TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi

dokumen-dokumen yang mirip
II. KONSEP DASAR GRAF DAN GRAF POHON. Graf G adalah himpunan terurut ( V(G), E(G)), dengan V(G) menyatakan

II. TINJAUAN PUSTAKA. kromatik lokasi pada suatu graf sebagai landasan teori pada penelitian ini

KONSEP DASAR GRAF DAN GRAF POHON. Pada bab ini akan dijabarkan teori graf dan bilangan kromatik lokasi pada suatu graf

v 3 e 2 e 4 e 6 e 3 v 4

LANDASAN TEORI. Pada bab ini akan diberikan beberapa konsep dasar teori graf dan bilangan. kromatik lokasi sebagai landasan teori pada penelitian ini.

TINJAUAN PUSTAKA. Pada bagian ini akan diberikan konsep dasar graf dan bilangan kromatik lokasi pada

BAB II TINJAUAN PUSTAKA. kromatik lokasi sebagai landasan teori dari penelitian ini.

III. BILANGAN KROMATIK LOKASI GRAF. ini merupakan pengembangan dari konsep dimensi partisi dan pewarnaan graf.

2. TINJAUAN PUSTAKA. Chartrand dan Zhang (2005) yaitu sebagai berikut: himpunan tak kosong dan berhingga dari objek-objek yang disebut titik

III. BILANGAN KROMATIK LOKASI GRAF. Bilangan kromatik lokasi graf pertama kali dikaji oleh Chartrand dkk.(2002). = ( ) {1,2,3,, } dengan syarat

KLASIFIKASI GRAF PETERSEN BERBILANGAN KROMATIK LOKASI EMPAT ATAU LIMA

BAB II TINJAUAN PUSTAKA. Pada bab ini akan diberikan definisi dan teorema yang berhubungan dengan

II. TINJAUAN PUSTAKA. Graf G adalah suatu struktur (V,E) dengan V(G) = {v 1, v 2, v 3,.., v n } himpunan

II. TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa konsep dasar dalam teori graf dan teknik

BILANGAN KROMATIK LOKASI GRAF TAK TERHUBUNG DARI GRAF BINTANG GANDA DAN SUBDIVISINYA. (Skripsi) Oleh SITI NURAZIZAH

BILANGAN KROMATIK LOKASI DARI GRAF ULAT

Suatu graf G adalah pasangan himpunan (V, E), dimana V adalah himpunan titik

BAB III PELABELAN KOMBINASI

BAB II LANDASAN TEORI

II.TINJAUAN PUSTAKA. Pada bab ini akan dijelaskan tentang definisi serta konsep-konsep yang mendukung

BAB II TINJAUAN PUSTAKA

Graph. Rembang. Kudus. Brebes Tegal. Demak Semarang. Pemalang. Kendal. Pekalongan Blora. Slawi. Purwodadi. Temanggung Salatiga Wonosobo Purbalingga

I. PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi sampai saat ini terus

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. sepasang titik. Himpunan titik di G dinotasikan dengan V(G) dan himpunan

BAB II LANDASAN TEORI

TINJAUAN PUSTAKA. Pada bab ini akan diberikan beberapa definisi, istilah istilah yang berhubungan dengan materi

BAB II LANDASAN TEORI

BAB 2 DEGREE CONSTRAINED MINIMUM SPANNING TREE. Pada bab ini diberikan beberapa konsep dasar seperti beberapa definisi dan teorema

BAB II LANDASAN TEORI

LANDASAN TEORI. Bab Konsep Dasar Graf. Definisi Graf

BAB 2 LANDASAN TEORI. yang tak kosong yang anggotanya disebut vertex, dan E adalah himpunan yang

KARAKTERISASI GRAF POHON DENGAN BILANGAN KROMATIK LOKASI 3

MA3051 Pengantar Teori Graf. Semester /2014 Pengajar: Hilda Assiyatun

PENENTUAN BANYAKNYA GRAF TERHUBUNG BERLABEL BERORDE LIMA TANPA GARIS PARALEL. (Skripsi) Oleh Eni Zuliana

BAB 2 LANDASAN TEORI

ALTERNATIF PEMBUKTIAN DAN PENERAPAN TEOREMA BONDY. Hasmawati Jurusan Matematika, Fakultas Mipa Universitas Hasanuddin

