ARGUMEN DAN METODE DEDUKSI
|
|
|
- Sri Atmadjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 KELOMPOK II NASIRAH, S.Pd SYAMSIR SAINUDDIN, S.Pd IKRAMUDDIN, S.Pd HARDYANTI, S.Pd ARIFUDDIN, S.Pd ARGUMEN DAN METODE DEDUKSI
2
3 Metode berpikir induktif dimana cara berpikir dilakukan dengan cara menarik suatu kesimpulan yang bersifat umum dari berbagai kasus yang bersifat individual Deduksi adalah cara berpikir dimana dari pernyataan yang bersifat umum ditarik kesimpulan yang bersifat khusus
4
5 1. Premis dan Konklusi Benar dan secara deduktif benar (Valid) Contoh: Jika Ikra Menangis, maka IkraBersedih Ikra menangis Jadi Ikra Bersedih 2. premis dan konklusi salah secara deduktif benar (Valid) Contoh: Semua kendaraan bermotor memerlukan bensin Kuda adalah kendaraan bermotor Jadi kuda memerlukan bensin Materin premis dan konklusi adalah salah, tetapi konklusi didapat sebagai konsekuensi logis dari premisnya 3. Premis dan Konklusi Benar, tetapi Secara deduktif salah (Invalid) Contoh : Jakarta adalah Ibukota Indonesia UNM ada di Makassar Jadi Makassar adalah Ibukota Sulsel Secara logis konklusi tidak mengikuti premis walaupun materi argumennya adalah benar
6 1 p q p q 2 ~ q p q ~ p 3 p q q r p r 4 p p q 5 p q p Modus Ponen (MP) 6 p q p q Modus Tollen (MT) 7 p q ~ p q Hypothetical Syllogism (HS) 8 p q r s p r q s Addition (Add) 9 p q r s ~ q ~s ~p ~r Simplification (Simp) Conjunction (Conj) Disjunctive Syllogism (DS) Constructive Dilemma (CD) Destructive Dilemma (DD)
7 1.Argumentasi 2.Tentukan Proposisi 3.Tentukan Fakta 4.Gunakan Aturan Inferensi 5.Kesimpulan
8 1 ~ (p q) ~ p ~q ~ (p q) ~ p ~q 2 p q q p p q q p 3 p (q r) (p q) r p (q r) (p q) r 4 p (q r) (p q) (p r) p (q r) (p q) (p r) De Morgan (de M) Commutation (Comm)) Association (Ass) Distribution (Distr) 5 ~ (~ p) = p Double Negation(DN) 6 p q ~ q ~ p Transposition (Trans) 7 p ~p q Material Implication (Impl) 8 p q (p q ) (q p) p q (p q ) (~ q ~p) Material Equivalence (Equiv) 9 p q r p (q r) Exportation (Exp) 10 p p p p p p Tautologi (Taut)
9 TUJUAN ATURAN PENUKARAN: Pada kenyataannya banyak argumen valid yang tidak dapat di buktikan kebenarannya hanya dengan menggunakan aturan penarikan kesimpulan. Ini berarti kitamembutuhkan aturan lain selain aturan diatas. Aturan yang menunjang ini disebut aturan penukaran (Rule of Replacements).
10 Dalam aturan pembuktian kondisional kita mendapat premis tambahan yang diperoleh dari anteseden konklusi (jika konklusinya berupa pernyataan kondisional) Contoh: D B A E D C C B A D B A E D C C B A D B A E D C C B A
11 PEMBUKTIAN: 1. Premis A 2. C D E Premis 3. A Premis B B C 4. Premis /. B C 5. Modus Ponen (1, 3) 6. C Modus Ponen (5, 4) 7. D E Modus Ponen (2, 6) 8. D Simplifikasi (7)
12 Aturan pembuktian tidak langsung (Rule of Indirect Proof) dilakukan dengan jalan membuat negasi dari konklusinya, yang kemudian dijadikan premis tambahan. Jika sebagai akibat langkah ini timbul kontradiksi berarti argument yang akan dibuktikan Contoh P Q Q P R R
13 PEMBUKTIAN 1. P Q Premis 2. Q R Premis 3. P Premis / R 4. ~ R Indirect Proof 5. ~ Q Modus Tolens (2, 4) 6. ~ P Modus Tolens (1, 5) 7. P ~ P konjungsi (3, 6) 8. P R Hypothetical Syllogism (1, 2) 9. R Modus Ponen (8, 3) 10. R ~ R Konjungsi (9, 4)
14 Pada baris ke 7 kita menemukan sebuah kontradiksi (kontradiksi eksplisit), maka argumen tersebut valid. Proses tadi masih dapat berlanjut hingga ditemukan kontradiksi antara konklusi dari pernyataan dengan negasinya, Pada baris ke 10 kita menemukan sebuah kontradiksi, maka argumen tersebut valid.
