BAB 1. Rantai Markov 1.1 ILUSTRASI

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 1. Rantai Markov 1.1 ILUSTRASI"

Transkripsi

1 BAB 1 Rantai Markov 1.1 ILUSTRASI (Ilustrasi 1) Akhir-akhir ini, hujan dan panas (baca: tidak hujan) datang silih berganti tanpa bisa diduga. Kalau hari ini hujan, besok mungkin hujan mungkin juga panas. Tentu saja peluang besok hujan akan lebih besar dibanding peluang besok akan panas. Begitu pula jika hari ini panas. Besok akan lebih mungkin panas dibandingkan hujan. Jika hari Senin hujan, berapa peluang bahwa hari Selasa akan hujan? Berapa peluang bahwa hari Kamis akan hujan? (Ilustrasi 2) Pada 23 Juni lalu sekitar pukul mobil yang dikemudikan suami saya terperosok masuk lubang di jalan tol lingkar luar Jakarta, kira-kira 2 kilometer dari Pintu Tol Pondok Ranji arah Jakarta. Ban dan gadi-gading roda rusak. Esoknya saya mengajukan klaim asuransi Sinar Mas kepada SiMas Bekasi. Pada 1 Juli saya mendapat jawaban bahwa klaim asuransi ditolak dengan alasan: bagian yang rusak hanya ban dan gading-gading roda. Tak mengenai badan mobil. Padahal, tercantum jelas di dalam pasal-pasal polis asuransi maupun surat penolakan bahwa ban dan gading-gading roda tidak dijamin, kecuali disebabkan oleh Pasal 1 angka 1.1. Isi pasal itu, pertanggungan ini menjamin kerusakan yang secara langsung disebabkan oleh tabrakan, benturan, terbalik, tergelincir atau terperosok. Asuransi Sinar Mas berusaha menghindar dari kewajiban dengan alasan mengada-ada, bahkan mengingkari aturan yang dibuatnya sendiri (Surat Pembaca KOMPAS; 3/08/2010). Andaikan suatu hari saya mengajukan klaim lagi ke Asuransi Sinar Mas, berapa peluang bahwa klaim saya akan diterima? (Ilustrasi 3) Sebagai calon atlet, setiap pagi Swari meninggalkan rumahnya untuk berlari pagi. Swari akan pergi lewat pintu depan atau belakang dengan peluang sama. Ketika meninggalkan rumah, Swari memakai sepatu olah raga atau sandal jenis crocs jika sepatu tidak tersedia di depan pintu yang dia 1

2 lewati (Dalam praktiknya, Swari harus bertelanjang kaki jika ternyata sandal crocs yang harus dipakai. Tak lain alasannya karena sang ayah tidak suka apabila Swari memakai sandal crocs). Ketika pulang, Swari akan masuk lewat pintu depan atau belakang dan meletakkan sepatunya dengan peluang sama. Diketahui bahwa Swari memiliki 4 pasang sepatu olah raga. Berapa peluang bahwa Swari akan sering berolah raga dengan bertelanjang kaki? MA4081 Pros.Stok. 2 K. Syuhada, PhD.

3 1.2 DEFINISI Proses stokastik {X n } adalah Rantai Markov: n = 0, 1, 2,... nilai yang mungkin adalah hingga atau terhitung P ( ) X n+1 = j X n = i, X n 1 = i n 1,..., X 1 = i 1, X 0 = i 0 = Pij distribusi bersyarat X n+1, diberikan keadaan lampau (past states) X 0, X 1,..., X n 1 dan keadaan sekarang (present state) X n, hanya bergantung pada keadaan sekarang keadaan (state): i 0, i 1,..., i n 1, i, j P ij peluang bahwa proses akan berada di keadaan j dari keadaan i; P ij 0, i, j 0; P ij = 1, i = 0, 1,... j=0 Matriks peluang transisi P ij adalah sbb: P 00 P 01 P 02 P 10 P 11 P P i0 P i0 P i Jika hari ini hujan maka besok akan hujan dengan peluang α; jika hari ini tidak hujan maka besok akan hujan dengan peluang β. Matriks peluang transisinya adalah Keadaan hujan pada suatu hari bergantung pada keadaan hujan dalam dua hari terakhir. Jika dalam dua hari terakhir hujan maka besok akan hujan dengan peluang 0.7; Jika hari ini hujan dan kemarin tidak hujan maka besok akan hujan dengan peluang 0.5; jika hari ini tidak hujan dan kemarin hujan maka besok akan hujan dengan peluang 0.4; jika dalam dua hari terakhir tidak hujan maka besok hujan dengan peluang 0.2. MA4081 Pros.Stok. 3 K. Syuhada, PhD.