Sebuah graf sederhana G adalah pasangan terurut G = (V, E) dengan V adalah

PENGETAHUAN DASAR TEORI GRAF

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

Penerapan Teorema Bondy pada Penentuan Bilangan Ramsey Graf Bintang Terhadap Graf Roda

Struktur dan Organisasi Data 2 G R A P H

BILANGAN KROMATIK LOKASI UNTUK GRAF AMALGAMASI BINTANG

Mizan Ahmad, Tri Atmojo Kusmayadi Program Studi Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret. 1.

MIDDLE PADA BEBERAPA GRAF KHUSUS

BAB II LANDASAN TEORI

BAB II Graf dan Pelabelan Total Sisi-Ajaib Super

LOGIKA DAN ALGORITMA

Bab 2 TEORI DASAR. 2.1 Graf

KAITAN ANTARA DIMENSI METRIK DAN DIMENSI PARTISI PADA SUATU GRAF. (Skripsi) Oleh GIOVANNY THEOTISTA

BAB 2 GRAF PRIMITIF. 2.1 Definisi Graf

II. LANDASAN TEORI. Ide Leonard Euler di tahun 1736 untuk menyelesaikan masalah jembatan

BAB 2 LANDASAN TEORI

Bab 2 LANDASAN TEORI

Discrete Mathematics & Its Applications Chapter 10 : Graphs. Fahrul Usman Institut Teknologi Bandung Pengajaran Matematika

BAB 2 LANDASAN TEORI

Dasar-Dasar Teori Graf. Sistem Informasi Universitas Gunadarma 2012/2013

Bagaimana merepresentasikan struktur berikut? A E

Graf dan Analisa Algoritma. Pertemuan #01 - Dasar-Dasar Teori Graf Universitas Gunadarma 2017

PENGERTIAN GRAPH. G 1 adalah graph dengan V(G) = { 1, 2, 3, 4 } E(G) = { (1, 2), (1, 3), (2, 3), (2, 4), (3, 4) } Graph 2

Graf dan Operasi graf

Konsep Dasar dan Tinjauan Pustaka

I. PENDAHULUAN. Teori graf merupakan salah satu bidang matematika yang memiliki banyak. terapan di berbagai bidang sampai saat ini.

Dimensi Metrik Graf Pohon Bentuk Tertentu

BAB 2 LANDASAN TEORI

DIMENSI PARTISI PADA GRAPH HASIL KORONA C m K n. Oleh : Yogi Sindy Prakoso ( ) JURUSAN MATEMATIKA. Company

BAB II LANDASAN TEORI

BAB II TINJAUAN PUSTAKA. elemen-elemennya disebut dengan vertex (titik/node), sedangkan E yang mungkin kosong

I. LANDASAN TEORI. Seperti yang telah dipaparkan pada bab sebelumnya, teori graf merupakan salah satu ilmu

Graf Ajaib (Super) dengan Sisi Pendan

BAB 2 LANDASAN TEORI. 2.1 Penugasan Sebagai Masalah Matching Bobot Maksimum Dalam Graf Bipartisi Lengkap Berlabel

Graf. Matematika Diskrit. Materi ke-5

PENENTUAN BANYAKNYA GRAF TAK TERHUBUNG BERLABEL TITIK BERORDE MAKSIMAL LIMA DENGAN LOOP MAKSIMAL LIMA TANPA GARIS PARALEL. (Tesis) Oleh SUHARYOKO

SIFAT SIFAT GRAF YANG MEMUAT SEMUA SIKLUS Nur Rohmah Oktaviani Putri * CHARACTERISTIC OF THE GRAPH THAT CONTAINS ALL CYCLES Nur Rohmah Oktaviani Putri

