dari bahan TM dan TDMAAs serta TDMASb ditunjukkan pada gambar 2. Dekomposisi pirolitik dari TM akan menghasilkan atom-atom dan radikal-radikal methyl [4], sedangkan dekomposisi pirolitik dari TDMAAs (TDMASb) akan menghasilkan atomatom As(Sb), amino-amino reaktif seperti N(C ) 2 dan aziridin (N(C 2 ) 2 ), serta atomatom [5]. Mekanisme dekomposisi dari setiap sumber metalorganik tersebut ditunjukkan pada gambar a c. As/Sb C C N N C N C C C C C C mbar 2. Struktur ikatan kimia bahan TM dan TDMAAs/TDMASb Me (g) Me 2(g) C 2 6(g) C 2 4(g) 2(g) Me (ads) Me 2(ads) Me Me(ads)+ Substrat As (a)

As(NMe 2) (g) As(NMe 2) 2(g) NMe 2 (g) NC 2 4 (g) 2(g) As(NMe 2) (ads) As(NMe 2) 2(ads) As(NMe 2)(ads) NMe 2 (ads)+as Substrat As (b) Sb(NMe 2) (g) Sb(NMe 2) 2(g) NMe 2 (g) NC 2 4 (g) 2(g) Sb(NMe 2) (ads) Sb(NMe 2) 2(ads) Sb(NMe 2)(ads) NMe 2 (ads)+sb Substrat As (c) mbar. Skematik dekomposisi untuk pyrolysis untuk setiap prekursor di atas substrat As; (a) TM, (b) TDMAAs, (c) TDMASb Berdasarkan mekanisme dekomposisi tersebut, maka reaksi kimia yang terjadi dalam penumbuhan lapisan As, Sb, dan As 1-x Sb x dengan menggunakan TM, TDMAAs, dan TDMASb pada reactor MOCVD diprediksi seperti berikut : ( C ) ( ) xsb[ N ( C ) ] ( ) + ( x) As[ N ( C ) ] ( ) + V 1 2 V 2 V As Sb + N C + N C + C ( 1 x) ( x) ( S) 2 ( ) ( 2 ) 4( V ) (1) Dalam struktur kimia TM, terdapat ikatan langsung antara atom dan atom karbon (C). Akibat adanya dehidrogenasi permukaan spesies [ = C ], maka sangat mungkin akan terbentuk spesies galium carbene [ = C 2 ] yang memiliki ikatan kuat dengan permukaan substrat. Spesies-spesies [ = C 2 ] ini dapat bereaksi dengan atom-atom bebas, yang mengakibatkan atom As tergeser dan kedudukannya ditempati atom karbon []. Karbon merupakan atom golongan IV yang memiliki elektron valensi empat. Ketika atom ini berikatan dengan atom dan menempati kedudukan atom As atau Sb yang bervalensi V, maka akan terjadi pembangkitan hole dalam film akibat ( V ) 2( V )

kekurangan elektron dalam ikatan ini. ole merupakan pembawa muatan berjenis positif, sehingga dari proses ini akan terbentuk semikonduktor tipe-p. Mekanisme masuknya karbon ke dalam film yang ditumbuhkan ditunjukkan pada gambar 4. (C ) (C ) x Proses terjadinya inkorporasi karbon pada film C C + C - + C C As M M = As atau mbar 4. Mekanisme inkorporasi karbon ke dalam film AsSb III. asil karakterisasi sampel film As 1-x Sb x dan pembahasannya 4000 000 As (400) Intensity (Cps) 2000 1000 AsSb (200) As (200) AsSb (400) 0 20 0 40 50 60 70 80 2-Theta (deg) mbar 5. Pola difraksi sinar-x sampel AsSb yang ditumbuhkan pada temperatur 540 dan rasio V/III = 1,2 (Xv = 0,42) mbar 5 menunjukkan pola difraksi sinar-x dari salah satu sampel film tipis As 1-x Sb x untuk Xv = 0,42 yang ditumbuhkan pada temperatur penumbuhan 540 o C dan rasio V/III = 1,2. Berdasarkan puncak-puncak pola difraksi yang muncul, film ini