4 3. Tiga item produk A dan tiga item produk B didistribusikan dalam dua buah paket/kotak sedemikian hinga setiap paket terdiri atas tiga item produk. Dikatakan bahwa sistem berada dalam keadaan i, i = 0, 1, 2, 3 jika dalam paket pertama terdapat i produk A. Setiap saat (langkah), kita pindahkan satu item produk dari setiap paket dan meletakkan item produk tersebut dari paket 1 ke paket 2 dan sebaliknya. Misalkan X n menggambarkan keadaan dari sistem setelah langkah ke-n. Matriks peluang transisinya adalah Menurut Kemeny, Snell dan Thompson, Tanah Australia diberkahi dengan banyak hal kecuali cuaca yang baik. Mereka tidak pernah memiliki dua hari bercuaca baik secara berturut-turut. Jika mereka mendapatkan hari bercuaca baik maka esok hari akan bersalju atau hujan dengan peluang sama. Jika hari ini mereka mengalami salju atau hujan maka besok akan bercuaca sama dengan peluang separuhnya. Jika terdapat perubahan cuaca dari salju atau hujan, hanya separuh dari waktu besok akan menjadi hari bercuaca baik. Tentukan matriks peluang transisi dari Rantai Markov yang dibentuk dari keadaan-keadaan diatas. 5. Sebagai calon atlet, setiap pagi Swari meninggalkan rumahnya untuk berlari pagi. Swari akan pergi lewat pintu depan atau belakang dengan peluang sama. Ketika meninggalkan rumah, Swari memakai sepatu olah raga atau sandal jenis crocs jika sepatu tidak tersedia di depan pintu yang dia lewati (Dalam praktiknya, Swari harus bertelanjang kaki jika ternyata sandal crocs yang harus dipakai. Tak lain alasannya karena sang ayah tidak suka apabila Swari memakai sandal crocs). Ketika pulang, Swari akan masuk lewat pintu depan atau belakang dan meletakkan sepatunya dengan peluang sama. Diketahui bahwa Swari memiliki 4 pasang sepatu olah raga. Bentuklah suatu Rantai Markov dari proses diatas. MA4081 Pros.Stok. 4 K. Syuhada, PhD.

5 1.3 PELUANG N-LANGKAH Persamaan Chapman-Kolmogorov Misalkan Pij n menyatakan peluang transisi n-langkah suatu proses di keadaan i akan berada di keadaan j, ij = P (Y k+n = j Y k = i), n 0, i, j 0. Persamaan Chapman-Kolmogorov adalah alat untuk menghitung peluang transisi n + m-langkah: +m ij = k=0 ikp m kj, untuk semua n, m 0 dan semua i, j. Pik np kj m menyatakan peluang suatu proses dalam keadaan i akan berada di keadaan j dalam n+m transisi, melalui keadaan k dalam n transisi/langkah. 1. Jika hari ini hujan maka besok akan hujan dengan peluang α; jika hari ini tidak hujan maka besok akan hujan dengan peluang β. Matriks peluang transisi 4 langkah adalah 2. Keadaan hujan pada suatu hari bergantung pada keadaan hujan dalam dua hari terakhir. Jika dalam dua hari terakhir hujan maka besok akan hujan dengan peluang 0.7; Jika hari ini hujan dan kemarin tidak hujan maka besok akan hujan dengan peluang 0.5; jika hari ini tidak hujan dan kemarin hujan maka besok akan hujan dengan peluang 0.4; jika dalam dua hari terakhir tidak hujan maka besok hujan dengan peluang 0.2. Matriks peluang transisinya adalah sbb: Jika hari Senin dan Selasa hujan, berapa peluang bahwa hari Kamis akan hujan? MA4081 Pros.Stok. 5 K. Syuhada, PhD.

6 Peluang transisi tak bersyarat? Misalkan α i = P (X 0 = i), i 0, dimana i=0 α i = 1. Peluang tak bersyarat dapat dihitung dengan mensyaratkan pada keadaan awal, P (X n = j) = P (X n = j X 0 = i) P (X 0 = i) = i=0 i=0 ij α i Seorang pensiunan H menerima 2 (juta rupiah) setiap awal bulan. Banyaknya uang yang diperlukan H untuk dibelanjakan selama sebulan saling bebas dengan banyaknya uang yang dia punya dan sama dengan i dengan peluang P i, i = 1, 2, 3, 4, 4 i=1 P i = 1. Jika H memiliki uang lebih dari 3 di akhir bulan, dia akan memberikan sejumlah uang lebih dari 3 itu kepada orang lain. Jika setelah dia menerima uang diawal bulan H memiliki uang 5, berapa peluang uangnya akan 1 atau kurang setiap saat selama 4 bulan berikut? Keadaan: 1 jumlah uang sebanyak 1 yang H punya di akhir bulan 2 jumlah uang sebanyak 2 yang H punya di akhir bulan 3 jumlah uang sebanyak 3 yang H punya di akhir bulan Misalkan {Y n, n 0} adalah Rantai Markov dengan peluang transisi P ij. Misalkan Q ij adalah peluang transisi yang mentransformasikan semua keadaan dalam A ke keadaan tetap/hilang (absorbing states), maka 1, i A, j = i; Q ij = 0, i A, j i; P ij, yang lain. Peluang Y n dalam keadaan awal i dan tidak berada di keadaan lain dalam A sampai waktu n, untuk i, j / A adalah P (Y n = j Y 0 = i, Y k / A, k = 1,..., n) = Q n ij r / A Qn ir MA4081 Pros.Stok. 6 K. Syuhada, PhD.