15 ATURAN PEMBUKTIAN TAUTOLOGI Untuk membuktikan suatu pernyataan majemuk tautologi biasanya digunakan tabel kebenaran. Jika pernyataan mengandung 2 pernyataan tunggal (simple state) maka ada 4 kondisi yang diuji, jika pernyataan mengandung 3 simple state maka ada 8 kondisi yang diuji. Bagaimana jika sudah terdapat 10 simple state?, tentu ada sebanyak 1024 kondisi yang akan diuji, dengan membuat baris sebanyak kemungkinan tersebut.
16 Pernyataan kondisional merupakan tautologi jika dan hanya jika argumen yang berkorespondensi dengan kondisional tersebut merupakan argumen yang valid. Dalam membuktikan tautologi, kita dapat menggunakan aturan yang terdapat dalam metode deduksi seperti aturan-aturan penarikan kesimpulan, aturan penukaran, pembuktian tak langsung, atau pembuktian kondisional.
17 PEMBUKTIAN INVALIDITAS ARGUMEN I. Semua persegi panjang adalah segi empat Semua belah ketupat adalah segi empat Jadi, semua belah ketupat adalah persegi panjang Bandingkan dengan II. Semua persegi panjang adalah segi empat Semua persegi adalah segi empat Jadi, semua persegi adalah persegi panjang
18 Argumen (I) termasuk argumen invalid. Karena sebuah konklusi yang salah tidaklah mungkin dapat diperoleh dari sesuatu yang benar mengakibatkan munculnya spremis-premis yang benar atau dengan kata lain, mustahil segala seuatu yang benar diperoleh dari sesuatu yang salah. Argumen (II) memiliki premis-premis dan konklusi yang benar. Namun kita tidak bisa mengatakan argumen tersebut valid dengan kata lain termasuk argumen invalid.
19 Argumen (I) dan (II) merupakan substitution intance dari bentuk: Semua P adalah R Semua Q adalah R Jadi, semua Q adalah P Karena terdapat kemungkinan pernyataan ini salah (tidak tautologi) maka secara umum argumen tersebut tidak valid (invalid argumen)
20 CONTOH INVALIDITAS ARGUMENT Apakah argumen berikut valid? P Q Q R P R Argumen di atas berkorespondensi dengan pernyataan kondisional berikut: P Q Q R P R
21 Kita membuat kondisi dimana kondisional berikut memungkinkan salah P Q Q R P R S B B B B B S S S S S Ternyata ada kondisi (seperti diatas) yang membuat pernyataan kondisional diatas salah. Sehingga disimpulkan argumen di awal tadi tidak valid (invalid argument)
22 SEKIAN dan TERIMA KASIH
ARGUMEN DAN METODE PENARIKAN KESIMPULAN
1 RGUMEN DN METODE PENRIKN KESIMPULN rgumen adalah rangkaian pernyataan-pernyataan yang mempunyai ungkapan pernyataan penarikan kesimpulan (inferensi). rgumen terdiri dari pernyataanpernyataan yang terdiri
Nama Mata Kuliah. Logika materila. Masyhar, MA. Fakultas Psikologi. Modul ke: Fakultas. Program Studi Program Studi.
Nama Mata Kuliah Modul ke: Logika materila Fakultas Fakultas Psikologi Masyhar, MA Program Studi Program Studi www.mercubuana.ac.id Penalaran Merupakan suatu proses berpikir yang membuahkan pengetahuan.
ARGUMEN DAN METODE DEDUKSI. Cece Kustiawan, FPMIPA, UPI
ARGUMEN DAN METODE DEDUKSI Pengertian Argumen Argumen merupakan serangkaian pernyataan yang mempunyai ungkapan pernyataan penarikan kesimpulan. Dalam argumen terdapat kata-kata seperti : Jadi, maka, oleh
METODE PENARIKAN KESIMPULAN
1 METODE PENRIKN KESIMPULN. TURN PENUKRN Pada kenyataannya banyak argument valid yang tidak dapat di buktikan kebenarannya hanya dengan menggunakan aturan penarikan kesimpulan. Ini berarti kita membutuhkan
LOGIKA MATEMATIKA I. PENDAHULUAN
LOGIKA MATEMATIKA I. PENDAHULUAN Logika adalah dasar dan alat berpikir yang logis dalam matematika dan pelajaran-pelajaran lainnya, sehingga dapat membantu dan memberikan bekal tambahan untuk menyampaikan
PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321. SEMESTER : GANJIL (5) DOSEN : MAULANA, S.Pd., M.Pd.
