STUDI ELEMEN DISCRETE-KIRCHHOFF MINDLIN TRIANGLE (DKMT) UNTUK ANALISIS STATIK PELAT LENTUR DAN PENGEMBANGAN UNTUK ANALISIS DINAMIK GETARAN BEBAS

dokumen-dokumen yang mirip
PENGEMBANGAN PENGHALUSAN JARING ELEMEN SEGITIGA REGANGAN KONSTAN SECARA ADAPTIF

IMPLEMENTASI ELEMEN TETRAHEDRON LINEAR DAN KUADRATIK UNTUK ANALISIS TEGANGAN TIGA DIMENSI DENGAN MENGGUNAKAN PROGRAM MATLAB DAN GID

Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, 2

MODIFIKASI TEKNIK DISCRETE SHEAR GAP PADA ELEMEN BALOK TIMOSHENKO BERBASIS KRIGING

PENGEMBANGAN ELEMEN BALOK TIMOSHENKO BERBASIS KRIGING BEBAS LOCKING UNTUK ANALISIS STABILITAS DAN GETARAN BEBAS

KAJIAN BERBAGAI METODE INTEGRASI LANGSUNG UNTUK ANALISIS DINAMIS

PENGEMBANGAN PROGRAM ANALISIS STRUKTUR BERBASIS INTERNET UNTUK PEMBELAJARAN DAN PENELITIAN METODE ELEMEN HINGGA

STUDI ANALISIS PEMODELAN BENDA UJI BALOK BETON UNTUK MENENTUKAN KUAT LENTUR DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

ANALISIS ELEMEN CANGKANG AKSISIMETRI SAXI_K BERKETEBALAN KONSTAN TERHADAP PROBLEM STATIS DAN GETARAN BEBAS

STUDI KEAKURATAN DAN KEKONVERGENAN METODE ELEMEN HINGGA BERBASIS KRIGING DAN KONVENSIONAL

Dosen Pembimbing: 1. Tavio, ST, MS, Ph.D 2. Bambang Piscesa, ST, MT

Simulasi Perpindahan Panas pada Lapisan Tengah Pelat Menggunakan Metode Elemen Hingga

BAB 1 PENDAHULUAN. metode REP menggunakan patch sebagai media untuk. perhitungannya.

I.1 Latar Belakang I-1

Bab V Implementasi Dan Pembahasan Metode Elemen Hingga Pada Struktur Shell

BAB 3 MODEL ELEMEN HINGGA

LAPORAN AKHIR No. 03/HB-PENELITIAN/LPPM-UKP/VII/2016

BAB I PENDAHULUAN. yang demikian kompleks, metode eksak akan sulit digunakan. Kompleksitas

ANALISA P Collapse PADA GABLE FRAME DENGAN INERSIA YANG BERBEDA MENGGUNAKAN PLASTISITAS PENGEMBANGAN DARI FINITE ELEMENT METHOD

Bab I Pendahuluan I.1 Latar Belakang

BAB II TEORI DASAR. Gambar 2.1 Tipikal struktur mekanika (a) struktur batang (b) struktur bertingkat [2]

Gambar 2.1 Rangka dengan Dinding Pengisi

BAB I PENDAHULUAN. fisik menuntut perkembangan model struktur yang variatif, ekonomis, dan aman. Hal

PRINSIP DASAR MEKANIKA STRUKTUR

PENGEMBANGAN WEBSITE UNTUK PEMBELAJARAN ANALISIS STRUKTUR RANGKA DENGAN METODE KEKAKUAN LANGSUNG

STUDI ANALISIS PEMODELAN TULANGAN BAJA VANADIUM DAN TEMPCORE DENGAN SOFTWARE KOMPUTER

BAB I PENDAHULUAN. Gambar 1.1 tegangan bidang pada (a) pelat dengan lubang (b) pelat dengan irisan (Daryl L. Logan : 2007) Universitas Sumatera Utara

BAB II KAJIAN PUSTAKA

ANALISIS CANTILEVER BEAM DENGAN MENGGUNAKAN METODE SOLUSI NUMERIK TUGAS KULIAH

BAB I PENDAHULUAN UMUM

GETARAN BEBAS PADA BALOK KANTILEVER. Kusdiman Joko Priyanto. Abstrak. Kata kunci : derajad kebebasan, matrik massa, waktu getar alamai

Bab 5 Puntiran. Gambar 5.1. Contoh batang yang mengalami puntiran

STUDI NUMERIK POLA GESER BLOK ALTERNATIF PADA SAMBUNGAN UJUNG BATANG TARIK PROFIL T

Perencanaan Fondasi Mat Pada Gedung-gedung Tinggi oleh: Steffie Tumilar. ir.m.eng.au(haki)