7 1.4 JENIS KEADAAN Keadaan j dikatakan dapat diakses (accessible) dari keadaan i jika ij > 0 untuk suatu n 0. Akibatnya, keadaan j dapat diakses dari keadaan i jika dan hanya jika dimulai dari keadaan i proses akn masuk ke keadaan j. Jika keadaan j tidak dapat diakses dari keadaan i maka peluang masuk ke keadaan j dari keadaan i adalah nol. Catatan: Dua keadaan i dan j yang saling akses satu sama lain dikatakan berkomunikasi (communicate). Notasi: i j. Sifat-sifat: 1. Keadaan i berkomunikasi dengan keadaan i untuk semua i 0 2. Jika keadaan i berkomunikasi dengan keadaan j maka keadaan j berkomunikasi dengan keadaan i 3. Jika keadaan i berkomunikasi dengan keadaan j dan keadaan j berkomunikasi dengan keadaan k maka keadaan i berkomunikasi dengan keadaan k Dua keadaan yang berkomunikasi dikatakan berada dalam kelas (class) yang sama. Setiap dua kelas dari keadaan-keadaan dapat identik (identical) atau saling asing (disjoint). Rantai Markov dikatakan tidak dapat direduksi (irreducible) jika hanya terdapat sebuah kelas dan semua keadaan berkomunikasi satu sama lain. 1. Diketahui matrik peluang transisi: Apakah rantai Markov dengan peluang transisi diatas tidak dapat direduksi (irreducible)? 2. Apakah yang dapat anda katakan tentang rantai Markov dengan matriks peluang transisi berikut: MA4081 Pros.Stok. 7 K. Syuhada, PhD.

8 Untuk setiap keadaan i, misalkan f i peluang bahwa dimulai dari keadaan i proses akan kembali ke keadaan i. Keadaan i dikatakan recurrent jika f i = 1. Dikatakan transient jika f i < 1. Jika keadaan i recurrent maka proses akan terus kembali ke keadaan i Jika keadaan i transient? f n 1 i (1 f i ), n 1? Misalkan { 1, Yn = i; I n = 0, Y n 1. Misalkan n=0 I n menyatkan banyaknya periode proses berada dalam keadaan i, dan ( ) E n=0 I n Y 0 = i = n=0 ii maka keadaan i adalah recurrent jika n=0 ii = ; transient jika n=0 ii < Jika keadaan i recurrent dan keadaan i berkomunikasi (communicate) dengan keadaan j maka keadaan j recurrent 1. Misalkan rantai Markov dengan keadaan 0,1,2,3 memiliki matriks peluang transisi: Tentukan keadaan mana yang recurrent dan keadaan mana yang transient! MA4081 Pros.Stok. 8 K. Syuhada, PhD.

9 2. Bagaimana dengan rantai Markov dengan matriks peluang transisi: ? Misalkan ( ) P Y n = i, Y n 1 i,..., Y 1 i Y 0 = i = ii adalah peluang kembali ke keadaan i yang pertama di langkah ke-n, dan n=1 ii = f ii = f i adalah peluang kembali ke keadaan i. Definisi: Keadaan i adalah recurrent jika f i = 1, Keadaan i adalah transient jika f i < 1, Kita dapat juga mendefinisikan sbb: 1 f i = P (T i = Y 0 = i) f i = P (T i < Y 0 = i) dimana T i adalah waktu untuk kunjungan pertama ke keadaan i. Teorema: Jika N banyak kunjungan ke keadaan i diberikan Y 0 = i, maka Bukti: E(N Y 0 = i) = 1/(1 f i ) E(N Y 0 = i) = E(N T i =, Y 0 = i) P (T i = Y 0 = i) + E(N T i <, Y 0 = i) P (T i < Y 0 = i) ( ) = 1(1 f i ) E(N Y 0 = i) f i MA4081 Pros.Stok. 9 K. Syuhada, PhD.

BAB 1. Rantai Markov 1.1 ILUSTRASI

BAB 1. Rantai Markov 1.1 ILUSTRASI BAB 1 Rantai Markov 1.1 ILUSTRASI (Ilustrasi 1) Akhir-akhir ini, hujan dan panas (baca: tidak hujan) datang silih berganti tanpa bisa diduga. Kalau hari ini hujan, besok mungkin hujan mungkin juga panas.

Lebih terperinci

BAB 1. Rantai Markov 1.1 ILUSTRASI

BAB 1. Rantai Markov 1.1 ILUSTRASI BAB 1 Rantai Markov 1.1 ILUSTRASI (Ilustrasi 1) Akhir-akhir ini, hujan dan panas (baca: tidak hujan) datang silih berganti tanpa bisa diduga. Kalau hari ini hujan, besok mungkin hujan mungkin juga panas.

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Pengantar Proses Stokastik

Pengantar Proses Stokastik Bab 3: Rantai Markov Diskrit Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Rantai Markov Rantai Markov Rantai Markov Misalkan sebuah proses stokastik {X t } dengan t = 0, 1, 2,....