Doc Logika Matematika PGSD Maulana 1 PETA PERKULIAHAN MATA KULIAH : LOGIKA MATEMATIKA KODE MATA KULIAH : GD 321 BOBOT SKS : 2 (DUA) TAHUN AKADEMIK : 2007/2008 PROGRAM : PGSD S-1 KELAS SEMESTER : GANJIL
ARGUMEN DAN METODE PENARIKAN KESIMPULAN
1 ARGUMEN DAN METODE PENARIKAN KESIMPULAN Argumen adalah rangkaian ernyataan-ernyataan yang memunyai ungkaan ernyataan enarikan kesimulan (inferensi). Argumen terdiri dari ernyataanernyataan yang terdiri
Deductive Logic (Symbolic/ Modern)
Deductive Logic (Symbolic/ Modern) Latihan Penalaran Tugas (kumpulkan via email: [email protected], dalam bentuk PPT, selambatnya hari Jumat malam, 17 Feb): 1) PPT mengenai diri Anda dan target
ARGUMEN (ARGUMENT) Drs. C. Jacob, M.Pd LOGIKA BERUSAHA UTK MEMBEDAKAN ARGUMEN VALID (CORRECT) & INVALID (INCORRECT)
ARGUMEN (ARGUMENT) Drs. C. Jacob, M.Pd Email: [email protected] LOGIKA BERUSAHA UTK MEMBEDAKAN ARGUMEN VALID (CORRECT) & INVALID (INCORRECT) SUATU ARGUMEN MEMUAT SATU ATAU LEBIH KALIMAT YG DISEBUT PREMIS
Pertemuan 5. Proposisi Lanjutan. Dosen Ir. Hasanuddin Sirait, MT STMIK Parna Raya Manado HP :
Pertemuan 5 Proposisi Lanjutan Dosen Ir. Hasanuddin Sirait, MT www.hsirait.wordpress.com STMIK Parna Raya Manado HP : 081356633766 KESETARAAN LOGIS Dua buah pernyataan yang berbeda dikatakan setara/equivalen
Argumen premis konklusi jika dan hanya jika Tautolog
INFERENSI LOGIKA Argumen adalah suatu pernyataan tegas yang diberikan oleh sekumpulan proposisi P 1, P 2,...,P n yang disebut premis (hipotesa/asumsi) dan menghasilkan proposisi Q yang lain yang disebut
Matematika Industri I
LOGIKA MATEMATIKA TIP FTP - UB Pokok Bahasan Proposisi dan negasinya Nilai kebenaran dari proposisi Tautologi Ekuivalen Kontradiksi Kuantor Validitas pembuktian Pokok Bahasan Proposisi dan negasinya Nilai
Pertemuan 2. Proposisi Bersyarat
Pertemuan 2 Proposisi ersyarat Proposisi ersyarat Definisi 4 Misalkan p dan q adalah proposisi. Proposisi majemuk jika p, maka q disebut proposisi bersyarat (implikasi dan dilambangkan dengan p q Proposisi
EFEK ALAT PERAGA PIPA LOGIKA MATEMATIKA UNTUK MENGAJARKAN LOGIKA MATEMATIKA
BAB I PENDAHULUAN Dalam menghadapi era globalisasi yang diiringi dengan perkembangan IPTEK yang sangat pesat, maka peningkatan kualitas sumber daya manusia mempunyai posisi yang strategis bagi keberhasilan
SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11.54406/ Logika Informatika 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot
ARGUMENTASI. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
ARGUMENTASI Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 1 + 2 = 3 b. Kuala
Logika Proposisi 1. Definisi 1. (Proposisi) Proposisi adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya sekaligus.
Logika Proposisi 1 I. Logika Proposisi Logika adalah bagian dari matematika, tetapi pada saat yang sama juga merupakan bahasa matematika. Pada akhir abad ke-19 dan awal abad ke-20, ada kepercayaan bahwa
BAB IV LOGIKA A. Pernyataan B. Operasi uner
BAB IV LOGIKA A. Pernyataan Pernyataan adalah kalimat matematika tertutup yang benar atau yang salah, tetapi tidak kedua-duanya pada saat yang bersamaan. Pernyataan biasa dilambangkan dengan p, q, r,...
BAB III DASAR DASAR LOGIKA
BAB III DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2
EKSKLUSIF OR (XOR) DEFINISI
Logika Matematik EKSKLUSIF OR (XOR) DEFINISI : Misalkan p dan q adalah proposisi. Proposisi salah satu p atau q ditulis p q adalah proposisi yang bernilai benar jika tepat satu diantara p atau q BENAR,
DASAR DASAR LOGIKA. Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya.