E-Journal Graduate Unpar Part C Civil Engineering

ANALISA STRUKTUR METODE MATRIKS (ASMM)

ANALISA DINAMIS STRUKTUR SAYAP PLAT PESAWAT UDARA DENGAN EQUIVALENT PLATE MODEL

Bab V : Analisis 32 BAB V ANALISIS

ANALISIS PERILAKU STATIK PADA STRUKTUR CANGKANG SILINDER (Cylindrical shell) DENGAN METODE ELEMEN HINGGA TESIS

(Mia Risti Fausi, Ir. Yerri Susatio, MT, Dr. Ridho Hantoro)

Jurnal Sipil Statik Vol.3 No.1, Januari 2015 (1-7) ISSN:

Bab V Kesimpulan dan Saran


METODE PENELITIAN. Model tabung gas LPG dibuat berdasarkan tabung gas LPG yang digunakan oleh

III. METODELOGI. satunya adalah menggunakan metode elemen hingga (Finite Elemen Methods,

ANALISA BALOK SILANG DENGAN GRID ELEMEN PADA STRUKTUR JEMBATAN BAJA

ANALISIS LINIER STRUKTUR CANGKANG PADA SILO SEMEN DENGAN METODE ELEMEN HINGGA

BAB IV EVALUASI KINERJA DINDING GESER

BAB III PEMODELAN RESPONS BENTURAN

BAB II LANDASAN TEORITIS

VERIFIKASI PENYEBAB RETAK PADA PEMANCANGAN TIANG PIPA MENGGUNAKAN HYDRAULIC JACK

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS SUMATERA UTARA MEDAN

Distribusi Tekanan pada Fluida

Laporan Praktikum Laboratorium Teknik Material 1 Modul D Uji Lentur dan Kekakuan

STUDI ANALISIS PEMODELAN BENDA UJI KUBUS DAN SILINDER UNTUK MENETUKAN KUAT TEKAN BETON DENGAN MENGGUNAKAN SOFTWARE KOMPUTER

APLIKASI METODE RESPON SPEKTRUM DENGAN METODE TEORITIS DENGAN EXCEL DIBANDINGKAN DENGAN PROGRAM SOFTWARE

PROGRAM ANALISIS GRID PELAT LANTAI MENGGUNAKAN ELEMEN HINGGA DENGAN MATLAB VERSUS SAP2000

ANALISIS LENDUTAN SEKETIKA DAN JANGKA PANJANG PADA STRUKTUR PELAT DUA ARAH. Trinov Aryanto NRP : Pembimbing : Daud Rahmat Wiyono, Ir., M.Sc.

PENGEMBANGAN PROGAM PERHITUNGAN BERBASIS INTERNET UNTUK PEMBELAJARAN METODE ELEMEN HINGGA

ANALISA STRUKTUR PORTAL RUANG TIGA LANTAI DENGAN METODE KEKAKUAN DIBANDINGKAN DENGAN PROGRAM ANSYS HERY SANUKRI MUNTE

DAFTAR ISI. Halaman Judul Pengesahan Persetujuan Surat Pernyataan Kata Pengantar DAFTAR TABEL DAFTAR GAMBAR DAFTAR NOTASI DAFTAR LAMPIRAN

STUDI PENGARUH KONSTANTA PEGAS TANAH TERHADAP RESPON TEGANGAN DAN PENURUNAN PADA PONDASI PELAT (MAT FOUNDATION) ABSTRAK

Bab III Program dan Verifikasi

Metode Kekakuan Langsung (Direct Stiffness Method)

III. METODE PENELITIAN

ANALISIS 3D SOLIDS DENGAN METODE ELEMEN HINGGA BERBASIS KRIGING

BAB II LANDASAN TEORI CORE WALL

MODEL MATEMATIKA MANIPULATOR FLEKSIBEL

BAB II DASAR TEORI. 2.1 Konsep Dasar Rotating Disk

BAB II TINJAUAN PUSTAKA

KARAKTERISTIK DINAMIK STRUKTUR ROKET RKN BERTINGKAT PADA KONDISI TERBANG-BEBAS (FREE FLYING)

Gambar 2.1 Bagian-bagian mesin press BTPTP [9]

STUDI PROBABILITAS RESPON STRUKTUR DENGAN DUA DERAJAT KEBEBASAN MENGGUNAKAN METODE ELEMEN HINGGA

EVALUASI PERBANDINGAN KONSEP DESAIN DINDING GESER TAHAN GEMPA BERDASARKAN SNI BETON

PUNTIRAN. A. pengertian

BAB I PENDAHULUAN. Dinding ( wall ) adalah suatu struktur padat yang membatasi dan melindungi