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Daftar

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK

MA4081 PENGANTAR PROSES STOKASTIK Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Orang Pintar Belajar Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2012 Tentang

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

/ /16 =

/ /16 = Kuis Selamat Datang MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Tanggal 22 Agustus 2017, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. 1. Widya (akan) memenangkan

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik

MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik Catatan Kuliah MA4081 PENGANTAR PROSES STOKASTIK Cerdas dan Stokastik disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2011 Tentang MA4081 (Pengantar)

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

Penelitian Operasional II Rantai Markov RANTAI MARKOV

Penelitian Operasional II Rantai Markov RANTAI MARKOV Penelitian Operasional II Rantai Markov 49 4. RANTAI MARKOV 4. PENDAHULUAN Dalam masalah pengambilan suatu keputusan, seringkali kita diperhadapkan dengan suatu ketidakpastian. Permasalahan ini dapat dimodelkan

Lebih terperinci

6.6 Rantai Markov Kontinu pada State Berhingga

6.6 Rantai Markov Kontinu pada State Berhingga 6.6 Rantai Markov Kontinu pada State Berhingga Markov chain kontinu 0 adalah proses markov pada state 0, 1, 2,.... Diasumsikan bahwa probabilitas transisi adalah stasioner, pada persamaan, (6.53) Pada

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 18 BAB III METODE PENELITIAN Pada bab ini akan dikemukakan metode-metode yang akan digunakan pada bab selanjutnya. Metode-metode pada bab ini yaitu metode Value at Risk dengan pendekatan distribusi normal

Lebih terperinci

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3)

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3) Kuis Selamat Datang Tanggal 22 Januari 2014, Waktu: suka-suka menit 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii)

Lebih terperinci

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang

II. TINJAUAN PUSTAKA. real. T dinamakan himpunan indeks dari proses atau ruang parameter yang II. TINJAUAN PUSTAKA 2.1 Proses Stokastik Stokastik proses = { ( ), } adalah kumpulan dari variabel acak yang didefinisikan pada ruang peluang (Ω, ς, P) yang nilai-nilainya pada bilangan real. T dinamakan

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

Stochastic process. Stochastic process. Stochastic process. Stochastic process 08/05/2015 STOCHASTIC PROCESS OPERATIONAL RESEARCH II

Stochastic process. Stochastic process. Stochastic process. Stochastic process 08/05/2015 STOCHASTIC PROCESS OPERATIONAL RESEARCH II OPERATIONAL RESEARCH II Agustina Eunike, ST., MT., MBA. Industrial Engineering University of Brawijaya STOCHASTIC PROCESS Sample space (ruang sample): all possible outcome Random variable: Fungsi nilai

Lebih terperinci

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Precise and Stochastic Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 Tentang MA4181 (Pengantar)

Lebih terperinci

CATATAN KULIAH PENGANTAR PROSES STOKASTIK

CATATAN KULIAH PENGANTAR PROSES STOKASTIK CATATAN KULIAH PENGANTAR PROSES STOKASTIK Oleh Atina Ahdika, S.Si, M.Si PROGRAM STUDI STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS ISLAM INDONESIA 2016 Daftar Isi Daftar Isi iv

Lebih terperinci

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3)

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3) Kuis Selamat Datang Tanggal 22 Januari 2014, Waktu: suka-suka menit 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii)

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB) Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Peluang Peluang mempunyai banyak persamaan arti, seperti kemungkinan, kesempatan dan kecenderungan. Peluang menunjukkan kemungkinan terjadinya suatu kejadian yang bersifat acak.

Lebih terperinci

MA5283 STATISTIKA Bab 2 Peluang

MA5283 STATISTIKA Bab 2 Peluang MA5283 STATISTIKA Bab 2 Peluang Orang Cerdas Belajar Statistika Silabus Silabus dan Tujuan Ruang sampel dan kejadian, konsep peluang, peluang bersyarat, Teorema Bayes. Tujuan Silabus dan Tujuan 1 Mendefinisikan

Lebih terperinci

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3)

P (Sp) = P (Sp LS)P (LS) + P (Sp LS c )P (LS c ) 0.2 = (0.15)(0.7) + P (Sp LS c )(0.3) Kuis Selamat Datang Tanggal 22 Januari 2014, Waktu: suka-suka menit 1. Catatan dalam perusahaan asuransi otomotif memberikan informasi bahwa (i) setiap pelanggan mengasuransikan setidaknya satu mobil (ii)

Lebih terperinci

Silabus. Proses Stokastik (MMM 5403) Proses Stokastik. Contoh

Silabus. Proses Stokastik (MMM 5403) Proses Stokastik. Contoh Silabus Proses Stokastik (MMM 5403) Status: Wajib Minat Statistika Rantai Markov, klasifikasi rantai Markov. Limit rantai Markov dan aplikasinya. Rantai Markov kontinu, contoh-contoh klasik. Proses renewal,

Lebih terperinci

Catatan Kuliah. MA5181 Proses Stokastik

Catatan Kuliah. MA5181 Proses Stokastik Catatan Kuliah MA5181 Proses Stokastik Precise. Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA5181 Proses Stokastik

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Pengantar Pada bab ini akan diuraikan beberapa landasan teori untuk menunjang penulisan skripsi ini. Uraian ini terdiri dari beberapa bagian yang akan dipaparkan secara terperinci

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Teori Peluang Definisi 2.1.1 Percobaan Acak (Ross 2000) Suatu percobaan yang dapat diulang dalam kondisi yang sama dan semua kemungkinan hasil yang muncul dapat diketahui tetapi

Lebih terperinci

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Kuis 1 MA5181 Proses Stokastik Precise. Prospective. Tanggal 24 Agustus 2016, Waktu: suka-suka menit Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kuis Selamat Datang MA5181 Proses Stokastik Precise. Prospective. Tanggal 23 Agustus 2016, Waktu: suka-suka menit 1. Mahasiswa yang datang ke ruang kuliah mengikuti suatu proses dengan laju kedatangan