BAB 2 TINJAUAN PUSTAKA

Graf. Program Studi Teknik Informatika FTI-ITP

BAB 2 GRAF PRIMITIF. Gambar 2.1. Contoh Graf

BILANGAN KROMATIK LOKASI UNTUK GRAF POHON n-ary LENGKAP

DIMENSI PARTISI DARI GRAF ULAT

BAB I PENDAHULUAN 1.1 Latar Belakang Masalah

merupakan himpunan sisi-sisi tidak berarah pada. (Yaoyuenyong et al. 2002)

BILANGAN KROMATIK LOKASI PADA GRAF KNESER. ( Skripsi ) Oleh. Muhammad Haidir Alam

Bilangan Ramsey untuk Kombinasi Bintang dan Beberapa Graf Tertentu

INTRODUCTION TO GRAPH THEORY LECTURE 2

3.1 Beberapa Nilai Dimensi Partisi pada Suatu Graf. Dalam dimensi partisi suatu graf, terdapat kelas graf yang nilai dimensi partisinya

Bilangan Ramsey untuk Graf Bintang Genap Terhadap Roda Genap

Graph. Matematika Informatika 4. Onggo

BAB III MATCHING. Sebelum membahas lebih jauh mengenai optimal assignment problem dan

BILANGAN KROMATIK LOKASI UNTUK GRAF KEMBANG API F n,2 DAN F n,3 DENGAN n 2

7. PENGANTAR TEORI GRAF

PENDAHULUAN MODUL I. 1 Teori Graph Pendahuluan Aswad 2013 Blog: 1.

TEORI GRAF UNIVERSITAS MUHAMMADIYAH JEMBER ILHAM SAIFUDIN PROGRAM STUDI TEKNIK INFORMATIKA FAKULTAS TEKNIK. Selasa, 13 Desember 2016

BAB II KAJIAN PUSTAKA

Teori Dasar Graf (Lanjutan)

GRAF. Graph seperti dimaksud diatas, ditulis sebagai G(E,V).

Graf digunakan untuk merepresentasikan objek-objek diskrit dan hubungan antara objek-objek tersebut. Demak Semarang. Kend al. Salatiga.

STUDI BILANGAN PEWARNAAN λ-backbone PADA GRAF SPLIT DENGAN BACKBONE SEGITIGA

Teori Dasar Graf (Lanjutan)

BAB II LANDASAN TEORI

Transkripsi:

II. TINJAUAN PUSTAKA Pada bab ini akan dijelaskan beberapa konsep dasar teori graf dan dimensi partisi pada suatu graf sebagai landasan teori pada penelitian ini.. Konsep Dasar Graf Pada bagian ini akan dijelaskan beberapa konsep dasar dari graf yang diambil dari Deo (989). Graf G adalah himpunan terurut ) )), dengan ) menyatakan himpunan titik ( vertex) { } dari dengan ), dan ) menyatakan himpunan sisi ( edge) { } yakni pasangan tak terurut dari ). Banyaknya himpunan titik ) disebut orde dari graf. Jika dan dihubungkan oleh sisi maka dan dikatakan bertetangga (adjacent), sedangkan titik dan dikatakan menempel (incident) dengan sisi, demikian juga sisi dikatakan menempel dengan titik dan. Himpunan tetangga (neigborhood) dari suatu titik v, dinotasikan dengan N(v) adalah himpunan titiktitik yang bertetangga dengan v. v e e e 5 v e e 6 v 5 e 7 v e v Gambar. Contoh graf dengan 5 titik dan 7 sisi