BAB I PENDAHULUAN. mendesain bangunan terutama dari segi struktural. Gerakan tanah akibat gempa bumi

BAB II LANDASAN TEORI. Efektifitas dinding struktur dan core-wall untuk menahan momen yang

BIDANG STUDI STRUKTUR DEPARTEMEN TEKNIK SIPIL FAKULTAS TEKNIK USU MEDAN 2013

BAB III PEMODELAN SISTEM POROS-ROTOR

JURNAL TUGAS AKHIR PERHITUNGAN STRUKTUR BETON BERTULANG PADA PEMBANGUNAN GEDUNG PERKULIAHAN FAPERTA UNIVERSITAS MULAWARMAN

jenis bahan yang dipakai akan berpengaruh terhadap pola goyangan yang

PERBANDINGAN ANALISA BALOK BAJA DENGAN CARA TEORITIS DAN FINITE ELEMENT ANALYSIS

Getaran Mekanik. Getaran Bebas Tak Teredam. Muchammad Chusnan Aprianto

BAB I PENDAHULUAN. pesat yaitu selain awet dan kuat, berat yang lebih ringan Specific Strength yang

BAB III METODE PENELITIAN

STUDI NUMERIK SAMBUNGAN DENGAN BAUT-GUSSET PLATE PADA STRUKTUR GABLE FRAME TIGA SENDI

OPTIMASI PONDASI MESIN TIPE RANGKA

Analisis Perilaku Struktur Pelat Datar ( Flat Plate ) Sebagai Struktur Rangka Tahan Gempa BAB III STUDI KASUS

PANJANG EFEKTIF UNTUK TEKUK TORSI LATERAL BALOK BAJA DENGAN PENAMPANG I (230S)

PENGARUH TEGANGAN TORSI TERHADAP PERENCANAAN TULANGAN MEMANJANG DAN TULANGAN GESER PADA BALOK GRID BETON BERTULANG TAMPANG PERSEGI

BAB II DASAR-DASAR PERENCANAAN STRUKTUR GEDUNG BERTINGKAT

ANALISIS PRINSIP ENERGI PADA METODE ELEMEN HINGGA TINJAUAN PEMODELAN ELEMEN UNIAKSIAL KUADRATIK TERHADAP ELEMEN UNIAKSIAL KUBIK

BAB 4 HASIL DAN PEMBAHASAN

APLIKASI METODE ELEMEN HINGGA UNTUK ANALISA STRUKTUR STATIK LINIER DENGAN PROGRAM MSC/NASTRAN

BAB IV PERMODELAN STRUKTUR

KAJIAN TEORI MEMBRAN PADA ANALISIS PLAT CANGKANG TIPIS PADA STRUKTUR TANGKI STORAGE SILINDRIS

ANALISIS PERBANDINGAN PERHITUNGAN STRUKTUR CANGKANG KUBAH (DOME) MATERIAL BETON DAN MATERIAL BAJA DENGAN PROGRAM TUGAS AKHIR

DAFTAR ISI KATA PENGANTAR PERNYATAAN ABSTRACT DAFTAR ISI DAFTAR GAMBAR DAFTAR TABEL DAFTAR LAMPIRAN DAFTAR NOTASI BAB I.

BAB I PENDAHULUAN. 1.1 Umum. Berkembangnya kemajuan teknologi bangunan bangunan tinggi disebabkan

Transkripsi:

STUDI ELEMEN DISCRETE-KIRCHHOFF MINDLIN TRIANGLE (DKMT) UNTUK ANALISIS STATIK PELAT LENTUR DAN PENGEMBANGAN UNTUK ANALISIS DINAMIK GETARAN BEBAS Erwin Tirta Winata 1, Charles Julius Salim 2 dan Wong Foek Tjong 3 ABSTRAK : Pengembangan analisis pelat lentur berbasis teori Reissner-Mindlin dengan menggunakan metode elemen hingga telah berkembang sejak lama. Salah satunya adalah elemen Discrete-Kirchhoff Mindlin Triangle (DKMT) yang dikemukakan oleh Katili (1993). Adapun kesimpulan yang diberikan mengatakan bahwa elemen ini lolos patch test, bebas shear locking, tidak sensitif terhadap distorsi geometri, tidak ada extra zero-energy modes, dan memiliki konvergensi yang baik. Berdasarkan hasil tersebut, maka penelitian kali ini ditujukan untuk melakukan re-evaluasi terhadap performa elemen DKMT dalam analisis statik serta mengembangkannya untuk analisis dinamik getaran bebas. Batasan yang diberikan berupa analisis linear dan material yang bersifat isotropik. Dari hasil penelitian didapatkan bahwa kesimpulan yang dinyatakan oleh peneliti sebelumnya benar adanya akan tetapi terdapat hasil yang kurang tepat pada permasalahan rhombic plate. Sedangkan untuk analisis dinamik getaran bebas, nilai frekuensi natural dan mode shape sudah cukup akurat namun membutuhkan jumlah mesh yang cukup banyak. KATA KUNCI: teori Reissner-Mindlin, metode elemen hingga, Discrete-Kirchhoff Mindlin Triangle (DKMT), analisis statik, analisis getaran bebas, shear locking, frekuensi natural, mode shape 1. PENDAHULUAN Pada awal perkembangannya, analisis pelat lentur didasarkan pada teori Kirchoff. Akan tetapi, terdapat kesulitan untuk memenuhi kontinuitas C 1 dalam pembentukan shape function sehingga memunculkan teori baru yaitu teori Reissner-Mindlin yang hanya membutuhkan kontinuitas C 0 (Zienkiewicz dan Taylor, 2000). Namun demikian, terdapat permasalahan baru yaitu munculnya gejala shear locking, sehingga memerlukan modifikasi khusus untuk mendapatkan hasil yang akurat. Salah satu upaya dalam menghilangkan shear locking adalah penggunaan metode selective reduced integration (SRI) Dengan metode ini, hasil yang didapat cukup memuaskan namun menghasilkan fenomena hour glass mode (Hughes et al., 1977). Pengembangan untuk analisis pelat lentur terus diupayakan, salah satunya yaitu elemen Discrete Kirchoff Triangle (DKT) yang merupakan pengembangan dari teori Reissner-Mindlin berbasis discrete constraint, dimana hasil yang didapat cukup memuaskan untuk pelat tipis (Batoz et al., 1980). Performa yang cukup memuaskan dari elemen DKT ini mendorong perkembangan elemen Discrete Shear Triangle-Batoz Lardeur (DST-BL) yang diaplikasikan untuk pelat tebal. Hasil yang didapat cukup baik namun tidak lolos constant curvature patch test (Batoz dan Lardeur, 1989). Penelitian dilanjutkan dengan penemuan elemen baru Discrete Shear Triangle-Batoz Katili (DST-BK). Hasil yang didapat lebih baik dari sebelumnya, namun tidak konvergen menuju solusi DKT pada pelat tipis (Batoz dan Katili, 1992). 1 Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, erwintirta07@gmail.com 2 Mahasiswa Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, charles.julius.13@gmail.com 3 Dosen Program Studi Teknik Sipil Universitas Kristen Petra Surabaya, wftjong@petra.ac.id 1