Lebih terperinci

PENGANTAR MODEL PROBABILITAS

PENGANTAR MODEL PROBABILITAS PENGANTAR MODEL PROBABILITAS (PMP, Minggu 8-14) Sri Haryatmi Kartiko Universitas Gadjah Mada Juni 2014 Outline 1 Minggu 8:MOMEN VARIABEL RANDOM Mean dan Variansi Fungsi Pembangkit Momen (MGF) 2 Minggu

Lebih terperinci

PENENTUAN KLASIFIKASI STATE PADA RANTAI MARKOV DENGAN MENGGUNAKAN NILAI EIGEN DARI MATRIKS PELUANG TRANSISI

PENENTUAN KLASIFIKASI STATE PADA RANTAI MARKOV DENGAN MENGGUNAKAN NILAI EIGEN DARI MATRIKS PELUANG TRANSISI PENENTUAN KLASIFIKASI STATE PADA RANTAI MARKOV DENGAN MENGGUNAKAN NILAI EIGEN DARI MATRIKS PELUANG TRANSISI Yohanes A.R. Langi 1) 1) Program Studi Matematika FMIPA Universitas Sam Ratulangi, Manado 95115

Lebih terperinci

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB)

P (A c B c ) = P [(A B) c ] = 1 P (A B) = 1 P (A) P (B) + P (AB) Diskusi 1 Tanggal 29 Januari 2014, Waktu: suka-suka menit Peluang suatu kejadian; sifat-sifat peluang (termasuk kejadian-kejadian saling asing dan saling bebas); peluang bersyarat; peluang total; 1. Buktikan

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson

MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC MA4181 PENGANTAR PROSES STOKASTIK Bab 5 Proses Poisson SMART AND STOCHASTIC Pengantar Seperti sudah disampaikan sebelumnya, analog

Lebih terperinci

Hidden Markov Model (HMM) dan Pengenalan Pola. Toto Haryanto

Hidden Markov Model (HMM) dan Pengenalan Pola. Toto Haryanto Hidden Markov Model (HMM) dan Pengenalan Pola Toto Haryanto Hidden Markov Model Model Probabilistik Cocok Digunakan pada data yang bersifat temporal sekuenseial, contoh : Sinyal (Sinyal Suara, sinyal digital)

Lebih terperinci

Hidden Markov Model (HMM) dan Pengenalan Pola

Hidden Markov Model (HMM) dan Pengenalan Pola Hidden Markov Model (HMM) dan Pengenalan Pola Toto Haryanto Hidden Markov Model Model Probabilistik Cocok Digunakan pada data yang bersifat temporal sekuenseial, contoh : Sinyal (Sinyal Suara, sinyal digital)

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK We do love uncertainty disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik

Lebih terperinci

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting

Minggu 1 Review Peubah Acak dan Fungsi Distribusi. Minggu 4-5 Analisis Model MA, AR, ARMA. Minggu 6-7 Model Diagnostik dan Forecasting IKG4Q3 Ekonometrik Dosen: Aniq A Rohmawati, M.Si [Kelas Ekonometrik] CS-36-02 [Jadwal] Senin 10.30-12.30 R.A208A; Selasa 10.30-12.30 R.E302 [Materi Ekonometrik] Kuliah Pemodelan dan Simulasi berisi tentang

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA5181 PROSES STOKASTIK

MA5181 PROSES STOKASTIK Catatan Kuliah MA5181 PROSES STOKASTIK disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA5181 Proses Stokastik A. Jadwal kuliah:

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Dalam bab ini dijelaskan beberapa definisi dan teorema yang digunakan dalam pembahasan selanjutnya. 2.1 Teori Peluang Definisi 2.1.1 (Percobaan Acak) (Ross 2000) Suatu percobaan

Lebih terperinci

I. PENDAHULUAN. Manusia di dalam hidupnya selalu berada dalam ketidakpastian dan selalu

I. PENDAHULUAN. Manusia di dalam hidupnya selalu berada dalam ketidakpastian dan selalu I. PENDAHULUAN A. Latar Belakang Manusia di dalam hidupnya selalu berada dalam ketidakpastian dan selalu mengalami risiko, yaitu suatu peristiwa yang belum dapat dipastikan terjadinya dan bila terjadi

Lebih terperinci

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat

Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat MA38 Teori Peluang - Khreshna Syuhada Bab 9 Bab 9 Peluang dan Ekspektasi Bersyarat: Harapan Tanpa Syarat Ilustrasi 9. Misalkan banyaknya kecelakaan kerja rata-rata per minggu di suatu pabrik adalah empat.