DASAR DASAR LOGIKA 1. Kalimat Deklaratif Kalimat Deklaratif (Proposisi) adalah kalimat yang bernilai benar atau salah, tetapi tidak keduanya. Berikut ini adalah beberapa contoh Proposisi : a. 2 + 2 = 4
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11.54406/ Logika Informatika Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam seminggu
BAB 4 PROPOSISI. 1. Pernyataan dan Nilai Kebenaran
BAB 4 PROPOSISI 1. Pernyataan dan Nilai Kebenaran Ilmu logika adalah berhubungan dengan kalimat-kalimat (argumen-argumen) dan hubungan yang ada diantara kalimat-kalimat tersebut. Tujuannya adalah memberikan
METODE INFERENSI. Level 2. Level 3. Level 4
METODE INFERENSI Tree (Pohon) dan Graph - Tree (pohon) adalah suatu hierarki struktur yang terdiri dari Node (simpul/veteks) yang menyimpan informasi atau pengetahuan dan cabang (link/edge) yang menghubungkan
PENALARAN INDUKTIF DAN DEDUKTIF
Unit 6 PENALARAN INDUKTIF DAN DEDUKTIF Wahyudi Pendahuluan U nit ini membahas tentang penalaran induktif dan deduktif yang berisi penarikan kesimpulan dan penalaran indukti deduktif. Dalam penalaran induktif
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed
Logika Matematika Diskret (TKE132107) Program Studi Teknik Elektro, Unsoed Iwan Setiawan Tahun Ajaran 2013/2014 Logika Klasik Matematika Diskret (TKE132107) - Program Studi Teknik
STMIK Banjarbaru EKUIVALENSI LOGIKA. 10/15/2012 H. Fitriyadi & F. Soesianto
1 EKUIVALENSI LOGIKA 2 Pada tautologi dan kontradiksi, dapat dipastikan bahwa jika dua buah ekspresi logika adalah tautologi, maka kedua buah ekspresi logika tersebut ekuivalen secara logis, demikian pula
PERTEMUAN TAUTOLOGI, KONTRADIKSI, DAN CONTINGENT
PERTEMUAN 5 1.1 TAUTOLOGI, KONTRADIKSI, DAN CONTINGENT Tautologi adalah suatu bentuk kalimat yang selalu bernilai benar (True) tidak peduli bagaimanapun nilai kebenaran masing-masing kalimat penyusunnya,
Program Studi Teknik Informatika STMIK Tasikmalaya
Materi Kuliah Logika Matematika Oleh: Dadang Mulyana Program Studi Teknik Informatika STMIK Tasikmalaya dadang mulyana 2013 1 Info Dosen Nama : Dadang Mulyana Alamat : Ciamis HP. :- E-mail tugas : [email protected]
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA : NURHIDAYAT NIM : DBC
MAKALAH RANGKUMAN MATERI LOGIKA MATEMATIKA Nama : NURHIDAYAT NIM : DC 113 055 JURUAN TEKNIK INFORMATIKA FAKULTA TEKNIK UNIVERITA PALANGKA RAYA 2013 A I PENGERTIAN Logika adalah dasar dan alat berpikir
MATEMATIKA DISKRIT. Logika
MATEMATIKA DISKRIT Logika SILABUS KULIAH 1. Logika 2. Himpunan 3. Matriks, Relasi dan Fungsi 4. Induksi Matematika 5. Algoritma dan Bilangan Bulat 6. Aljabar Boolean 7. Graf 8. Pohon REFERENSI Rinaldi
BAB 1 : DASAR-DASAR LOGIKA
BAB 1 : DASAR-DASAR LOGIKA 1.1 PENGERTIAN UMUM LOGIKA Filsafat dan matematika adalah bidang pengetahuan rasional yang ada sejak dahulu. Jauh sebelum matematika berkembang seperti sekarang ini dan penerapannya
MATEMATIKA DASAR (Validitas Pembuktian)
MATEMATIKA DASAR (Validitas Pembuktian) Antonius Cahya Prihandoko Universitas Jember Indonesia Jember, 2015 Antonius Cahya Prihandoko (UNEJ) MDAS - Validitas Pembuktian Jember, 2015 1 / 22 Outline 1 Premis
PENGERTIAN. Proposisi Kalimat deklaratif yang bernilai benar (true) atau salah (false), tetapi tidak keduanya. Nama lain proposisi: kalimat terbuka.
BAB 2 LOGIKA PENGERTIAN Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang
TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P. Hasil Telaah
TELAAH BAHAN BELAJAR MANDIRI Oleh Sufyani P Nama Matakuliah: Logika Matematika. SKS : 2 Semester : 7 Penulis : Drs. Mujono, M.Pd. I. Tinjauan matakuliah: tidak ada Hasil Telaah II. Sajian Materi: a. Relevansi
Teori Dasar Logika (Lanjutan)
Teori Dasar Logika (Lanjutan) Inferensi Logika Logika selalu berhubungan dengan pernyataan-pernyataan yang ditentukan nilai kebenarannya. Untuk menentukan benar tidaknya kesimpulan berdasarkan sejumlah
Logika Matematika BAGUS PRIAMBODO. Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen.