6 Pada Gambar, graf ( V, E ) dengan ) { } dan ) { }. Titik bertetangga dengan titik,, dan sedangkan dan menempel dengan. Sebaliknya, sisi menempel pada titik dan titik, ) { }. Derajat suatu titik v pada graf G adalah banyaknya sisi yang menempel pada titik v, dinotasikan dengan d(v). Daun (pendant vertex) adalah titik yang berderajat. Pada Gambar, ), ), ), ) dan adalah daun karena berderajat satu. Loop adalah sisi yang memiliki titik awal dan titik akhir yang sama. Sisi paralel adalah sisi yang memiliki dua titik ujung yang sama. Graf yang tidak mempunyai sisi ganda dan loop disebut graf sederhana. Graf pada Gambar bukan merupakan graf sederhana karena pada graf tersebut terdapat loop yaitu di titik. Pada graf terhubung G, jarak diantara dua titik dan adalah panjang lintasan terpendek diantara kedua titik tersebut, dinotasikan dengan ). Istilah lain yang sering muncul pada pembahasan graf adalah jalan (walk), lintasan (path) sirkuit (circuit) dan siklus (cycle). Jalan (walk) adalah barisan berhingga dari titik dan sisi dimulai dan diakhiri sedemikian sehingga setiap sisi menempel dengan titik sebelum dan sesudahnya. Contoh jalan berdasarkan Gambar adalah. Lintasan (path) adalah jalan yang melewati titik yang berbeda-beda. Graf G dikatakan graf

7 terhubung jika terdapat lintasan yang menghubungkan setiap dua titik yang berbeda. Lintasan berdasarkan graf pada Gambar adalah. Sirkuit (circuit) adalah lintasan tertutup (closed path), yaitu lintasan yang memiliki titik awal dan titik akhir yang sama. Sirkuit dibedakan menjadi dua macam, yaitu sirkuit genap dan sirkuit ganjil. Sirkuit genap adalah sirkuit dengan banyaknya titik genap, dan sirkuit ganjil adalah sirkuit dengan banyaknya titik ganjil. Contoh sirkuit berdasarkan pada Gambar adalah. Siklus (cycle) adalah jalan tertutup (walk) yang semua titiknya berbeda. Contoh siklus berdasarkan pada Gambar adalah Dari Chartrand dkk. (000) pewarnaan graf adalah kasus khusus dari pelabelan graf. Pelabelan di sini maksudnya yaitu memberikan warna pada titik-titik batas tertentu. Ada tiga macam pewarnaan graf, yaitu: Pertama, pewarnaan titik yaitu memberikan warna berbeda pada setiap titik yang bertetangga sehingga tidak ada dua titik yang bertetangga mempunyai warna yang sama. Gambar. Contoh pewarnaan titik dengan titik dan 5 sisi

8 Kedua, pewarnaan sisi yaitu memberikan warna berbeda pada sisi yang bertetangga sehingga tidak ada dua sisi yang bertetangga mempunyai warna yang sama. Gambar. Contoh pewarnaan sisi dengan titik dan 5 sisi Ketiga, pewarnaan bidang yaitu memberikan warna pada bidang sehingga tidak ada bidang yang bertetangga mempunyai warna yang sama. 5 Gambar 5. Pewarnaan pada bidang dengan 5 titik dan 8 sisi Lemma.. (Deo 989) Jumlah derajat semua titik pada graf G adalah genap, yaitu dua kali jumlah sisi pada graf tersebut, maka: ) )

9 Sebagai contoh pada Gambar yaitu jumlah derajat seluruh titik pada graf tersebut adalah ) ) ) ) = = sama dengan dua kali jumlah sisi. Teorema.. (Deo 989) Untuk sembarang graf G, banyaknya titik yang berderajat ganjil selalu genap. Bukti : Misalkan V genap dan V ganjil masing masing adalah himpunan titik yang berderajat genap dan berderajat ganjil pada G(V,E). Persamaan () dapat ditulis sebagai berikut : ) ( ) ) ) Karena ( ) untuk setiap, maka suku pertama dari ruas kanan persamaan harus bernilai genap. Ruas kiri persamaan () juga harus bernilai genap. Nilai genap pada ruas kiri hanya benar bila suku kedua dari ruas kanan juga harus genap. Karena ) untuk setiap, maka banyaknya titik di dalam harus genap agar jumlah seluruh derajatnya bernilai genap. Jadi banyaknya titik yang berderajat ganjil selalu genap.. Graf Pohon dan Beberapa Sifatnya Graf pohon (tree) adalah suatu graf terhubung yang tidak memuat siklus. Daun adalah titik di graf yang mempunyai derajat satu.

