MOMENTUM - TUMBUKAN FISIKA DASAR (TEKNIK SISPIL) (+GRAVITASI) Mirza Satriawan. menu

dokumen-dokumen yang mirip
BAB 11 GRAVITASI. FISIKA 1/ Asnal Effendi, M.T. 11.1

BENDA TEGAR FISIKA DASAR (TEKNIK SISPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

Momen Inersia. distribusinya. momen inersia. (karena. pengaruh. pengaruh torsi)

1/32 FISIKA DASAR (TEKNIK SIPIL) KINEMATIKA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

Konsep Usaha dan Energi

GRAVITASI B A B B A B

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

HUKUM NEWTON TENTANG GRAVITASI DAN GERAK PLANET

MEKANIKA BENDA LANGIT MARIANO N., S.SI.

DINAMIKA GERAK FISIKA DASAR (TEKNIK SIPIL) Mirza Satriawan. menu. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

I. Hukum lintasan : Semua planet bergerak dalarn lintasan berupa elips, dengan matahari pada salah satu titik fokusnya.

GRAVITASI. Gambar 1. Gaya gravitasi bekerja pada garis hubung kedua benda.

KONSEP USAHA DAN ENERGI

Fisika Umum (MA-301) Hukum Gerak. Energi Gerak Rotasi Gravitasi

DINAMIKA BENDA LANGIT

r 21 F 2 F 1 m 2 Secara matematis hukum gravitasi umum Newton adalah: F 12 = G

Hukum Newton Tentang Gravitasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Momentum Linier. Hoga saragih. hogasaragih.wordpress.com

FISIKA DASAR MIRZA SATRIAWAN

TEST KEMAMPUAN DASAR FISIKA

MOMENTUM DAN IMPULS FISIKA 2 SKS PERTEMUAN KE-3

BAHAN AJAR FISIKA GRAVITASI

NASKAH SOAL POST-TEST. Mata Pelajaran: Fisika Hari/Tanggal : Kelas : XI/IPA Waktu :

SP FISDAS I. acuan ) , skalar, arah ( ) searah dengan

3. ORBIT KEPLERIAN. AS 2201 Mekanika Benda Langit. Monday, February 17,

1/24 FISIKA DASAR (TEKNIK SIPIL) FLUIDA. menu. Mirza Satriawan. Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta

Materi dan Soal : USAHA DAN ENERGI

VII. MOMENTUM LINEAR DAN TUMBUKAN

HUKUM GRAVITASI NEWTON

1. (25 poin) Sebuah bola kecil bermassa m ditembakkan dari atas sebuah tembok dengan ketinggian H (jari-jari bola R jauh lebih kecil dibandingkan

BAHAN AJAR FISIKA KELAS XI SMA SEMESTER 1 BERDASARKAN KURIKULUM 2013 USAHA DAN ENERGI. Disusun Oleh : Nama : Muhammad Rahfiqa Zainal NIM :

3. MEKANIKA BENDA LANGIT

SOAL REMEDIAL KELAS XI IPA. Dikumpul paling lambat Kamis, 20 Desember 2012

RINGKASAN MATERI GRAVITASI. Newton mengusulkan hukum gaya yang kita sebut dengan Hukum Gravitasi. Gambar 2 Hukum Gravitasi Newton

K 1. h = 0,75 H. y x. O d K 2

DAFTAR ISI. BAB 2 GRAVITASI A. Medan Gravitasi B. Gerak Planet dan Satelit Rangkuman Bab Evaluasi Bab 2...

ENERGI POTENSIAL. dapat dimunculkan dan diubah sepenuhnya menjadi tenaga kinetik. Tenaga

MOMENTUM, IMPULS, DAN TUMBUKAN

SILABUS. Kompetensi Dasar Kegiatan Pembelajaran Penilaian Alokasi Waktu Sumber Belajar

PETUNJUK UMUM Pengerjaan Soal Tahap 1 Diponegoro Physics Competititon Tingkat SMA