Penelitian kembali dilakukan hingga menghasilkan elemen Discrete-Kirchoff Mindlin Triangle (DKMT) yang menunjukkan bahwa hasil yang didapat konvergen menuju elemen DKT pada pelat tipis, memiliki rank yang tepat, lolos patch test, dan bebas locking (Katili, 1993). Kelebihan inilah yang mendasari penulis tertarik untuk melakukan studi lebih lanjut mengenai performa elemen DKMT dan mengembangkannya untuk analisis dinamik getaran bebas. 2. TEORI PELAT LENTUR REISSNER-MINDLIN Pelat merupakan sebuah elemen struktur tiga dimensi dimana perbandingan antara tebal dan panjang/lebarnya sangatlah kecil. Dalam teori Reissner-Mindlin, terdapat beberapa asumsi dasar yakni garis normal pada permukaan bidang tengah pelat harus tetap lurus sesudah berdeformasi akan tetapi tidak perlu tegak lurus dengan bidang tengah pelat yang telah berdeformasi. Tegangan normal arah z pada bidang tengah dapat diabaikan, σ zz = 0. Diasumsikan pula bahwa lenturan pada pelat homogen mengakibatkan bidang tengah sebagai permukaan netral dimana nilai xx = yy = xy = 0 (Wong, 2009). Secara umum, displacement pada pelat lentur dapat dituliskan sebagai berikut: u = z x (x, y) (1a) v = z y (x, y) (1b) w = w (x, y) (1c) dimana u adalah perpindahan searah sumbu x, v adalah perpindahan searah sumbu y, dan w adalah perpindahan searah sumbu z, x merupakan rotasi sumbu z terhadap sumbu x, dan y merupakan rotasi sumbu z terhadap sumbu y. Pada teori pelat lentur terdapat tiga buah persamaan utama. Persamaan pertama adalah persamaan kinematik. Persamaan ini menghubungkan regangan dengan displacement pada elemen {u} { b } = z [ ] b {u} (2a) { s } = [ ] s {u} (2b) dimana { b } merupakan vektor regangan yang timbul akibat lentur, z adalah variabel yang menyatakan ketebalan pelat, dan [ ] b adalah matriks differensial untuk lentur. Sedangkan { s } merupakan vektor regangan akibat geser, dan [ ] s adalah matriks differensial untuk geser. Persamaan kedua dalam pelat lentur adalah persamaan konstitutif yang menghubungkan regangan dengan tegangan. Secara jelas, persamaan tersebut dituliskan sebagai berikut: { b } = [E b ]{ b } (3a) { s } = [E S ]{ S } (3b) dimana { b } merupakan vektor tegangan akibat lentur, [E b ] adalah matriks yang berisi data properti material untuk lentur. Sedangkan { s } merupakan vektor tegangan akibat geser, dan [E S ] matriks yang berisi properti material untuk geser. Selanjutnya, untuk mendapatkan gaya dalam momen dan geser dapat dilakukan dengan mengintegrasikan tegangan akibat lentur dan geser terhadap ketebalan pelat. Persamaan ketiga dalam pelat lentur adalah persamaan kesetimbangan dimana pada elemen DKMT dinyatakan sebagai governing equation yang mengikuti persamaan fungsional Hu-Washizu termodifikasi berikut ini: = b (β x, β y ) + s (w, β x, β y, {γ }, {T}) f(w, β x, β y ) + ext (4) dengan b dan s adalah strain energy akibat bending dan shear, γ adalah regangan geser terasumsi, ext adalah efek dari batasan dan gaya lainnya yang mana dalam analisis selanjutnya dapat diabaikan karena saling menghilangkan, dan f adalah strain energy akibat beban merata dalam arah z (f z ). 2

3. PERUMUSAN ELEMEN DKMT Perumusan shape function yang digunakan dibagi menjadi 2 bagian. Bagian pertama menunjukkan interpolasi linear standar yang selanjutnya disebut dengan complete rigid body dan constant-curvature field expansion (rc-modes) serta fungsi polinomial dengan derajat lebih tinggi untuk bagian kedua. Secara jelas, perumusan shape function untuk rotasi normal β x dan β y dapat dilihat sebagai berikut: 3 β x = i=1 N i β xi + 6 k=4 P k C k β sk (5a) 3 β y = i=1 N i β yi + 6 k=4 P k S k β sk (5b) dengan N i dan P k masing-masing adalah shape function untuk interpolasi linear dan polinomial derajat tinggi dalam sistem koordinat natural (, ). Variabel w i, β xi dan β yi merupakan nodal displacement pada setiap titik pojok elemen segitiga. Sedangkan β sk merupakan penambahan rotasi normal pada titik tengah sisi segitiga. Adapun C k dan S k adalah penguraian arah cosinus dan sinus sisi-sisi segitiga. Bentuk interpolasi di atas akan menjadi dasar penurunan rumus untuk mendapatkan hubungan antara vektor kurvatur dan vektor regangan geser terhadap nodal displacement. Unsur penting lainnya yang menjadi dasar perumusan elemen DKMT adalah penggunaan discrete constraint untuk memfasilitasi adanya regangan geser terasumsi (γ ). Persamaan yang digunakan adalah sebagai berikut: L k δt s (γ sz γ sz) ds = 0 (6) 0 Seperti diketahui, γ hanyalah unsur tambahan yang bersifat sementara. Penggunaan γ sangat berperan penting dalam menghubungkan variabel β sk dengan nodal displacement (w i, β xi dan β yi ). Dengan demikian variabel yang tidak diketahui tetap berjumlah 9 dan tidak membutuhkan persamaan ekstra. Hubungan antara β sk dan nodal displacement dapat dilihat pada persamaan di bawah ini: { β n } = [A n ]{U n } (7) dengan { β n } T adalah vektor β sk pada setiap titik dan {U n } adalah nodal displacement elemen segitiga. Sedangkan [A n ] adalah matriks penghubung yang diturunkan melalui berdasarkan discrete constraint yang digunakan pada persamaan (6). Selanjutnya dengan melakukan penyusunan ulang persamaan di atas akan didapatkan matriks kekakuan dalam bentuk yang lengkap. Matriks kekakuan pada elemen DKMT dapat dilihat sebagai berikut: [K b ] = [B b ] T [H b ] [B A e b ]da (8a) [K s ] = [B s ] T [H s ] [B A e s ]da (8b) [K] = [K b ] + [K s ] (8c) dengan [K] adalah matriks kekakuan total, [K b ] adalah bagian matriks kekakuan akibat lentur, dan [K s ] adalah bagian matriks kekakuan akibat geser. Di sisi lain, [B b ] dan [B s ] adalah matriks penghubung antara regangan dan nodal displacement untuk lentur dan geser. Sedangkan [H b ] dan [H s ] masingmasing adalah matriks yang menghubungkan vektor momen dengan vektor kurvatur dan vektor gaya geser dengan regangan geser yang bisa didapat dengan mengintegrasikan persamaan (3a) dan (3b) terhadap ketebalan pelat. Proses selanjutnya mengikuti prosedur MEH standar. Setelah mendapat nilai nodal displacement, gaya dalam momen dan geser dapat dengan mudah dihitung dengan mengikuti persamaan: [M] = [H b ][B b (, )]{U n } (9a) [T] = [H s ][B s (, )]{U n } (9b) 4. PERUMUSAN ANALISIS DINAMIK GETARAN BEBAS Governing equation yang digunakan tetap mengikuti prinsip fungsional Hu-Washizu temodifikasi dengan tambahan strain energy akibat inersia ( i ). Untuk penurunan matriks massa, shape function 3