0 v v 5 v v v v 6 Gambar 6. Contoh pohon G dengan enam titik Pada Gambar 6, graf ) merupakan graf pohon karena graf tersebut merupakan graf terhubung dan tidak memuat siklus. Titik disebut titik pendant atau daun. Gabungan dari beberapa pohon disebut hutan (forest). Gambar 7. Contoh hutan (forest) Selanjutnya, akan diberikan definisi beberapa kelas graf pohon. Suatu graf bintang K,n adalah suatu graf terhubung yang mempunyai satu titik berderajat n yang disebut pusat dan titik lainnya berderajat satu (Chartrand dkk., 998).

Gambar 8. Contoh graf bintang K,6 Graf pohon disebut graf bintang ganda (double star) jika graf pohon tersebut mempunyai tepat dua titik dan berderajat lebih dari satu. Jika dan berturut-turut berderajat a+ dan b+, dinotasikan dengan S a,b, (Chartrand dkk.998) Gambar 9. Contoh graf bintang ganda S, Graf ulat (caterpillar graf) adalah graf pohon yang memiliki sifat apabila dihapus semua daunnya akan menghasilkan lintasan (Chartrand dkk., 998).

Gambar 0. Contoh graf ulat C(,,, ) Graf pohon pisang adalah graf yang diperoleh dari n buah graf bintang dengan cara menghubungkan sebuah daun dari setiap ke suatu titik baru (Chen dkk.(997)). Gambar. Contoh graf pohon pisang Graf kembang api seragam, adalah graf yang diperoleh dari n buah graf bintang dengan cara menghubungkan sebuah daun dari setiap melalui sebuah lintasan (Chen dkk.(997)). Gambar.Contoh graf kembang api

Selanjutnya diberikan beberapa teorema mengenai graf pohon sebagai berikut : Teorema.. (Harsfield dan Ringel, 99) Jika adalah pohon dengan titik dan sisi, maka. Bukti: Jika adalah pohon dengan satu sisi maka teorema benar untuk. Asumsikan teorema benar untuk semua pohon dengan sisi kurang dari, artinya untuk maka. Misal pohon dengan sisi. Pilih satu lintasan terpanjang di dari ke. Titik harus berderajat. Karena kalau tidak, lintasan akan menjadi lebih panjang atau terbentuk siklus di. Selanjutnya buang titik dan akibatnya sisi terhubung titik terbuang. Sehingga berdasarkan asumsi bahwa pohon terbentuk dengan ) dan ) sisi adalah ) atau. Teorema.. (Harsfield dan Ringel, 99) Graf adalah pohon jika dan hanya jika ada terdapat tepat satu lintasan diantara kedua titik tersebut. Bukti: () Akan ditunjukkan graf adalah pohon maka terdapat tepat satu lintasan diantara kedua titik. Asumsikan adalah pohon, misal dan titik-titik di, maka pohon dapat dihubungkan dari lintasan ke. Anggaplah terdapat dua lintasan dari ke, dan

Selanjutnya jika pada akan ditemukan suatu titik yang terdapat dalam yang juga dalam, maka akan terdapat siklus. Jika, maka untuk suatu,, karena ada dua lintasan sebagai asumsi. Selanjutnya dari sampai ditemukan suatu titik yang terdapat dalam yang juga dalam dan selanjutnya ambil kembali ke, dan akan didapatkan siklus lagi. Tetapi bahwa ada dua adalah pohon, sehingga tidak ada siklus. Jadi asumsi lintasan salah. () Akan ditunjukkan bahwa ada terdapat tepat satu lintasan diantara kedua titik maka graf adalah pohon. Asumsikan adalah graf dengan tepat satu lintasan diantara dua titik. Pertama perhatikan terhubung. Anggaplah bahwa pada terdapat siklus. Jelas bahwa ada dua lintasan dari ke. Ini kontradiksi, karena mempunyai tepat satu lintasan diantara dua titik. Jadi graf tidak mengandung siklus dan adalah pohon.. Dimensi Partisi Graf Pada bagian ini akan diberikan definisi dan sifat-sifat dari dimensi partisi pada suatu graf yang diambil dari Chartrand dkk.(998). Misalkan ) suatu graf, ) dan ). Jarak dari titik ke himpunan, dinotasikan dengan ) adalah { ) } dengan ) adalah jarak dari titik ke. adalah himpunan titik-titik yang diberi label ke-, misalkan { } adalah himpunan k pasang terurut dari ) dengan adalah partisi-partisi. Representasi terhadap, dinotasikan dengan ) adalah k vektor ( ) ) )).