4 I :0 1 a :4 9 1 isik F I S A T O R A IK M A IN D

LATIHAN USAHA, ENERGI, IMPULS DAN MOMENTUM

MOMENTUM DAN IMPULS MOMENTUM DAN IMPULS. Pengertian Momentum dan Impuls

K13 Revisi Antiremed Kelas 10 Fisika

SILABUS MATAKULIAH. Revisi : 3 Tanggal Berlaku : 02 Maret 2012

BAB 2 GRAVITASI PLANET DALAM SISTEM TATA SURYA

FISIKA DASAR MIRZA SATRIAWAN

MODUL 4 IMPULS DAN MOMENTUM

Pembahasan Soal Gravitasi Newton Fisika SMA Kelas X

Soal-Jawab Fisika Teori OSN 2013 Bandung, 4 September 2013

Agus Suroso. Pekan Kuliah. Mekanika. Semester 1,

Teori Relativitas. Mirza Satriawan. December 7, Fluida Ideal dalam Relativitas Khusus. M. Satriawan Teori Relativitas

Uji Kompetensi Semester 1

4. Orbit dalam Medan Gaya Pusat. AS 2201 Mekanika Benda Langit

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

Dinamika. DlNAMIKA adalah ilmu gerak yang membicarakan gaya-gaya yang berhubungan dengan gerak-gerak yang diakibatkannya.

Gerak Melingkar Pendahuluan

3. (4 poin) Seutas tali homogen (massa M, panjang 4L) diikat pada ujung sebuah pegas

FISIKA UNTUK UNIVERSITAS JILID I ROSYID ADRIANTO

1. Pengertian Usaha berdasarkan pengertian seharihari:

BAB I PENDAHULUAN. yang dihasilkan oleh planet meliputi kecepatan dan posisi setiap saat yang dialami

Fisika Umum (MA-301) Topik hari ini Hukum Gerak Momentum Energi Gerak Rotasi Gravitasi

UM UGM 2017 Fisika. Soal

Benda B menumbuk benda A yang sedang diam seperti gambar. Jika setelah tumbukan A dan B menyatu, maka kecepatan benda A dan B

SILABUS. Religius Jujur Toleransi Disiplin Mandiri Rasa ingin tahu Tanggung jawab. 1 / Silabus Fisika XI / Kurikulum SMA Negeri 5 Surabaya

GETARAN DAN GELOMBANG

LAPORAN PRA PRAKTIKUM FISIKA DASAR I MOMENTUM DAN IMPULS

Saat mempelajari gerak melingkar, kita telah membahas hubungan antara kecepatan sudut (ω) dan kecepatan linear (v) suatu benda

Treefy Education Pelatihan OSN Online Nasional Jl Mangga III, Sidoarjo, Jawa WhatsApp:

ANTIREMED KELAS 11 FISIKA

GRAVITASI PLANET DALAM SISTEM TATA SURYA KELAS XI SEMESTER I

Pelatihan Ulangan Semester Gasal

KISI-KISI PENULISAN SOAL (KODE A )

BAB I BESARAN DAN SISTEM SATUAN

SOAL UJIAN SELEKSI CALON PESERTA OLIMPIADE SAINS NASIONAL 2015 TINGKAT PROPINSI

Antiremed Kelas 10 FISIKA

BAB IV MOMENTUM, IMPULS DAN TUMBUKAN

Antiremed Kelas 11 FISIKA

Xpedia Fisika. Soal Mekanika

RENCANA PEMBELAJARAN 12. POKOK BAHASAN : KERANGKA ACUAN NON - INERSIAL

HUKUM NEWTON TENTANG GERAK DINAMIKA PARTIKEL 1. PENDAHULUAN

TES STANDARISASI MUTU KELAS XI

Muatan Listrik dan Hukum Coulomb

TUJUAN :Mahasiswa memahami konsep ilmu fisika, penerapan besaran dan satuan, pengukuran serta mekanika fisika.