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Forecast, assess, and control your risk. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Forecast, assess, and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2016 1 Tentang MA4183

Lebih terperinci

BAB III. Hidden Markov Models (HMM) Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata,

BAB III. Hidden Markov Models (HMM) Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata, BAB III Hidden Markov Models (HMM) 3.1 Pendahuluan Rantai Markov mempunyai state yang dapat diobservasi secara langsung. Namun pada beberapa situasi tertentu yang ditemukan di kehidupan nyata, beberapa

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Dalam kehidupan nyata, hampir seluruh fenomena alam mengandung ketidakpastian atau bersifat probabilistik, misalnya pergerakan lempengan bumi yang menyebabkan gempa,

Lebih terperinci

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic. disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 PENGANTAR PROSES STOKASTIK Smart and Stochastic disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4181 (Pengantar)

Lebih terperinci

ANALISIS MARKOV Proses Markov Matriks kemungkinan perpindahan keadaan / transisi

ANALISIS MARKOV Proses Markov Matriks kemungkinan perpindahan keadaan / transisi ANALISIS MARKOV Analisis Markov adalah suatu teknik matematik untuk peramalan perubahan pada variabelvariabel tertentu berdasarkan pengetahuan dari perubahan sebelumnya Pada analisis ini terlihat suatu

Lebih terperinci

RANTAI MARKOV ( MARKOV CHAIN )

RANTAI MARKOV ( MARKOV CHAIN ) RANTAI MARKOV ( MARKOV CHAIN ) 2.1 Tujuan Praktikum Rantai markov (Markov Chain ) merupakan salah satu materi yang akan dipelajari dalam praktikum stokastik. Berikut ini terdapat beberapa tujuan yang akan

Lebih terperinci

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard

BAB II TINJAUAN PUSTAKA. komoditas, model pergerakan harga komoditas, rantai Markov, simulasi Standard BAB II TINJAUAN PUSTAKA Pada bab ini akan dibahas beberapa tinjauan mengenai teori yang diperlukan dalam pembahasan bab-bab selanjutnya antara lain tentang kontrak berjangka komoditas, model pergerakan

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah

Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah BAB 1 Peluang dan Ekspektasi Bersyarat 1.1 EKSPEKTASI Definisi: Nilai harapan/ekspektasi (expected value/expectation) atau ekspektasi dari peubah acak diskrit/kontinu X adalah E(X) x x p X (x) dan E(X)

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Model Markov Dalam teori probabilitas, model Markov adalah model stokastik yang digunakan untuk memodelkan sistem yang berubah-ubah secara random di mana diasumsikan bahwa kondisi

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

MA4181 MODEL RISIKO Risk is managed, not avoided

MA4181 MODEL RISIKO Risk is managed, not avoided Catatan Kuliah MA4181 MODEL RISIKO Risk is managed, not avoided disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2013 Tentang MA4181 Model Risiko

Lebih terperinci

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah

Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah MA3181 Teori Peluang - Khreshna Syuhada Bab 8 1 Bab 8 Fungsi Peluang Bersama: Bersama Kita Berpisah Ilustrasi 8.1 Sebuah perusahaan asuransi menduga bahwa setiap orang akan mengalami dan memiliki parameter

Lebih terperinci

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat,

BAB I PENDAHULUAN. Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Perkembangan ilmu pengetahuan dan teknologi yang sangat pesat, menjadikan statistika memegang peranan penting dalam kehidupan. Hampir semua fenomena yang terjadi

Lebih terperinci

AK5161 Matematika Keuangan Aktuaria

AK5161 Matematika Keuangan Aktuaria Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang AK5161 Matematika

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Masalah Bab 1 PENDAHULUAN 1.1 Latar Belakang Masalah Sebagian besar mahasiswa ITB mengambil mata kuliah MA1122 Kalkulus I pada tahun pertama perkuliahannya. Mata kuliah ini merupakan salah satu mata kuliah yang

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko

Catatan Kuliah. MA4183 Model Risiko Catatan Kuliah MA4183 Model Risiko Forecast and control your risk Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2015 1 Tentang MA4183 Model Risiko

Lebih terperinci

MENENTUKAN PREMI TUNGGAL DAN RISIKO PADA KASUS MULTISTATE MENGGUNAKAN RANTAI MARKOV WAKTU KONTINU HOMOGEN. (Skripsi) Oleh SUYANTI

MENENTUKAN PREMI TUNGGAL DAN RISIKO PADA KASUS MULTISTATE MENGGUNAKAN RANTAI MARKOV WAKTU KONTINU HOMOGEN. (Skripsi) Oleh SUYANTI MENENTUKAN PREMI TUNGGAL DAN RISIKO PADA KASUS MULTISTATE MENGGUNAKAN RANTAI MARKOV WAKTU KONTINU HOMOGEN (Skripsi) Oleh SUYANTI FAKULTAS MATEMATIKA DAN ILMU PEGETAHUAN ALAM UNIVERSITAS LAMPUNG BANDAR

Lebih terperinci

BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN. Analisis Markov merupakan sebuah teknik yang berhubungan dengan

BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN. Analisis Markov merupakan sebuah teknik yang berhubungan dengan 6 BAB 2 LANDASAN TEORI DAN KERANGKA PEMIKIRAN 2.1 Landasan Teori 2.1.1 Analisis Rantai Markov Analisis Markov merupakan sebuah teknik yang berhubungan dengan probabilitas akan state di masa mendatang dengan

Lebih terperinci

ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM

ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM Saintia Matematika Vol., No. 2 (2), pp. 9 9. ANALISIS ESTIMASI PERUBAHAN MINAT MAHASISWA UNIVERSITAS SUMATERA UTARA TERHADAP TUJUH OPERATOR GSM Hasoloan M Nababan, Open Darnius Sembiring, Ujian Sinulingga

Lebih terperinci

HALAMAN JUDUL LEMBAR PERSETUJUAN...