yang digunakan hanya interpolasi linear saja untuk masing-masing displacement. Sedangkan untuk matriks kekakuan tetap sama seperti analisis statik. Adapun matriks massa diperoleh dengan persamaan: [M] = [N] T [ρ][n]da (10) A dimana [N] adalah matriks shape function dan [ρ] adalah matriks yang berisi nilai kerapatan massa dan momen inersia pelat. Setelah mendapatkan matriks kekakuan dan matriks massa, maka proses selanjutnya adalah mendapatkan nilai eigen dan vektor eigen dari persamaan eigen berikut ini: (K ω 2 M){A n } G = {0} (11) dimana {A n } G adalah vektor eigen yang merupakan mode shape dari getaran pelat lentur dan ω adalah frekuensi sudut dari getaran pelat untuk setiap mode shape yang terjadi. 5. HASIL PERHITUNGAN NUMERIK 5.1. Pengujian Shear Locking Pengujian dilakukan pada pelat berbentuk lingkaran. Peninjauan tidak dilakukan untuk satu lingkaran penuh akan tetapi cukup ditinjau seperempat saja dengan syarat memasukkan kondisi batas untuk menjaga kesimetrian dari pelat. Pengujian dilakukan untuk perletakan sendi dengan nilai E = 10.92, v = 0.3, R = 5 dan h = 2, h = 1, h = 0.1, h = 0.01, h = 0.001, h = 0.0001. Mesh yang digunakan berjumlah 96 elemen. Hasil yang didapat ditunjukkan pada Tabel 1 dan Gambar 1. Tabel 1. Perbandingan Hasil Displacement Berdasarkan DKMT dan Solusi Eksak pada Pusat Lingkaran dengan Jumlah Elemen 96 dan Rasio R/h Mulai dari 2.5 Hingga 50000 Jumlah Elemen wdkmt R/h = 2.5 R/h = 5 R/h = 50 R/h=500 R/h=5000 R/h=50000 96 5.846 41.416 39695.00 39680000 3.97E+10 3.97E+13 Solusi Eksak (wt) 5.870 41.599 39831.56 39813880 3.98E+10 3.981E+13 Gambar 1. Perbandingan Hasil Displacement Berdasarkan DKMT dan Solusi Eksak pada Pusat Lingkaran dengan Jumlah Elemen 96 dan Rasio R/h Mulai dari 2.5 Hingga 50000 Berdasarkan hasil pada Gambar 1, dapat dilihat bahwa error yang dihasilkan relatif kecil dan konstan untuk pelat dengan rasio R h > 10000. Hasil yang salah barulah didapat ketika pelat ditipiskan untuk h < 10 102 (hasil tidak ditampilkan). Akan tetapi hal ini bukan disebabkan karena kegagalan elemen, melainkan karena keterbatasan akurasi digit pada program. Oleh karena itu dapat dikatakan bahwa elemen DKMT bebas shear locking bahkan untuk pelat yang ekstrim tipis. 5.2. Pengujian pada Rhombic Plate Pengujian pada rhombic plate dilakukan dengan ukuran L = 100 m dan sudut = 30 o (sudut kritis). Adapun dimensi dan properti material dari pelat yang digunakan meliputi E = 10.92, v = 0.3, dan h = 1. Selanjutnya pelat ini diberi beban merata sebesar 1 dengan perletakan berupa sendi di sekeliling pelat. Mesh yang digunakan pada pengujian ini bervariasi mulai dari 4x4, 8x8, 16x16, dan 32x32. 4