FISIKA. Untuk SMA dan MA Kelas XI. Sri Handayani Ari Damari

SOAL TRY OUT FISIKA 2

D. 75 cm. E. 87 cm. * Pipa organa terbuka :

DESKRIPSI FISIKA DASAR I (FIS 501, 4 SKS) Nama Dosen : Saeful Karim Kode Dosen : 1736

ULANGAN UMUM SEMESTER 1

SILABUS. Indikator Pencapaian Kompetensi

Listrik Statik. Agus Suroso

TUJUAN UMUM. Memberikan konsep-konsep dan prinsipprinsip dasar fisika yang diperlukan untuk belajar fisika lebih lanjut atau ilmu

BAB 1 Keseimban gan dan Dinamika Rotasi

3.6.1 Menganalisis momentum sudut pada benda berotasi Merumuskan hukum kekekalan momentum sudut.

EVALUASI BELAJAR SEMESTER GANJIL MKKS SMA NEGERI KOTA PADANG TAHUN PELAJARAN 2015/2016

Latihan I IMPULS MOMENTUM DAN ROTASI

BAB III APLIKASI METODE EULER PADA KAJIAN TENTANG GERAK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1.

KEMENTERIAN PENDIDIKAN DAN KEBUDAYAAN

Transkripsi:

FISIKA DASAR (TEKNIK SISPIL) 1/34 MOMENTUM - TUMBUKAN (+GRAVITASI) Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id

Sistem Partikel Dalam pembahasan-pembahasan sebelumnya kita hanya meninjau sebuah partikel atau sebuah benda yang diperlakukan sebagai partikel titik. Dalam bagian ini kita akan meninjau kasus yang lebih umum, dengan sistem ataupun benda yang terdiri dari banyak partikel (titik partikel) maupun benda yang terdiri dari partikel-partikel yang dianggap tersebar secara kontinyu pada benda. 2/34

Pusat Massa Posisi pusat massa sebuah sistem banyak partikel didefinisikan sebagai berikut i r pm = m i r i (1) M dengan r i adalah posisi partikel ke-i di dalam sistem, dan M = i m i (2) Dengan mengganti r i = r pm + r i, di mana r i adalah posisi partikel ke-i relatif terhadap pusat massa, maka pers. (1) menjadi i r pm = m i( r pm + r i ) i = r pm + m i r i (3) M M 3/34

4/34 sehingga dapat disimpulkan m i r i = 0 (4) i Bila bendanya bersifat kontinyu, maka pers. (1) menjadi r pm = 1 rdm (5) M dengan dm adalah elemen massa pada posisi r.

5/34

Gerak Pusat Massa Gerak pusat massa diperoleh melalui definisi pusat massa di pers. (1). Kecepatan pusat massa diperoleh dari derivatif pers. (1) i v pm = m i v i (6) M Dari persamaan ini, setelah dikalikan dengan M, diperoleh M v pm = i m i v i = i p i (7) Besaran M v pm didefinisikan sebagai momentum pusat massa, tidak lain adalah total momentum sistem. 6/34

7/34 Dengan menderivatifkan pers. (7) terhadap waktu, diperoleh M a pm = i d p i dt = i F i (8) dengan F i adalah total gaya yang bekerja pada partikel ke-i. Gerak pusat massa ditentukan oleh total gaya yang bekerja pada sistem.

Gaya eksternal dan internal Gaya yang bekerja pada sistem dapat dikelompokkan menjadi dua jenis, gaya internal yaitu gaya antar partikel di dalam sistem, dan gaya eksternal yaitu gaya yang berasal dari luar sistem. 8/34

Gaya internal Untuk gaya internal, antara sembarang dua partikel dalam sistem, i dan j misalnya, akan ada gaya pada i oleh j dan sebaliknya (karena aksi-reaksi), tetapi 9/34 F ij + F ji = F ij F ij = 0 Sehingga jumlah total gaya internal pada sistem akan lenyap, dan M a pm = i F ieks = F eks (9) Jadi gerak pusat massa sistem hanya ditentukan oleh total gaya eksternal.

10/34 Ketika tidak ada gaya eksternal yang bekerja pada suatu sistem, maka d p i = 0 (10) dt i Atau berarti total momentum seluruh partikel dalam sistem, konstan, p i = konstan. (11) i

Tumbukan Dalam proses tumbukan antara dua benda, gaya yang terlibat, ketika kedua benda dilihat sebagai satu kesatuan, hanya gaya internal. Sehingga pada semua proses tumbukan, selama tidak ada gaya eksternal, total momentum sistem konstan. Untuk memudahkan kita cukup meninjau tumbukan dalam satu dimensi. Untuk kasus dua dan tiga dimensi, karena sifat vektorial dari momentum, hasilnya dapat diperoleh sebagai jumlahan vektor kasus satu dimensi 11/34