memiliki orientasi kristal tunggal, yaitu kearah keluarga bidang (100). Terbentuknya film AsSb ditandai dengan adanya pergeseran pola puncak difraksi dari sudut puncak difraksi bahan As kearah sudut puncak difraksi bahan Sb. Intensitas sinar-x terdifraksi dari puncak-puncak orientasi yang muncul tampak cukup tajam, hal ini menunjukkan bahwa kualitas kristal film As 1-x Sb x yang ditumbuhkan sudah cukup baik. mbar 6 menunjukkan persen komposisi unsur-unsur yang terikat pada sampel film tipis As 1-x Sb x yang ditumbuhkan pada temperatur 580 o C dan rasio V/III sekitar 4,8 dengan fraksi mol masukan uap sumber Sb (x v ) sekitar 0,14, hasil pengukuran menggunakan EDS (energy dispersive spectroscopy). Dari data yang terekam menunjukkan bahwa ketiga unsur alloy yaitu, As, dan Sb sudah masuk dalam film. Selain itu terdapat sejumlah unsur karbon dalam film. al ini menunjukkan bahwa prediksi awal tentang adanya inkorporasi atom karbon dalam pembentukan alloy AsSb telah menjadi kenyataan. = 41,11 % As = 44,75 % Sb = 2,40 % C = 11,10 % mbar 6. asil karakterisasi EDS film AsSb dengan x V = 0,14 Berdasarkan hasil pengukuran konsentrasi pembawa muatan dengan metode all Van der Pauw menunjukkan bahwa background konsentrasi pembawa muatan (hole) berorde 10 17 cm - (lihat gambar 7). Orde sebesar ini dapat dikategorikan sedang. al ini dapat dipahami karena sumber kontaminan sebagian besar dari TM, sedangkan dari bahan TDMAAs dan TDMASb kemungkinannya kecil, karena pada

kedua bahan ini tidak terdapat iketan langsung antara atom-atom As atau Sb dengan atom C, melainkan disangga oleh atom N. 40 5 Mobilitas all (cm 2 /V.s) 0 20 10 00 290 Tg = 580oC Tg = 590oC 280-0.2 0 0.2 0.4 0.6 0.8 1 1.2 Fraksi Sb dalam padatan (x s ) 4.5 4.5 2.5 2 Konsentrasi hole (x 10 17 cm - ) mbar 7. Mobilitas all dan konsentrasi hole sebagai fungsi komposisi Sb(x) dari film As 1-x Sb x yang ditumbuhkan dengan rasio V/III = 4,8 IV. Penutup mbaran mekanisme penumbuhan film AsSb dengan MOCVD telah berhasil diperoleh, dan kebenarannya telah dibuktikan melalui cross check dengan data-data hasil karakterisasi film AsSb yang ditumbuhkan. Dari proses dan hasil dekomposisi pirolitik TM, TDMAAs, dan TDMASb dapat dirumuskan persamaan reaksi untuk pembentukan film AsSb. Prekursor-prekursor berupa methyl dapat menjadi sumber kontaminan karbon yang serius, karena dapat menghasilkan senyawa carbene (C= 2 ) yang memiliki ikatan kuat pada film. Dengan menggunakan sumber-sumber metalorganik yang pada struktur ikatan kimianya tidak terdapat ikatan langsung dengan karbon seperti TDMAAs dan TDMASb, ternyata kandungan kontaminasi karbon pada film dapat ditekan.

Referensi [1] Sun, X., Wang, S., su, J. S., Sidhu, R., Zheng, X. G., Li, X., Campbell, J. C., olmes, A. L. Jr., AsSb : a novel material for near infrared photodetectors on As substrate, IEEE J. Sel. Top. Quantum Electron. 8, 817 (2002). [2] Stringfellow, G. B., Organometalic Vapor Phase Epitaxy : Theori and Practice, Academic press Inc., p.2,1989 [] Jones, A. C., O Brien, P., CVD of Compound Semiconductors : Precursor Synthesis and Applications, VC, Weinheim, Germany,1997 [4]. Razegi, M., The MOCVD Challenge, Vol. 1, p. 18, Adam igler, Philadelphia,1989 [5] Marx, D., Asahi,., Liu, X. F., igashiwaki, M., Villaflor, A. B., Miki, K., Yamamoto, K., Gonda, S., Shimomura, S., iyamizu, S., Low temperature etching of As substrate and improved morphology of As grown by metalorganic molecular beam epitaxy using trisdimethylaminoarsenic and triethylgallium, Journal of crystal growth 150 (1995) 551-556