5 Selanjutnya disebut partisi pembeda dari ) jika ) ) untuk setiap dua titik berbeda ). Dimensi partisi dari, dinotasikan dengan ), adalah nilai terkecil sehingga mempunyai partisi pembeda dengan kelas. v 5 v v 6 v 9 v v v 8 v 0 v v 7 Gambar. Contoh gambar graf G dengan 0 titik dan dimensi partisinya. Pada Gambar diberikan graf dipartisi sedemikian sehingga diperoleh { } dengan { } { } dan { }. Perhatikan bahwa, ) ) ) ); ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) Karena representasi dari setiap titik berbeda, maka adalah partisi pembeda dari graf dan ). () Untuk menunjukkan ), andaikan terdapat partisi pembeda { } dari. Perhatikan titik memiliki daun yaitu dan. Jika hanya terdapat dua kelas partisi pembeda, maka dua dari tiga daun tersebut akan memiliki partisi yang sama. Akibatnya representasi kedua daun itu akan sama,

6 karena memiliki jarak yang sama terhadap titik-titik lainnya pada graf, kontradiksi. Jadi ). () Berdasarkan Persamaan () dan () diperoleh ). Lemma.. Diberikan graf terhubung dengan partisi pembeda dari ) untuk ) jika ) ) untuk setiap ) { }, maka dan merupakan elemen yang berbeda dari Berikut ini akan diberikan teorema untuk menentukan dimensi partisi pada graf bintang ganda. Teorema.. (Chartrand dkk. 998) Misalkan graf bintang berorde, maka ( ). Bukti : v 8 v N- n v 7 v v 6 v 5 v v v Gambar. Dimensi partisi graf bintang Graf dipartisi sedemikian sehingga diperoleh { } dengan { } { } { } { } { } dan { }. Perhatikan bahwa ) )

7 ) ); ) ) ) ) ) ) ) ) ) ). Karena representasi dari setiap titik berbeda, maka adalah partisi pembeda dari graf dan ( ). Untuk menunjukkan ( ), andaikan bahwa terdapat partisi pembeda { } dari maka ada representasi yang sama yaitu pada titik dan. Maka bukan merupakan partisi pembeda dari graf kontradiksi. Jadi ( ). Akibatnya ( ). Berikut ini akan diberikan contoh penentuan dimensi partisi dari graf bintang. v 7 6 v v v v 6 5 v 5 v Gambar 5. Dimensi partisi graf Graf dipartisi sedemikian sehingga diperoleh { } dengan { } { } { } { } { } dan { }. Perhatikan bahwa ) ) ) ); ) ) ; ) ) ) ) ) )

8 ) ). Karena representasi dari setiap titik berbeda, maka adalah partisi pembeda dari graf dan ( ). Untuk menunjukkan ( ), andaikan bahwa terdapat partisi pembeda { } maka akan ada representasi yang sama pada titik dan. Sehingga, bukan merupakan partisi pembeda dari graf, kontradiksi. Jadi ( ). Akibatnya, ( ) Selanjutnya akan diberikan beberapa lemma dan teorema hasil penelitian Asmiati dkk. (0) tentang dimensi partisi dari graf amalgamasi bintang. Lemma.. Misal adalah partisi pembeda dari graf dengan. Partisi pembeda adalah hasil partisi dari graf jika dan hanya jika dan dalam kelas yang sama pada kelas kombinasi { } dan jika { } adalah pembeda. Bukti : Misal adalah hasil partisi dari graf dengan dan adalah kelas yang sama dari. Jika kombinasi kelas dari { } dan { } adalah sama. Karena ) ) untuk setiap maka representasi dari dan adalah sama. Jadi bukan hasil dari partisi. Maka kontradiksi dengan pengandaian.