12/34 Ditinjau tumbukan antara partikel 1 dan 2, dengan massa m 1 dan m 2, dan besar kecepatan awal v 1 dan v 2. Walau kita sudah mengetahui dari pembahasan bagian sebelumnya bahwa momentum total sistem kekal, tetapi di sini kita akan menjabarkannya lagi dengan meninjau gaya tumbukannya secara langsung. Ketika tumbukan terjadi, partikel 1 memberi gaya ke partikel 2 sebesar F 21, dan partikel 2 memberi gaya ke partikel 1 sebesar F 12. Dari hukum Newton kedua, sehingga p 1 = F 12 = d p 1 dt (12) F 12 dt (13)

Besaran integral di ruas kiri persamaan di atas juga disebut sebagai impuls yang diberikan oleh gaya F 12. Untuk partikel kedua berlaku p 2 = F 21 dt = F 12 dt (14) 13/34 sehingga bila pers. (13) dan (14) dijumlah, didapatkan p 1 + p 0 = ( p 1 + p 2 ) = 0 (15) atau berarti m 1 v 1 + m 2 v 2 = m 1 v 1 + m 1 v 2 (16) Dapat disusun ulang sebagai m 1 (v 1 v 1) = m 2 (v 2 v 2 ) (17)

Tumbukan Elastik Kita akan meninjau terlebih dulu kasus ekstrim, yaitu tumbukan elastik, di mana tidak ada energi sistem yang hilang (sebagai panas maupun bunyi), dan tumbukan total tak elastik, di mana kedua partikel atau benda menempel dan bergerak bersama-sama. Dalam tumbukan elastik, energi sistem sebelum dan sesudah tumbukan, tetap sama 1 2 m 1v1 2 + 1 2 m 1v2 2 = 1 2 m 1v1 2 + 1 2 m 1v2 2 (18) Persamaan di atas dapat disederhanakan sebagai m 1 (v 2 1 v 2 1 ) = m 2 (v 2 2 v 2 2) (19) Dengan membagi persamaan ini, dengan pers. (17), diperoleh (v 1 + v 1) = (v 2 + v 2 ) (20) 14/34

atau e = v 2 v 1 v 2 v 1 = 1 (21) Koefisien e disebut koefisien resistusi, dan untuk kasus tumbukan elastik nilai e = 1. 15/34

Tumbukan tak elastik Tumbukan tak elastik adalah tumbukan yang mana setelah tumbukan kedua benda menyatu dan bergerak dengan kecepatan sama, sehingga v 1 = v 2. Ini berarti pada tumbukan total tak elastik, nilai e = 0. Untuk sembarang tumbukan tak elastik, nilai e adalah antara kedua kasus tadi, yaitu 0 e 1. Untuk kasus tumbukan umum, dengan koefisien restitusi e atau e = v 2 v 1 v 2 v 1 (22) v 2 v 1 = e(v 1 v 2 ) (23) 16/34

Dengan memakai pers. (23) dan (17), diperoleh v 1 = (m 1 em 2 )v 1 +(1+e)m 2 v 2 m 1 +m 2 (24) v 2 = (m 2 em 1 )v 2 +(1+e)m 1 v 1 m 1 +m 2 (25) 17/34 Kasus-kasus khusus, misalnya tumbukan antara dua benda dengan salah satunya memiliki massa yang sangat besar. Dari pers. (24) benda yang bermassa besar praktis tidak berubah keadaan geraknya, sedangkan benda yang bermassa kecil akan berbalik arah.

Copernicus Hukum gravitasi universal yang dirumuskan oleh Newton, diawali dengan beberapa pemahaman dan pengamatan empiris yang telah dilakukan oleh ilmuwan-ilmuwan sebelumnya. Mula-mula Copernicus memberikan landasan pola berfikir yang tepat tentang pergerakan planet-planet, yang semula dikira planet-planet tersebut bergerak mengelilingi bumi, seperti pada konsep Ptolemeus. Copernicus meletakkan matahari sebagai pusat pergerakan planet-planet, termasuk bumi, dalam gerak melingkarnya. 18/34

