SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

dokumen-dokumen yang mirip
SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2007 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2005 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2006

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!!

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

KUMPULAN SOAL OLIMPIADE MATEMATIKA BAGIAN PERTAMA

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2003 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

KUMPULAN SOAL OLIMPIADE MATEMATIKA Bagian Pertama

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP. 3 dari yang terkecil sampai yang terbesar.

Prestasi itu diraih bukan didapat!!!

Pembahasan Soal OSK SMA 2018 OLIMPIADE SAINS KABUPATEN/KOTA SMA OSK Matematika SMA. (Olimpiade Sains Kabupaten/Kota Matematika SMA)

LOMBA MATEMATIKA NASIONAL KE-25

SELEKSI OLIMPIADE TINGKAT PROVINSI 2007 TIM OLIMPIADE MATEMATIKA INDONESIA 2008

KUMPULAN SOAL-SOAL OMITS

Olimpiade Sains Nasional Bidang Matematika Seleksi Tingkat Kota/Kabupaten Tahun 2007 Oleh : Paulus Teguh (SMA Kristen 1 Petra Surabaya)

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2006 TINGKAT PROVINSI

SOAL MATEMATIKA - SMP

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Solusi Olimpiade Sains Tingkat Kabupaten/Kota 2015 Bidang Matematika

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

abcde dengan a, c, e adalah bilangan genap dan b, d adalah bilangan ganjil? A B C D E. 3000

didapat !!! BAGIAN Disusun oleh :

LOMBA MATEMATIKA NASIONAL KE-25

Soal Babak Penyisihan 7 th OMITS SOAL PILIHAN GANDA

SOAL DAN SOLUSI PEREMPATFINAL KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

Pembahasan Soal SIMAK UI 2012 SELEKSI MASUK UNIVERSITAS INDONESIA. Disertai TRIK SUPERKILAT dan LOGIKA PRAKTIS. Matematika IPA

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2007 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2008

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2006 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2007

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 2005 TINGKAT PROVINSI TAHUN Prestasi itu diraih bukan didapat!!!

PEMABAHASAN SOAL-SOAL OLIMPIADE SAINS NASIONAL SMP TAHUN 2007 MATA PELAJARAN MATEMATIKA

Kelompok : SMK Tingkat : XII ( Duabelas ) Bidang Keahlian : Ti, Kes, Sos Hari/Tanggal : Prog. Keahlian : Ti, Kes, Sos W a k t u : 0

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

Kontes Terbuka Olimpiade Matematika

MATEMATIKA EBTANAS TAHUN 1992

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

Soal dan Pembahasan UN Matematika Program IPA 2008

HIMPUNAN MAHASISWA MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS GADJAH MADA SEKIP UTARA UNIT III BULAKSUMUR P.O.

Dari gambar jaring-jaring kubus di atas bujur sangkar nomor 6 sebagai alas, yang menjadi tutup kubus adalah bujur sangkar... A. 1

Jikax (2 x) = 57, maka jumlah semua bilangan bulat x yang memenuhi adalah A. -5 B. -1 C. 0 D. 1 E. 5

Pembahasan OSN Matematika SMA Tahun 2013 Seleksi Tingkat Provinsi. Tutur Widodo. Bagian Pertama : Soal Isian Singkat

Pembahasan Matematika IPA SIMAK UI 2012 Kode 521. Oleh Tutur Widodo. 1. Misalkan x dan y bilangan bulat yang memenuhi sistem persamaan berikut :

1. Diketahui suatu polynomial 15. A B 3C D. Berapakah koefisien dari. A B C D Jawab :

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

SELEKSI OLIMPIADE TINGKAT PROVINSI 2009 TIM OLIMPIADE MATEMATIKA INDONESIA 2010

Pelatihan-osn.com Konsultan Olimpiade Sains Nasional contact person : ALJABAR

SELEKSI OLIMPIADE TINGKAT PROVINSI 2008 TIM OLIMPIADE MATEMATIKA INDONESIA 2009

kkkk EKSPONEN 1. SIMAK UI Matematika Dasar 911, 2009 A. 4 2 B. 3 2 C. 2 D. 1 E. 0 Solusi: [B] 2. SIMAK UI Matematika Dasar 911, 2009 Jika x1

SELEKSI OLIMPIADE TINGKAT PROVINSI 2014 TIM OLIMPIADE MATEMATIKA INDONESIA Waktu : 210 Menit

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

TRY OUT MATEMATIKA PAKET 2B TAHUN 2010

SELEKSI TINGKAT PROPINSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2008 MATEMATIKA SMA BAGIAN PERTAMA

SOAL SELEKSI TINGKAT KOTA/KABUPATEN OLIMPIADE SAINS NASIONAL 2007 BIDANG MATEMATIKA SMP

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

SOAL DAN PEMBAHASAN UJIAN NASIONAL SMA/MA IPA TAHUN PELAJARAN 2008/2009

Prestasi itu diraih bukan didapat!!! SOLUSI SOAL

SELEKSI TINGKAT PROPINSI MATEMATIKA SMA/MA

Prestasi itu diraih bukan didapat!!!