HALAMAN JUDUL LEMBAR PERSETUJUAN... DAFTAR ISI HALAMAN JUDUL LEMBAR PERSETUJUAN... i LEMBAR PENGESAHAN... ii LEMBAR PERNYATAAN... iii ABSTRAK... iv ABSTRACT... v KATA PENGANTAR... vi DAFTAR ISI... vii DAFTAR GAMBAR... x DAFTAR TABEL... xi

Lebih terperinci

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po

MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Po MA4081 PENGANTAR PROSES STOKASTIK Bab 4 Proses Poisson: Suatu Pengantar Orang Pintar Belajar Stokastik Tentang Kuliah Proses Stokastik Bab 1 : Tentang Peluang Bab 2 : Peluang dan Ekspektasi Bersyarat*

Lebih terperinci

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting

MA6281 PREDIKSI DERET WAKTU DAN COPULA. Forger The Past(?), Do Forecasting Catatan Kuliah MA6281 PREDIKSI DERET WAKTU DAN COPULA Forger The Past(?), Do Forecasting disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014

Lebih terperinci

PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI

PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI PROSES KEPUTUSAN MARKOVIAN TEKNIK RISET OPERASI Contoh TIA 310 3 Contoh TIA 310 4 TIA 310 5 TIA 310 6 TIA 310 7 TIA 310 8 Cara Perhitungan 0.2 x 7 + 0.5 x 6 + 0.3 x 3 = 5.3 0 x 0 + 0.5 x 5 + 0.5 x 1 =

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teori Pemeliharaan Untuk menjamin kontinuitas kegiatan operasional suatu sistem, keandalan setiap komponen peralatan sangat dijaga agar peralatan tersebut tidak mengalami kegagalan

Lebih terperinci

Markov Chain. Game Theory. Dasar Simulasi

Markov Chain. Game Theory. Dasar Simulasi Markov Chain Game Theory Dasar Simulasi Analisis Perubahan Cuaca Perpindahan merek Operasi dan maintenance mesin Perubahan harga di pasar saham dll Menyusun matriks probabilitas transisi. Menghitung probabilitas

Lebih terperinci

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest! Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2014 1 Tentang AK5161 Matematika

Lebih terperinci

Klasifikasi Keadaan dalam Rantai Markov Menggunakan Algoritma Graf Classification of States of Markov Chains Using Graph Algorithms

Klasifikasi Keadaan dalam Rantai Markov Menggunakan Algoritma Graf Classification of States of Markov Chains Using Graph Algorithms Prosiding Statistika ISSN: 460-6456 Klasifikasi Keadaan dalam Rantai Markov Menggunakan Algoritma Graf Classification of States of Markov Chains Using Graph Algorithms 1 Yussy Anistia Nurislamiyati, Suwanda,

Lebih terperinci

TAKARIR. Berikut ini adalah padanan kata bahasa asing dalam bahasa Indonesia yang. : Tidak terjadi produk yang tidak memenuhi persyaratan barang/ jasa

TAKARIR. Berikut ini adalah padanan kata bahasa asing dalam bahasa Indonesia yang. : Tidak terjadi produk yang tidak memenuhi persyaratan barang/ jasa TAKARIR Berikut ini adalah padanan kata bahasa asing dalam bahasa Indonesia yang digunakan dalam menyusun laporan tugas akhir ini : Zero Defect : Tidak terjadi produk yang tidak memenuhi persyaratan barang/

Lebih terperinci

6.3 PROSES KELAHIRAN DAN KEMATIAN

6.3 PROSES KELAHIRAN DAN KEMATIAN 6.3 PROSES KELAHIRAN DAN KEMATIAN Penjelasan dari proses-proses kelahiran murni dan kematian murni telah diskusikan pada bagian 6.1 dan 6.2 bahwa X(t) memungkinkan untuk naik ataupun turun. Jadi, apabila

Lebih terperinci

BAB I PENDAHULUAN. sumber yang dapat dipercaya, petunjuk atau reputasi yang telah dibuat.

BAB I PENDAHULUAN. sumber yang dapat dipercaya, petunjuk atau reputasi yang telah dibuat. 1 BAB I PENDAHULUAN 1.1 LATAR BELAKANG Pengambilan keputusan adalah pemilihan di antara alternatifalternatif mengenai sesuatu cara bertindak serta inti dari perencanaan. Suatu rencana dapat dikatakan tidak

Lebih terperinci

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY

BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY BAB III MODEL HIDDEN MARKOV KONTINU DENGAN PROSES OBSERVASI ZERO DELAY 3.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang Ω,,. Misalkan ; adalah rantai Markov dengan state berhingga

Lebih terperinci

Peubah Acak dan Distribusi

Peubah Acak dan Distribusi BAB 1 Peubah Acak dan Distribusi 1.1 ILUSTRASI (Ilustrasi 1) B dan G secara bersamaan menembak sasaran tertentu. Peluang tembakan B mengenai sasaran adalah 0.7 sedangkan peluang tembakan G (bebas dari

Lebih terperinci

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4183 Model Risiko Risk: Quantify and Control. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4183 Model Risiko Risk: Quantify and Control Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang MA4183 Model Risiko