Kepler Kemudian dari data hasil pengamatan yang teliti tentang pergerakan planet, yang telah dilakukan Tycho Brahe, Kepler merumuskan tiga hukum empiris yang dikenal sebagai hukum Kepler mengenai gerak planet: 1. Semua planet bergerak dalam lintasan berbentuk elips dengan matahari pada salah satu titik fokusnya. 2. Garis yang menghubungkan planet dengan matahari akan menyapu daerah luasan yang sama dalam waktu yang sama. 3. Kuadrat perioda planet mengelilingi matahari sebanding dengan pangkat tiga jarak rerata planet ke matahari. 19/34

Perhatian!! Hukum-hukum Kepler ini adalah hukum empiris. Keplet tidak mempunyai penjelasan tentang apa yang mendasari hukum-hukumnya ini. Kelebihan Newton, adalah dia tidak hanya dapat menjelaskan apa yang mendasari hukum-hukum Kepler ini, tetapi juga njukkan bahwa hukum yang sama juga berlaku secara universal untuk semua bendabenda bermassa. 20/34

Hukum Gravitasi Universal Kita dapat menjabarkan, dengan cara yang sederhana, hukum gravitasi universal dengan memulainya dari fakta-fakta empiris yang telah ditemuka Kepler. Untuk memudahkan analisa kita anggap bahwa planetplanet bergerak dalam lintasan yang berbentuk lingkaran dengan jejari r, dengan kelajuan konstan v. 21/34

Karena planet bergerak dalam lintasan lingkaran maka planet mengalami percepatan sentripetal yang besarnya diberikan oleh a = v2 r = (2πr)2 (26) rt 2 dengan T adalah periode planet mengelilingi matahari. Percepatan ini tentunya disebabkan oleh suatu gaya yang mengarah ke pusat lingkaran (ke matahari). Besar gaya ini tentunya sama dengan massa planet m dikali percepatan sentripetalnya, sehingga besar gaya tadi dapat dirumuskan sebagai F = m 4π2 r (27) T 2 Hukum Kepler ketiga dapat kita tuliskan sebagai T 2 = kr 3 (28) 22/34

dengan k adalah suatu konstanta kesebandinga. Dengan ini, besar gaya pada (27) menjadi F = m 4π2 kr = k m (29) 2 r 2 dengan k konstanta. Karena gaya ini mengarah ke pusat lingkaran, yaitu ke matahari, tentunya logis bila dianggap bahwa gaya tersebut disebabkan oleh matahari. 23/34

24/34 Berdasarkan hukum ketiga Newton, ada gaya yang bekerja pada matahari oleh planet, yang besarnya sama. Tetapi karena sekarang bekerja pada matahari, tentunya konstanta k di pers. (29) mengandung massa matahari M sehingga logis bila diasumsikan bahwa terdapat gaya yang saling tarik menarik antara planet dan matahari yang besarnya diberikan oleh F = G Mm r 2 (30)

25/34 Newton, setelah mengamati hal yang sama pada bulan dan pada benda-benda yang jatuh bebas di permukaan bumi, menyimpulkan bahwa gaya tarik menarik tadi berlaku secara universal untuk sembarang benda. Gaya tadi kemudian dinamai sebagai gaya gravitasi. Jadi antara dua benda bermassa m 1 dan m 2 yang terpisah sejauh r terdapat gaya gravitasi yang perumusannya diberikan oleh F 12 = G m 1m 2 r 2 ˆr 12 (31) dengan ˆr 12 adalah vektor satuan yang berarah dari benda pertama ke benda kedua. (Notasi 12, berarti pada benda pertama oleh benda kedua).

Konstanta G Konstanta G dalam persamaan gravitasi universal, dapat ditentukan melalui eksperimen. Pengukuran yang teliti untuk nilai G dilakukan oleh Cavendish. Sekarang nilai konstanta gravitasi universal diberikan oleh 26/34 G = 6, 6720 10 11 m 2 /kg 2 (32)