Modul ke: 6 Logika Matematika Tautologi dan Kontradiksi Argumen 1/Penarikan kesimpulan yang valid: modus ponen, modus tolen Fakultas FASILKOM BAGUS PRIAMBODO Program Studi SISTEM INFORMASI http://www.mercubuana.ac.id
PERTEMUAN KE 3 F T T F T F T F
PEREMUAN KE 3 E. DISJUNGSI EKSLUSI (Exclusive OR) Misalkan p dan q adalah proposisi. Exclusive or p dan q, dinyatakan dengan notasi, adalah proposisi yang bernilai benar bila hanya salah satu dari p dan
- Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat
LOGIKA Tujuan umum : - Mahasiswa memahami dan mampu membuat kalimat, mengevaluasi kalimat dan menentukan validitas suatu kalimat Tujuan Khusus: - mahasiswa diharapkan dapat : 1. memahami pengertian proposisi,
Logika Matematika. ILFA STEPHANE, M.Si. September Teknik Sipil dan Geodesi Institut Teknologi Padang
ILFA STEPHANE, M.Si September 2012 Teknik Sipil dan Geodesi Institut Teknologi Padang Definisi 1 Logika adalah usaha dalam memutuskan ya atau tidaknya (whether or not) suatu keputusan yang sah. Oleh karena
Bab 5 Proposisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM TEORI PENUNJANG
Bab 5 Proosisi Lanjutan 29 BAB V PROPOSISI LANJUTAN TUJUAN PRAKTIKUM 1. Memahami tentang Inferensi 2. Memahami tentang Argumentasi dan roosisi 3. Memahami dan menyelesaikan ermasalahan Inferensi TEORI
Deductive Logic 2 (Symbolic/ Modern)
Deductive Logic 2 (Symbolic/ Modern) Pengumuman MIND MAPPING bagian dari Learning to Learn MIND MAPPING & MEMORY Tempat: Auditorium Sabtu 10 Maret 2012 Pk.8.30 11.00 Instructor: Djohan Yoga Seorang Mind
Suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat, baru kemudian dapat diikuti objeknya.
1 Suatu pernyataan akan memiliki bentuk susunan minimal terdiri dari subjek diikuti predikat, baru kemudian dapat diikuti objeknya. Setiap kalimat atau pernyataan tetap dapat dianggap satu buah proposisi.
METODE INFERENSI (1)
METODE INFERENSI (1) Tree (Pohon) dan Graph - Tree (pohon) adalah suatu hierarki struktur yang terdiri dari Node (simpul/veteks) yang menyimpan informasi atau pengetahuan dan cabang (link/edge) yang menghubungkan
LOGIKA PROPOSISI 3.1 Proposisi logika proposisional. Contoh : tautologi yaitu proposisi-proposisi yang nilainya selalu benar. Contoh 3.
LOGIKA PROPOSISI 3.1 Proposisi Proposisi adalah suatu pernyataan yang bernilai benar atau salah, tetapi tidak dapat sekaligus keduanya. Kebenaran atau kesalahan dari sebuah kalimat disebut nilai kebenarannya.
Logika Proposisi. Adri Priadana ilkomadri.com
Logika Proposisi Adri Priadana ilkomadri.com Matematika Diskrit Apa? Cabang matematika yg mempelajari tentang obyek diskrit. Apa yang dimaksud dengan kata diskrit (discrete)? Objek disebut diskrit jika:
Pengantar Logika. Didin Astriani Prasetyowati, M.Stat UIGM
Pengantar Logika Didin Astriani Prasetyowati, M.Stat UIGM 1 BAB I PENGANTAR LOGIKA Konsep Logika Apakah logika itu? Seringkali Logika didefinisikan sebagai ilmu untuk berfikir dan menalar dengan benar
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT
MODUL PERKULIAHAN EDISI 1 MATEMATIKA DISKRIT Penulis : Nelly Indriani Widiastuti S.Si., M.T. JURUSAN TEKNIK INFORMATIKA UNIVERSITAS KOMPUTER INDONESIA BANDUNG 2011 DAFTAR ISI Daftar Isi. 2 Bab 1 LOGIKA
KATA PENGANTAR. Assalamu alaikum Wr. Wb.
KATA PENGANTAR Assalamu alaikum Wr. Wb. Alhamdulillah.. Puji syukur kehadirat Allah SWT. atas segala rahmat dan hidayah-nya. Segala pujian hanya layak kita aturkan kepada Allah SWT. Tuhan seru sekalian
Pusat Pengembangan Pendidikan Universitas Gadjah Mada 1
2. ALJABAR LOGIKA 2.1 Pernyataan / Proposisi Pernyataan adalah suatu kalimat yang mempunyai nilai kebenaran (benar atau salah), tetapi tidak keduanya. Contoh 1 : P = Tadi malam BBM mulai naik (memiliki
Cerdik Matematika. Bambang Triatma. Matematika. Cerdik Pustaka [Type the phone number] [Type the fax number]
Cerdik Matematika Bambang Triatma 2011 Matematika Cerdik Pustaka e-mail: [email protected] [Type the phone number] [Type the fax number] 1. Himpunan Cerdik Matematika 2011 Himpunan adalah kumpulan
BAB I PENDAHULUAN. a. Apa sajakah hukum-hukum logika dalam matematika? b. Apa itu preposisi bersyarat?