Kajian Matematika SMP Palupi Sri Wijiyanti, M.Pd Semester/Kelas : 3A3 Tanggal Pengumpulan : 14 Desember 2015

Pembahasan OSN Tingkat Provinsi Tahun 2011 Jenjang SMA Bidang Matematika

Modul 2 SEGITIGA & TEOREMA PYTHAGORAS

TRIGONOMETRI Pengertian Sinus, Cosinus dan Tangen Hubungan Fungsi Trigonometri :

DINAS PENDIDIKAN KABUPATEN MALANG MGMP MATEMATIKA SMPN SATAP TRYOUT UN menit

SOAL MATEMATIKA - SMP

SOAL&PEMBAHASAN MATEMATIKATKDSAINTEK SBMPTN. yos3prens.wordpres.com

Bahan Seleksi Olimpiade Sains Terapan Bidang Matematika. Tingkat SMK se DIY

SOAL MATEMATIKA IPA UJIAN NASIONAL TRIGONOMETRI

TRIGONOMETRI BAB 7. A. Perbandingan Trigonometri pada Segitiga Siku-siku

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2014 TINGKAT PROVINSI

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun 2012

Evaluasi Belajar Tahap Akhir Nasional Tahun 1986 Matematika

Pembukaan OSN Simposium Guru 2008 di Makassar, Sulawesi Selatan

Matematika EBTANAS Tahun 1999

SOAL DAN SOLUSI PENYISIHAN KOMPETISI MATEMATIKA UNIVERSITAS TARUMANAGARA 2011

Pembahasan OSN Tingkat Provinsi Tahun 2012 Jenjang SMP Bidang Matematika

C. 30 Januari 2001 B. 29 Januari 2001

OLIMPIADE MATEMATIKA TK PROVINSI 2011

Pembahasan Olimpiade Matematika SMA Tingkat Kabupaten Tahun Oleh Tutur Widodo. (n 1)(n 3)(n 5)(n 2013) = n(n + 2)(n + 4)(n )

UJICOBA UJIAN NASIONAL SMP-MTs NEGERI SWASTA KOTA MALANG TAHUN 2013/2014 Mata Pelajaran Hari,Tanggal Waktu Jumlah Soal

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2002 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2003

1. Pada operasi di bawah, tiap titik mewakili satu angka tertentu. Bilangan 3 angka yang ada pada baris IV adalah... A) 830 C) 622 B) 720 D) 525

PEMBAHASAN UN SMA TAHUN PELAJARAN 2009/2010 MATEMATIKA PROGRAM STUDY IPA

PEMANTAPAN UJIAN NASIONAL 2013 (SOAL DAN PENYELESAIAN)

SOLUSI UJIAN SEKOLAH SEKOLAH MENENGAH ATAS (SMA) DINAS PENDIDIKAN KOTA BEKASI TAHUN PELAJARAN 2013/ a 16. definit positif adalah...

Jika persegi panjang ABCD di atas diketahui OA = 26 cm, maka panjang BO adalah... A. 78 cm. C. 26 cm B. 52 cm. D. 13 cm Kunci : C Penyelesaian :

4. TRIGONOMETRI I. A. Trigonometri Dasar y. sin α = r. cos α = r. tan α = x

TRY OUT UJIAN NASIONAL SMA TAHUN PELAJARAN 2016/2017

SELEKSI OLIMPIADE TINGKAT KABUPATEN/KOTA TAHUN 2004 TIM OLIMPIADE MATEMATIKA INDONESIA TAHUN 2005

SELEKSI OLIMPIADE TINGKAT PROVINSI 2013 TIM OLIMPIADE MATEMATIKA INDONESIA 2014

PREDIKSI UAN MATEMATIKA 2008 Oleh: Heribertus Heri Istiyanto, S.Si Blog:

OLIMPIADE MATEMATIKA SLTP TINGKAT KABUPATEN KOTA 2006

Transkripsi:

SELEKSI OLIMPIADE MATEMATIKA INDONESIA 005 TINGKAT PROVINSI TAHUN 004 Prestasi itu diraih bukan didapat!!! SOLUSI SOAL Bidang Matematika Bagian Pertama Disusun oleh : Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama BAGIAN PERTAMA. 0 0 4 40 0. Keadaan I : Misalkan dalam gelas terdapat a bagian sirup maka banakna bagian air adalah 4a bagian. Karena dalam satu gelas terdapat a bagian sirup maka dalam satu botol sirup terdapat 60a bagian sirup. Sedangkan dalam gelas terdapat 5a bagian. Keadaan II : Jika dalam gelas terdapat b bagian sirup, maka banakna bagian air adalah 5b bagian. Karena dalam satu gelas terdapat b bagian sirup maka dalam gelas terdapat b bagian sirup. Sedangkan dalam gelas terdapat 6b bagian. Dari keadaan I dan keadaan II didapat 5a 6b. Misalkan dari campuran tersebut dapat dibuat gelas, maka : b 60a (6b) 7 Banakna gelas ang diperoleh adalah 7 gelas. Misalkan penduduk Jawa tengah JT Penduduk Jawa J Penduduk Indonesia I JT 5% J JT 5% I 5% J 5% I J 60% I Karena penduduk Jawa 60% penduduk Indonesia maka Penduduk Indonesia ang tinggal di luar pulau Jawa 40% 4. Volume seharusna πr t Volume perhitungan Dina πd t 4πr t Rasio perhitungan Dinas terhadap hasil seharusna 4πr t πr t Rasio perhitungan Dina terhadap hasil seharusna 4 4 5. * Karena lingkaran pertama berpusat di kuadran I dan melalui titik (0,0) maka semua titik ang terletak di dalam lingkaran pertama tidak akan mungkin terletak di kuadran III. * Karena lingkaran pertama berpusat di kuadran II dan melalui titik (0,0) maka semua titik ang terletak di dalam lingkaran pertama tidak akan mungkin terletak di kuadran IV. * Karena lingkaran pertama berpusat di kuadran III dan melalui titik (0,0) maka semua titik ang terletak di dalam lingkaran pertama tidak akan mungkin terletak di kuadran I. Titik P hana mungkin terletak di kuadran II. Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama 6. Jika panjang sisi segitiga adalah k titik maka banakna bulatan hitam k. Pada gambar ke-n panjang sisi segitiga n titik. Banakna bulatan hitam (n ) n Banakna bulatan hitam pada gambar ke-n adalah n 7. Karena CP adalah garis bagi maka berlaku AC : CB PA : PB PA PB 4 PB PA AB 4 PA PA PB PA AB PA : AB : 8. * Untuk 0, maka z 99. Banakna pasangan (,z) ang memenuhi ada 00 aitu (0,99), (,98), (,97),, (99,0) * Untuk, maka z 98. Banakna pasangan (,z) ang memenuhi ada 99 aitu (0,98), (,97), (,96),, (98,0) * Untuk, maka z 97. Banakna pasangan (,z) ang memenuhi ada 98 aitu (0,97), (,96), (,95),, (97,0) * Untuk, maka z 96. Banakna pasangan (,z) ang memenuhi ada 97 aitu (0,96), (,95), (,94),, (96,0) M * Untuk 99, maka z 0 Banakna pasangan (,z) ang memenuhi ada aitu (0,0) 00 Banakna barisan bilangan bulat (,, z) ang memenuhi 00 99 98 ( 00 ) Banakna barisan bilangan bulat (,, z) ang memenuhi persamaan z 99 ada 5050. 9. n(n )(n ) n(n )(n ) n(n )(n ) n(n ) (n ), n, (n ) adalah bilangan bulat berurutan, maka (n )n(n ) habis dibagi! 6. n(n ) juga habis dibagi!. Maka n(n ) pasti habis dibagi 6. Akibatna berapa pun nilai n dengan n bilangan asli akan memenuhi n(n )(n ) habis dibagi 6. Himpunan semua n asli sehingga n(n )(n ) habis dibagi 6 adalah {n n bilangan asli} Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama 0. * Jika 4 maka 8 8 Pertidaksamaan menjadi < 89 ( 4) ( ) < 0 4 < < Karena persoalan dibatasi hana untuk 4 maka batas-batas ang memenuhi 4 < < * Jika 4 maka 8 8 Pertidaksamaan menjadi < 8 8 < 0 ( ) 7 < 0 Ruas kiri adalah definit positif sehingga tidak ada penelesaian ang memenuhi. Penelesaian ang memenuhi pertidaksamaan < 8 adalah 4 < <. Banakna pasangan kartu ang jumlahna 6 ada aitu (,5) dan (,4) Peluang terambilna kartu ang jumlahna nomorna 6 adalah Peluang terambilna kartu ang jumlah nomorna 6 adalah 5 6 C. Misal ACD α maka GOD CAB BOF α CE FG 4 4 sin α () cos α () ; tan α () CA CA 5 5 Misal CO a dan GO b maka OA 5 a dan OF 4 b sebab FG adalah tinggi trapesium. GC CO cos α a 5 DG GO tan α 4 b DC DG GC 5 a 4 b (4) AF OA cos α (5 a) 5 5 a Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama 4 6 4 FB OF tan α (4 b) b 6 4 5 4 AB AF FB a b a b 5 5 Luas trapesium ( DC AB )FG 5 50 Dari persamaan (4) dan (5) didapat luas trapesium 4 50 Luas trapesium 5. L L 5 7 005 5 7 L 5 7 005 005 00 005 4. Karena Tini lebih lambat dari Santi maka panjang busur ang ditempuhna akan lebih pendek dari ang ditempuh Santi. Misal panjang busur ang ditempuh Tini a maka panjang busur ang ditempuh Santi a. a 5 a K dengan K adalah keliling lingkaran. a K α a 60 K 5 α 44 o Karena O adalah pusat lingkaran maka OPR adalah segitiga sama kaki. RPO RPQ (80 o 44 o ) RPQ 8 o Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama Edd Hermanto, ST 5. Misal panjang sisi TU a, SU b dan ST c serta UST α, STU β dan TUS γ, maka : Luas STU ab sin γ ac sin β bc sin α Luas SPQ b c 4 sin α 8 Luas STU 8 Luas TQR c a sin β Luas STU Luas UPR b a 4 sin γ 4 Luas STU 4 Luas PQR Luas STU Luas SPQ Luas TQR Luas UPR 4 8 Luas PQR 4 7 6. ( )( ) () ( )( )( )( ) ( )( ) ( )( ) ) )( ( () () () ( ) 0