Benda besar Dalam penjabaran di atas, diasumsikan bahwa benda pertama dan kedua adalah suatu titik massa. Untuk benda yang besar, yang tidak dapat dianggap sebagai titik massa maka sumbangan dari masing-masing elemen massa harus diperhitungkan. Untuk itu diperlukan perhitunganperhitungan kalkulus integral. Salah satu hasil capaian Newton, dia berhasil njukkan, dengan bantuan kalkulus integral, bahwa sebuah benda berbentuk bola (juga kulit bola) dengan distribusi massa yang homogen, akan memberikan gaya gravitasi ada sebuah titik massa di luar bola tadi dengan massa bola seolah-olah terkonsentrasi pada titik pusat bola. Dengan ini kita dapat misalnya menganggap gaya gravitasi bumi seolah-olah disebabkan oleh sebuah titik massa yang berada pada pusat bumi. 27/34

Kekekalan Momentum Sudut Hukum Kepler kedua, untuk lintasan planet berbentuk lingkaran, hanya njukkan kelajuan planet mengelilingi matahari konstan. Tetapi bila berbentuk elips, hukum kedua Kepler njukkan kekekalan momentum sudut. Lihat gambar 28/34

Daerah yang disapu oleh garis yang menghubungkan planet dengan matahari dalam suatu selang waktu t diberikan oleh 29/34 A = 1 2 r2 ω t (33) sehingga pernyataan bahwa untuk selang waktu yang sama daerah yang disapu sama, sama dengan menyatakan bahwa besaran berikut ini konstan ω 2 (34) r Tetapi bila ini kita kalikan dengan massa planet, akan kita dapatkan bahwa besaran mωr 2 yang tidak lain sama dengan besar total momentum sudut sistem (dengan matahari sebagai titik referensi). Jadi dalam sistem planet matahari, gaya gravitasi tidak menimbulkan perubahan momentum sudut.

Medan Gravitasi Konsep gaya gravitasi, dimana dua benda yang terpisah dan tidak saling sentuh dapat memeberikan pengaruh satu sama lain, merupakan konsep yang sulit dipahami bagi ilmuwan fisika klasik dahulu. Bagi mereka semua gaya harus melalui persentuhan, minimal harus ada perataranya. Karena itu terkait dengan gaya gravitasi, mereka memperkenalkan konsep medan gravitasi. Jadi pada ruang di sekitar sebuah benda yang bermassa m akan timbul medan gravitasi. Apabila pada medan gravitasi tadi terdapat sebuah benda yang bermassa, maka benda tadi akan mengalami gaya gravitasi. 30/34

31/34 Kuat medan gravitasi pada suatu titik dalam ruang diukur dengan menggunakan suatu massa uji yang kecil. Kuat medan gravitas diberikan oleh perumusan F g = (35) m sehingga medan gravitasi di sekitar sebuah benda bermassa m diberikan oleh g = G m ˆr (36) r2

Energi Potensial Gravitasi Usaha yang dilakukan oleh gaya gravitasi sebuah benda bermassa M (yang diasumsikan berada di titik pusat koordinat) pada benda lain yang bermassa m, yang menyebabkan perpindahan benda kedua dari jarak r a ke r b diberikan oleh W = b a G mm r 2 ˆr d s = b a G Mm r 2 dr = GMm ( 1 r b 1 r a ) (37) Tanda minus dalam gaya di atas karena arah gayanya adalah ke pusat koordinat. 32/34

33/34 Jelas dari hasil di atas bahwa gaya gravitasi adalah gaya konservatif. Karena itu kita dapat mendefinisikan konsep energi potensial gravitasi melalui ( 1 U = W = GMm 1 ) (38) r b r a Bila kita asumsikan r a berada pada jauh tak hingga, dan r b = r, dan diasumsikan pada titik jauh tak hingga potensial gravitasinya lenyap (=nol), maka kita dapatkan U(r) = GMm r (39)

Dekat bumi Untuk suatu ketiggian dekat permukaan bumi, maka kita pilih pada pers. (38) r a = R, jejari bumi (= jarak permukaan bumi dari pusatnya), dan r b = R + h. Kemudian diasumsikan bahwa U(R) = 0, maka kita peroleh energi potensial gravitasinya ( 1 U(r) = GMm R + h 1 ) ( R (R + h) ) = GMm R (R + h)r GM R 2 mh (40) Tetapi besaran GM/R 2 tidak lain dari percepatan gravitasi bumi g, sehingga untuk ketingggian dekat permukaan bumi U(h) = mgh (41) 34/34