BAB I PENDAHULUAN 1.1 LATAR BELAKANG Secara etimologi, istilah Logika berasal dari bahasa Yunani, yaitu logos yang berarti kata, ucapan, pikiran secara utuh, atau bisa juga ilmu pengetahuan. Dalam arti
LOGIKA MATEMATIKA Talisadika Maifa
22 BAB II LOGIKA MATEMATIKA Talisadika Maifa A. PENDAHULUAN Pembahasan mengenai logika sudah ada sejak lama bahkan sebelum manusia mengenal istilah logika itu sendiri. Menilik kembali kepada sejarahnya,
LOGIKA. /Nurain Suryadinata, M.Pd
Nama Mata Kuliah Kode Mata Kuliah/SKS Program Studi Semester Dosen Pengampu : Matematika Diskrit : MAT-3615/ 3 sks : Pendidikan Matematika : VI (Enam) : Nego Linuhung, M.Pd /Nurain Suryadinata, M.Pd Referensi
BAB I LOGIKA MATEMATIKA
BAB I LOGIKA MATEMATIKA A. Ringkasan Materi 1. Pernyataan dan Bukan Pernyataan Pernyataan adalah kalimat yang mempunyai nilai benar atau salah, tetapi tidak sekaligus benar dan salah. (pernyataan disebut
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements).
Logika Matematik 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif yang bernilai
Teknik Penyederhanaan untuk Menyederhanakan Teknik Resolusi
Teknik Penyederhanaan untuk Menyederhanakan Teknik Resolusi Djoni Dwijono Teknik Informatika Universitas Kristen Duta Wacana Yogyakarta Email: [email protected] Abstrak: Teknik Resolusi sebenarnya tidak
Materi Kuliah IF2091 Struktur Diskrit. Pengantar Logika. Oleh: Rinaldi Munir. Program Studi Informatika STEI - ITB
Materi Kuliah IF2091 Struktur Diskrit Pengantar Logika Oleh: Rinaldi Munir Program Studi Informatika STEI - ITB 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda pasti
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF. Clara Ika Sari Budhayanti. Pendahuluan. Selamat belajar dan tetap bersemangat, semoga Anda sukses.
Unit 7 PENALARAN INDUKTIF DAN DEDUKTIF Pendahuluan Clara Ika Sari Budhayanti U nit penalaran induktif dan deduktif ini akan membahas mengenai penarikan kesimpulan dan penalaran indukti deduktif. Dalam
DASAR-DASAR LOGIKA. Pemetaan Dasar. Sujanti, M.Ikom. Modul ke: Fakultas ILMU KOMUNIKASI. Program Studi Hubungan Masyarakat
Modul ke: 05 Ety Fakultas ILMU KOMUNIKASI DASAR-DASAR LOGIKA Pemetaan Dasar Sujanti, M.Ikom. Program Studi Hubungan Masyarakat Dasar-dasar Logika Pemetaan Dasar 1. Argumentasi 2. Menguji Suatu Penalaran
Logika Matematika. Logika Matematika. Jurusan Informatika FMIPA Unsyiah. September 26, 2012
Jurusan Informatika FMIPA Unsyiah September 26, 2012 Cara menentukan nilai kebenaran pernyataan majemuk dengan menggunakan tabel kebenaran, yaitu dengan membagi beberapa bagian (kolom). Nilai kebenarannya
Logika Matematik. Saripudin, M.Pd.
Logika Matematik Saripudin, M.Pd. 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat
lain itu dianggap sebagai pemberi alasan untuk menerima konklusi tersebut yang dinamakan premis-premis dari argument tersebut.
PENARIKAN KESIMPULAN DENGAN METODE DEDUKTIF Pardomuan Nauli Josip Mario Sinambela Abstrak Pembahasan logika dengan berbagai teknik lebih menekankan pada masalah konsistensi pernyataan-pernyataan dan keabsahan
Materi 4: Logika. I Nyoman Kusuma Wardana. STMIK STIKOM Bali
Materi 4: Logika I Nyoman Kusuma Wardana STMIK STIKOM Bali Logika merupakan dasar dr semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan-pernyataan (statements). Dalam Logika
MateMatika Diskrit. Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T
MateMatika Diskrit Logika (logic) STMIK Parna Raya Manado Ir. Hasanuddin Sirait, M.T 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan
Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements).
Logika (logic) 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara proposisi atau pernyataan (statements). Proposisi Kalimat deklaratif yang bernilai
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika
Matematika Diskrit LOGIKA
Matematika Diskrit LOGIKA 1 Logika Logika merupakan dasar dari semua penalaran (reasoning). Penalaran didasarkan pada hubungan antara pernyataan (statements). Proposisi Pernyataan atau kalimat deklaratif
BAB 6 EKUIVALENSI LOGIS
BAB 6 EKUIVALENSI LOGIS 1. Pendahuluan Bab ini akan membahas persamaan-persamaan antara dua buah ekspresi logika yang mungkin ekuivalen (sama), mungkin berbeda, yang kesamaan atau perbedaan tadi akan dibuktikan
MODUL 3: DEDUKSI TRADITIONAL
MODUL 3: DEDUKSI TRADITIONAL Pembelajaran Hari Ini Peta Inferensi INFERENSI DEDUKTIF Inferensi Langsung Oposisi Inversi Konversi Obversi Dibahas 3 sesi: Deduksi Tradisional dan Modern Kontraposisi Inferensi
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs.