Lebih terperinci

BAB IV MODEL HIDDEN MARKOV

BAB IV MODEL HIDDEN MARKOV BAB IV MODEL HIDDEN MARKOV 4.1 State dan Proses Observasi Semua proses didefinisikan pada ruang peluang (Ω, F, P). Misalnya X = {X : k N} adalah rantai Markov dengan state berhingga yang bersifat homogen

Lebih terperinci

BAB III HIDDEN MARKOV MODELS. Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan

BAB III HIDDEN MARKOV MODELS. Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan BAB III HIDDEN MARKOV MODELS Rantai Markov bermanfaat untuk menghitung probabilitas urutan keadaan yang dapat diamati. Tetapi terkadang ada urutan dari suatu keadaan yang ingin diketahui tetapi tidak dapat

Lebih terperinci

BAB I MANUSIA BISA TUMBUH SAYAP

BAB I MANUSIA BISA TUMBUH SAYAP BAB I MANUSIA BISA TUMBUH SAYAP Seorang pemuda bernama abid berjalan memasuki hutan untuk mencari hal baru, setelah sampai ke ujung jalan, dia tidak menyadari bahwa ada jurang di depannya, dan dia pun

Lebih terperinci

Asuransi sepeda memberikan ganti rugi atas kerusakan sepeda. yang disebabkan oleh : tabrakan, benturan, jatuh, tergelincir dari

Asuransi sepeda memberikan ganti rugi atas kerusakan sepeda. yang disebabkan oleh : tabrakan, benturan, jatuh, tergelincir dari Simas Sepeda Deskripsi Asuransi sepeda memberikan ganti rugi atas kerusakan sepeda yang disebabkan oleh : tabrakan, benturan, jatuh, tergelincir dari jalan, pencurian, termasuk pencurian yang didahului

Lebih terperinci

Rantai Markov Diskrit (Discrete Markov Chain)

Rantai Markov Diskrit (Discrete Markov Chain) #10 Rantai Markov Diskrit (Discrete Markov Chain) 10.1. Pendahuluan Berbagai teknik analitis untuk mengevaluasi reliability dari suatu sistem telah diuraikan pada bab terdahulu. Teknik analitis ini mengasumsikan

Lebih terperinci

MA4183 MODEL RISIKO Control your Risk!

MA4183 MODEL RISIKO Control your Risk! Catatan Kuliah MA4183 MODEL RISIKO Control your Risk! disusun oleh Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan STATISTIKA - FMIPA Institut Teknologi Bandung 2014 Tentang MA4183 Model Risiko A. Jadwal

Lebih terperinci

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah MA4181 Pengantar Proses Stokastik Stochastics: Precise and Prospective Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang

Lebih terperinci

Penggunaan Teori Otomata Pada Mesin Jaja

Penggunaan Teori Otomata Pada Mesin Jaja Penggunaan Teori Otomata Pada Mesin Jaja Christian Angga - NIM : 3508008 Teknik Informatika ITB Bandung 4035 e-mail: [email protected] ABSTRAK Makalah ini membahas tentang teori otomata atau

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2. Pengertian Distribusi Eksponensial Distribusi eksponensial adalah distribusi yang paling penting dan paling sederhana kegagalan mesin penghitung otomatis dan kegagalan komponen

Lebih terperinci

BAB IV ANALISIS MARKOV

BAB IV ANALISIS MARKOV BAB IV ANALISIS MARKOV 1. Pendahuluan Model Rantai Markov dikembangkan oleh seorang ahli Rusia A.A. Markov pada tahun 1906. Pada umumnya Riset Operasional bertujuan untuk mengambil keputusan yang optimal

Lebih terperinci

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD.

Catatan Kuliah. AK5161 Matematika Keuangan Aktuaria Insure and Invest. Dosen: Khreshna I.A. Syuhada, MSc. PhD. Catatan Kuliah AK5161 Matematika Keuangan Aktuaria Insure and Invest Dosen: Khreshna I.A. Syuhada, MSc. PhD. Kelompok Keilmuan Statistika - FMIPA Institut Teknologi Bandung 2017 1 Tentang AK5161 Matematika

Lebih terperinci

Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah

Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah Bab Menggunakan Pengukuran Waktu, Sudut, Jarak, dan Kecepatan dalam Pemecahan Masalah Tujuan Pembelajaran Setelah mempelajari bab ini, diharapkan siswa dapat: 1. menuliskan tanda waktu dengan notasi 1

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik

Bab 2 LANDASAN TEORI. 2.1 Pengantar Proses Stokastik Bab 2 LANDASAN TEORI Pada bab ini akan diberikan penjelasan singkat mengenai pengantar proses stokastik dan rantai Markov, yang akan digunakan untuk analisis pada bab-bab selanjutnya. 2.1 Pengantar Proses

Lebih terperinci

SOAL TUGAS STATISTIKA PENDIDIKAN. 2010, Prof. Ir. Sigit Nugroho, M.Sc., Ph.D.

SOAL TUGAS STATISTIKA PENDIDIKAN. 2010, Prof. Ir. Sigit Nugroho, M.Sc., Ph.D. SOAL TUGAS STATISTIKA PENDIDIKAN Dosen : Prof. Ir. Sigit Nugroho, M.Sc., Ph.D. 1. Berikut ini disajikan data banyaknya siswa yang lewat di depan kelas yang diambil secara sistematis dengan interval waktu

Lebih terperinci