Adapun hasil yang didapat untuk displacement, momen maksimum dan momen minimum di tengah pelat ditampilkan pada Tabel 2 dan diperjelas pada Gambar 2. Tabel 2. Konvergensi Mesh terhadap Displacement (w), Momen Maksimum dan Momen Minimum pada Titik Tengah Rhombic Plate dengan L/h = 100 MESH wc=wc*10 3 *Db/fz/L 4 M.MAX=M.MAX*10 3 / fz /L 2 M.MIN=M.MIN*10 3 / fz /L 2 DKMT DKMQ EKSAK DKMT DKMQ EKSAK DKMT DKMQ EKSAK 4x4 0.365 0.757 0.408 19.9 23.3 19.1 13.87 17.40 10.8 8x8 0.350 0.504 0.408 19.1 20.73 19.1 11.72 12.67 10.8 16x16 0.347 0.441 0.408 18.9 19.84 19.1 11.78 11.66 10.8 32x32 0.346 0.423 0.408 18.8 19.45 19.1 11.76 11.35 10.8 Gambar 2. Persentase Error Displacement, Momen Maksimum dan Momen Minimum terhadap Hasil Eksak pada Titik Tengah Rhombic Plate dengan L/h = 100 Pada Gambar 2 terlihat bahwa hasil displacement dari DKMT lebih kecil dari hasil eksak atau konvergen ke arah yang lebih kaku. Begitu pula untuk grafik momen maksimum konvergensi mesh juga cenderung menuju dibawah hasil eksak. Sedangkan untuk grafik momen minimum, dapat dilihat bahwa konvergensi mesh semakin mendekati hasil eksak. Selain itu, rhombic plate juga memiliki suatu keistimewaan yakni adanya singularitas pada momen diagonalnya. Banyak elemen yang gagal menunjukkan hasil sesuai yang diharapkan. Akan tetapi, elemen DKMT mampu menggambarkan nilai momen diagonal ini dengan cukup akurat. Secara jelas hasil plot momen diagonal dapat dilihat pada Gambar 3 beserta perbandingannya dengan hasil dari SAP 2000 v11 sebagai acuan hasil eksak. Gambar 3. Momen Rhombic Plate di Sepanjang Diagonal BD dengan L/h =100 5

5.3. Pengujian Analisis Dinamis Getaran Bebas pada Pelat Bujursangkar Pengujian analisis dinamis getaran bebas dilakukan salah satunya pada pelat bujursangkar. Perletakan yang digunakan berupa sendi di sekeliling pelat dengan dimensi dan properti material antara lain panjang sisi (a) = 10 m, E = 200 10 9 N/m 2, v = 0.3, ρ = 8000 kg/m 3, dan h = 0.05. Mesh yang dilakukan terdiri dari N=4x4, 8x8, 16x16, dan 32x32. Hasil yang dicari berupa frekuensi natural ternormalisasi (ω ) yang dihitung dengan persamaan: ω = ( ω2 ρha 4 D ) 1 4 dengan ω 2 adalah nilai eigen yang melambangkan nilai frekuensi natural dari pelat dan D adalah kekakuan lentur pelat. Adapun hasil yang didapat akan ditampilkan pada Tabel 3 dan perbandingan konvergensi dengan hasil dari metode lain akan ditunjukkan pada Gambar 4. Tabel 3. Perbandingan Konvergensi ω pada Pelat Bujursangkar dengan Ketebalan h = 0.05 m untuk Model Mesh N=4x4, 8x8, 16x16, dan 32x32 dalam Kondisi Perletakan Sendi DKMT Beraturan 17x17 17x17 M-KI Mesh Free EFG No. 4x4 8x8 16x16 32x32 (Bui dan Nguyen, 2011) (Liu, 2003) Eksak ω ω ω ω ω ω ω 1 4.608 4.485 4.453 4.445 4.443 4.403 4.443 2 7.605 7.184 7.064 7.034 7.031 6.946 7.025 3 7.836 7.239 7.078 7.038 7.036 6.969 7.025 4 9.904 9.205 8.968 8.905 8.892 8.671 8.886 5 11.587 10.495 10.075 9.968 9.959 10.023 9.935 6 11.792 10.526 10.080 9.969 9.966 10.058 9.935 7 12.589 11.849 11.465 11.360 11.341 11.113 11.327 8 13.385 12.191 11.549 11.381 11.347 11.215 11.327 9 14.767 14.223 13.276 13.030 13.032 12.833-10 93.058 14.224 13.290 13.033 13.036 13.049 - (12) Gambar 4. Perbandingan Konvergensi Nilai ω antara DKMT dan Hasil Eksak untuk Mode Shape ke 1 Hingga 8 pada Pelat dengan Ketebalan h = 0.05 m dengan Jumlah Elemen N = 4, 8, 16, dan 32 pada Kondisi Perletakan Sendi Pada Gambar 4 terlihat bahwa elemen DKMT konvergen cukup lambat terutama pada mode tingkat tinggi. Elemen baru mendapatkan hasil yang sangat akurat ketika elemen diperhalus hingga N=32. Begitu pula saat dibandingkan dengan hasil dari metode lain DKMT N=32 memberikan persentase error mendekati 0% untuk mode 1-8. Akan tetapi di sini terlihat bahwa elemen DKMT membutuhkan jumlah elemen yang cukup halus hingga N=32 untuk mendapatkan hasil yang sama dengan Element Free Garkin (EFG) yang dalam kasus ini hanya butuh 13x13 titik. 6