9 Misalkan adalah partisi pembeda dari graf dengan. Misal A dinotasikan dari kombinasi kelas graf { } dan B dinotasikan dari kombinasi kelas graf { }. Perbandingan dan adalah kelas yang sama dari. Karena A = B, maka dan dimana dan. Akan ditunjukkan bahwa representasi dari setiap ) adalah unik. Jelas, ) ) karena representasinya berbeda dalam ordinat ke m dan ordinat ke n. Jika dan adalah kelas yang sama pada dengan akan ditunjukkan bahwa ( ) ). Di bagi dalam kasus, yaitu: Kasus, jika dan adalah kelas yang sama pada maka diperoleh alasan pada teorema ini, yaitu A = B. Jadi ( ) ). Kasus, misal dan maka ( )dan ) adalah berbeda dalam ordinat ke x dan ordinat ke y. Jadi ( ) ). Jika dan dalam kelas yang sama pada maka representasi ) mempunyai setidaknya ada satu komponen yang bernilai. Sedangkan ( ) mempunyai tepat satu komponen yang bernilai. Maka ) ( ).

0 Jika dan dalam kelas yang sama pada maka representasi ) mempunyai setidaknya ada satu komponen yang bernilai. Sedangkan ( ) mempunyai tepat satu komponen yang bernilai. Maka ) ( ). Jika dan dalam kelas yang sama pada. Di bagi dalam kasus. Kasus. Representasi ( ) mempunyai ) komponen yang bernilai. Sedangkan ) mempunyai kurang dari ) komponen yang bernilai. Maka ) ( ) Kasus. Karena ) ) maka ) ( ). Lemma.. Misal adalah ) partisi, maka ). Bukti : Misal adalah ) partisi pada, tetap untuk, misal, maka jumlah kombinasi partisi { } adalah ). Karena ) partisi dari, untuk setiap ) berdasarkan Lemma.. di peroleh jumlah dari adalah ). Akan tetapi, jika dalam kelas partisi yang sama dan ) ) maka harus menghilangkan, untuk memastikan bahwa semua titik akan mempunyai representasi yang berbeda. Jadi jumlah maksimum dari adalah ) -.

Teorema..5 ( ) { ) ) Bukti: Akan ditunjukkan batas bawah dimensi partisi pada graf untuk, berdasarkan Lemma.. untuk setiap, terdapat titik dan memiliki partisi yang berbeda. Maka ( ) Akan ditunjukkan batas atas dimensi partisi pada graf untuk. Misal. Untuk menunjukkan bahwa setiap daun akan memiliki representasi yang berbeda, maka harus menempatkan, untuk setiap ke dalam kelas yang berbeda. Jadi, adalah penyelesaian -partisi dari ). Karena ( ), maka ( ). Selanjutnya akan ditentukan batas bawah untuk. Misal, suatu partisi ( ). Jika dan mempunyai kelas yang sama, maka hasil dari ) dan ( ) keduanya memiliki 0 dalam ordinat ke k dan lainnya. Maka salah, jadi ( ).

Untuk menentukan batas atas dari, berdasarkan Lemma.., bahwa suatu daun untuk titik yang sama harus memiliki kelas yang berbeda, maka kombinasi dari memiliki partisi yang berbeda, yaitu { }. Untuk setiap, { } untuk. Amati jika { } dan { } adalah tetap untuk yang sama. Kemudian untuk menentukan bahwa akan ada daun yang memiliki representasi yang berbeda, maka dan memiliki kelas yang berbeda. Untuk jika diberikan untuk { } maka dapat menjadi dan tidak kehilangan sifat umum dari pada. Akan tetapi jika digunakan dalam pada setiap, kecuali. Ini menghindari dan mempunyai representasi yang sama. Jadi adalah. Kemudian ( ) untuk.

5 5 5 5 Gambar 6. Dimensi partisi graf amalgamasi bintang Gambar 7. Dimensi partisi graf amalgamasi bintang