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama 7. Pada sebuah persegi dengan panjang sisi a, jarak terjauh dua titik ang terletak pada persegi adalah a jika kedua titik merupakan ujung-ujung diagonal bidang persegi tersebut. Bagi persegi dengan panjang sisi tersebut menjadi 6 persegi dengan panjang sisi masing-masing sehingga jarak terjauh titik ang terletak pada masing-masing persegi adalah. Jika terdapat 6 titik, maka titik-titik tersebut masih dapat didistribusikan masing-masing titik ang terletak di dalam persegi kecil sehingga masih belum dapat dijamin senantiasa terambil dua titik ang jarak antara keduana. Jika terdapat 7 titik maka sesuai Pigeon Hole Principle maka sekurang-kurangna ada satu persegi kecil berisi sekurang-kurangna titik sehingga dapat dijamin senantiasa terambil dua titik ang jarak antara keduana. Jumlah minimal titik ang harus diambil dari dalam sebuah persegi dengan panjang sisi agar dapat dijamin senantiasa terambil dua titik ang jarak antara keduana adalah 7. 8. f()f() f() * Jika 0 dan 0, maka f(0)f(0) f(0) 0 f(0) ( f(0) ) 0 f(0) 0 atau f(0) * Jika dan 0, maka f()f(0) f(0) Jika f(0) 0, maka 0 ang berarti tidak mungkin f(0) 0 maka f(0) Untuk f(0) maka f() f() * Jika 004 dan maka f(004)f() f(004) 005 f(004) f(004) 005 f(004) 005 * Jika 004 dan 0 maka f(004)f(0) f(0) 004 f(004) 004 f(004) 005 f(004) 005 9. fpb(a, a, a ). Karena fpb(a i, a j ) > untuk i j, i, j,, maka a i dan a j untuk i j, i, j,, tidak saling prima relatif. Misalkan fpb(a, a ) q, fpb(a, a ) p dan fpb(a, a ) r dengan p, q, r >. Maka a i dengan i,, akan berbentuk : a pq a qr a pr p dan q, q dan r, p dan r masing-masing saling prima relatif. Edd Hermanto, ST

Solusi Olimpiade Matematika Tk Provinsi 004 Bagian Pertama bilangan terkecil (p, q, r) ang memenuhi adalah (,, 5) sehingga a 6, a 5 0 dan a 5 5. Agar a a a minimal maka (a, a, a ) (6, 0, 5) 0. a o b a b ab c a b ab 67 a b ab 67 (a ) (b ) (a ) (b ) 68 Faktor ang sebenarna dari 68 adalah,, 4, 7, 4 dan 68 Jika a maka a 0 Jika a maka a Jika a 4 maka a Jika a 7 maka a 6 Jika a 4 maka a Jika a 68 maka a 67 faktor positif dari 67 adalah,, 6, dan 67 Edd Hermanto, ST