Berikut ini juga ditampilkan mode shape dari pelat bujursangkar dengan perletakan sendi untuk 20 mode pertama seperti terlihat pada Gambar 5. Gambar 5. Mode Shape untuk 20 Mode Pertama Pelat Bujursangkar Elemen DKMT dalam Kondisi Perletakan Sendi dengan Ketebalan h = 0.05 m 6. KESIMPULAN Secara umum, penelitian menunjukkan bahwa hasil yang didapat sesuai dengan kesimpulan yang dikatakan oleh peneliti sebelumnya yang meliputi lolos patch test, bebas locking, tidak sensitif terhadap distorsi geometri, tidak ada extra zero-energy modes, dan memiliki konvergensi yang baik. Akan tetapi terdapat permasalahan pada rhombic plate dimana hasil displacement (w) dan nilai momen pada titik tengah berada di bawah hasil eksak atau konvergen menuju arah yang lebih kaku. Namun elemen DKMT cukup berhasil dalam menggambarkan nilai singularitas pada momen diagonal rhombic plate. Sedangkan pada analisis dinamis getaran bebas, elemen DKMT mampu memberikan nilai frekuensi natural dan mode shape yang cukup akurat untuk semua bentuk pelat. Namun elemen membutuhkan jumlah mesh yang banyak seperti 32x32 mesh pada pelat bujursangkar untuk mendapatkan hasil yang akurat tersebut. 7. DAFTAR REFERENSI Batoz, J.L. dan Katili, I. (1992). On a Simple Triangular Reissner/Mindlin Plate Element Based on Incompatible Modes and Discrete Constraints. International Journal for Numerical Methods in Engineering, 35, 1603-1632. Batoz, J.L., Bathe, K.J., dan Ho, L.W. (1980). A Study of Three-Node Triangular Plate Bending Elements. International Journal for Numerical Methods in Engineering, 15, 1771-1812. Batoz, J.L., dan Lardeur, P. (1989). A Discrete Shear Triangular Nine d.o.f. Element for The Analysis of Thick to Very Thin Plates. International Journal for Numerical Methods in Engineering, 28, 533-560. Bui, T.Q. dan Nguyen, M.N. (2011). A Moving Kriging Interpolation-based Meshfree Method for Free Vibration Analysis of Kirchhoff Plates. Computers and Structures, 89, 380 294. Hughes, T.J.R., Taylor, R.L., dan Kanok-Nukulchai, W. (1977). A Simple and Efficient Finite Element for Plate Bending. International Journal for Numerical Methods in Engineering, 11, 1529-1543. 7

Katili, I. (1993). A New Discrete Kirchhoff-Mindlin Element Based on Mindlin-Reissner Plate Theory and Assumed Shear Strain Fields-Part I: An Extended DKT Element for Thick-Plate Bending Analysis. International Journal for Numerical Methods in Engineering, 36, 1859-1883. Liu, G.R. (2003). Mesh Free Methods. Boca Raton, CRC Press. Wong, F.T. (2009). Kriging-Based Finite Element Method for Analyses of Plate and Shells. Unpublished doctoral dissertation. Asian Institute of Technology. Bangkok. Zienkiewicz, O.C. dan Taylor, R. L. (2000). The Finite Element Method, Volume 2: Solid Mechnics, 5 th edition. Oxford, Butterworth Heinemann. 8