Matematika Diskret (Logika) Instruktur : Ferry Wahyu Wibowo, S.Si., M.Cs. 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak akan sulit belajar Bahasa Java. Jika
LOGIKA MATEMATIKA. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X
LA - WB (Lembar Aktivitas Warga Belajar) LOGIKA MATEMATIKA Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT V DERAJAT MAHIR 1 SETARA KELAS X Created By Ita Yuliana 37 Logika Matematika Kompetensi
LOGIKA MATEMATIKA (Pendalaman Materi SMA)
LOGIKA MATEMATIKA (Pendalaman Materi SMA) Disampaikan Pada MGMP Matematika SMA Provinsi Bengkulu Tahun Ajaran 2007/2008 Oleh: Supama Widyaiswara LPMP Bengkulu DEPARTEMEN PENDIDIKAN NASIONAL DIREKTORAT
Logika Matematika. Cece Kustiawan, FPMIPA, UPI
Logika Matematika 1. Pengertian Logika 2. Pernyataan Matematika 3. Nilai Kebenaran 4. Operasi Uner 5. Operasi Biner 6. Tabel kebenaran Pernyataan 7. Tautologi, Kontradiksi dan Kontingen 8. Pernyataan-pernyataan
BAB I DASAR-DASAR LOGIKA
BAB I DASAR-DASAR LOGIKA 11 Pendahuluan Logika adalah suatu displin yang berhubungan dengan metode berpikir Pada tingkat dasar, logika memberikan aturan-aturan dan teknik-teknik untuk menentukan apakah
untuk mempelajari matematika lebih lanjut. Untuk menunjang kemampuankemampuan tersebut diharapkan Anda dapat menguasai beberapa kompetensi khusus
ix S Tinjauan Mata Kuliah elamat bertemu, selamat belajar, dan selamat berdiskusi dalam mata kuliah Matematika Dasar 1. Mata kuliah PEMA4102/Matematika Dasar 1 dengan bobot 3 sks ini sering pula dinamakan
PROPOSISI MAJEMUK. dadang mulyana
PROPOSISI MAJEMUK Perangkai logika digunakan untuk mengkombinasikan proposisi-proposisi atomik jadi proposisi majemuk Jangan ada ambiguitas (slah tafsir) Harus ada tanda kurung yang tepat Proposisi-proposisi
NAMA LAMBANG KATA PERNYATAAN LOGIKANYA PENGHUBUNG
LOGIKA MATEMATIKA A. PERNYATAAN DAN KALIMAT TERBUKA Kalimat terbuka adalah kalimat yang belum dapat ditentukan nilai kebenarannya (benar dan salah). 1. Gadis itu cantik. 2. Bersihkan lantai itu. 3. Pernyataan/kalimat
Logika. Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si.
Logika Arum Handini Primandari, M.Sc. Ayundyah Kesumawati, M.Si. Logika Matematika Kalimat Terbuka dan Tertutup Kalimat terbuka adalah kalimat yang tidak mengandung nilai kebenaran Contoh: Semoga kamu
KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS ARGUMEN. Abstrak
Komparasi Penggunaan Metode Truth Table Dan Proof By Falsification Untuk Penentuan Validitas Argumen (Yani Prihati) KOMPARASI PENGGUNAAN METODE TRUTH TABLE DAN PROOF BY FALSIFICATION DALAM PENENTUAN VALIDITAS
LOGIKA SIMBOLIK. Bagian II. September 2005 Pengantar Dasar Matematika 1
LOGIKA IMOLIK agian II eptember 2005 Pengantar Dasar Matematika 1 LOGIKA Realitas Kalimat/ Pernyataan Logis LOGIKA eptember 2005 Pengantar Dasar Matematika 2 Apakah logika itu? Logika: Ilmu untuk berpikir
Dasar-dasar Logika. (Review)
Dasar-dasar Logika (Review) Intro Logika berhubungan dengan kalimat-kalimat dan hubungan antar kalimat. Tujuan: menentukan apakah suatu kalimat / masalah bernilai benar (TRUE) atau salah (FALSE) Kalimat
INGKARAN DARI PERNYATAAN
HAND-OUT Student Name : Subject : Matematika Wajib Grade/Class : / Toic : Logika Matematika Date : Teacher(s) : Mr. Daniel Kristanto Semester : 2 Parent s Signature : LOGIKA MATEMATIKA Kalimat logika matematika
Logika Proposisi. Rudi Susanto
Logika Proposisi Rudi Susanto 1 Logika Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak sulit belajar Bahasa Java. Jika anda tidak suka begadang maka anda bukan mahasiswa
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM
IMPLEMENTASI STRATEGI PERLAWANAN UNTUK PEMBUKTIAN VALIDITAS ARGUMEN DENGAN METODE REDUCTIO AD ABSURDUM Abstrak Pembuktian validitas argumen dengan menggunakan tabel kebenaran memerlukan baris dan kolom
kusnawi.s.kom, M.Eng version
Propositional Logic 3 kusnawi.s.kom, M.Eng version 1.1.0.2009 Properties of Sentences Adalah sifat-sifat yang dimiliki oleh kalimat logika. Ada 3 sifat logika yaitu : - Valid(Tautologi) - Kontradiksi -
PEMBUKTIAN MATEMATIKA
PEMBUKTIAN MATEMATIKA LOGIKA INFERENSIA Altien Jonathan Rindengan, S.Si, M.Kom Pendahuluan Kata inferensia digunakan untuk menyatakan sekumpulan premis yang diikuti dengan kesimpulan. Infrensia yang sahih
EKUIVALENSI LOGIS. Dr. Julan HERNADI & (Asrul dan Enggar) Pertemuan 3 FONDASI MATEMATIKA. Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo
Program Studi Pendidikan Matematika FKIP Unmuh Ponorogo Pertemuan 3 FONDASI MATEMATIKA Variasi bentuk implikasi Berangkat dari implikasi p q kita dapat membentuk tiga pernyataan implikasi relevan yang
HAND OUT PERKULIAHAN MATEMATIKA DASAR 3 SKS SEMESTER GANJIL. PROGRAM STUDI BIOLOGI ( DIK DAN NON DIK ) OLEH DRS. H. FIRDAUS. M.
HAND OUT PERKULIAHAN MATEMATIKA DASAR 3 SKS SEMESTER GANJIL PROGRAM STUDI BIOLOGI ( DIK DAN NON DIK ) OLEH DRS. H. FIRDAUS. M.Pd UPI 0716 JURUSAN PENDIDIKAN BIOLOGI FPMIPA UNIVERSITAS PENDIDIKAN INDONESIA
LOGIKA MATEMATIKA. Tabel kebenarannya sbb : p ~ p B S S B
LOGIKA MATEMATIKA A. Pernyataan, kalimat terbuka, dan ingkaran pernyataan. 1. Pernyataan Pernyataan adalah kalimat yang mengandung nilai benar atau salah tetapi tidak sekaligus kedua-duanya. a. Hasil kali
2.1. Definisi Logika Proposisi Logika proposisi Atomic proposition compound proposition
2. LOGIKA PROPOSISI 2.1. Definisi Logika Proposisi Logika proposisi adalah logika pernyataan majemuk yang disusun dari pernyataanpernyataan sederhana yang dihubungkan dengan penghubung Boolean (Boolean
MODUL 3 OPERATOR LOGIKA
STMIK STIKOM BALIKPAPAN 1 MODUL 3 OPERATOR LOGIKA 1. TEMA DAN TUJUAN KEGIATAN PEMBELAJARAN 1. Tema : Operator Logika 2. Fokus Pembahasan Materi Pokok : 1. Operator Logika Konjungsi 2. Operator Logika Disjungsi
1. SET. Descrete Mathematics 1
1. SET 1 Discrete Mathematics 1. Set and Logic 2. Relation 3. Function 4. Induction 5. Boolean Algebra and Number Theory MID 6. Graf dan Tree/Pohon 7. Combinatorial 8. Discrete Probability UAS 2 SET (CONT..)
LOGIKA Matematika Industri I
LOGIKA TIP FTP UB Pokok Bahasan Pengertian Logika Pernyataan Matematika Nilai Kebenaran Operasi Uner Operasi Biner Tabel kebenaran Pernyataan Tautologi, Kontradiksi dan Kontingen Pernyataan-pernyataan
Berpikir Komputasi. Sisilia Thya Safitri, MT Citra Wiguna, M.Kom. 3 Logika Proposisional (I)
Berpikir Komputasi Sisilia Thya Safitri, MT Citra Wiguna, M.Kom 3 Logika Proposisional (I) Capaian Sub Pembelajaran Mahasiswa dapat memahami logika proposisional sebagai dasar penerapan algoritma. Outline
Materi Kuliah IF2120 Matematika Diskrit. Logika (logic) Oleh: Rinaldi Munir. Program Studi Teknik Informatika STEI - ITB
Materi Kuliah IF2120 Matematika Diskrit Logika (logic) Oleh: Rinaldi Munir Program Studi Teknik Informatika STEI - ITB 1 Perhatikan argumen di bawah ini: Jika anda mahasiswa Informatika maka anda tidak
KUANTOR. A. Fungsi Pernyataan
A. Fungsi Pernyataan KUANTOR Definisi : Suatu fungsi pernyataan adalah suatu kalimat terbuka di dalam semesta pembicaraan (semesta pembicaraan diberikan secara eksplisit atau implisit). Fungsi pernyataan
LOGIKA MATEMATIKA SOAL DAN PENYELESAIAN Logika, Himpunan, Relasi, Fungsi JONG JEK SIANG Kita menjalani hidup dari apa yang kita dapatkan Tetapi kita menikmati hidup dari apa yang kita berikan Jong Jek
Logika Proposisi 3: Translasi Bahasa Alami ke Formula Logika Proposisi Masalah Dalam Inferensi Logika Proposisi
Logika Proposisi 3: Translasi Bahasa Alami ke Formula Logika Proposisi Masalah Dalam Inferensi Logika Proposisi Kuliah Logika Matematika Semester Ganjil 2015-2016 MZI Fakultas Informatika Telkom University
