Reflektor Gelombang Berupa Serangkaian Balok

Ukuran: px
Mulai penontonan dengan halaman:

Download "Reflektor Gelombang Berupa Serangkaian Balok"

Transkripsi

1 Bab 4 Reflektor Gelombang Berupa Serangkaian Balok Setelah kita mengetahui bagaimana pengaruh dan dimensi optimum dari 1 balok terendam sebagai reflektor gelombang maka pada bab ini akan dibahas bagaimana jika digunakan lebih dari 1 balok sebagai reflektor gelombang. 4.1 Kasus 2 Balok Dalam kasus ini digunakan dua balok terendam sebagai reflektor gelombang. Kedua balok ini tidak harus identik dalam arti mempunyai dimensi (lebar dan tinggi) yang sama. Misalkan tinggi balok pertama adalah h 0 h 1 dengan lebar balok L 1 dan tinggi balok kedua adalah h 0 h 2 dengan lebar balok L 2. Kedua balok tersebut terpisah dengan jarak L 0, lihat Gambar 4.1. Sehingga kedalaman air menjadi h 1 untuk 0 < x < L 1, h(x) = h 2 untuk L 1 + L 0 < x < L 2, (4.1.1) lainnya, h 0 dengan h 1 dan h 2 lebih kecil dari h 0 dan h 1 h 2. Dengan dua balok sebagai reflektor gelombang maka perhitungan secara analitik akan sulit karena kita harus mencari 8 parameter dari 8 persamaan agar da- 31

2 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 32 ( x, t) h0 h1 h2 L0 L1 L2 Gambar 4.1: Domain Fluida dengan dua balok tak identik sebagai reflektor gelombang pat mengetahui hubungan antara amplitudo gelombang datang dengan amplitudo gelombang transmisi yang ke kanan. Tetapi melalui argumentasi fisis pada kasus 1-balok, dapat pula dicari dimensi optimum dari kasus 2-balok. Pertama-tama perhatikan bahwa ketika gelombang memasuki daerah pengamatan dan menjalar di kedalaman yang berubah maka gelombang akan terpecah menjadi gelombang transmisi dan refleksi seperti pada kasus 1-balok. Sehingga penjelasan secara fisis yang terjadi pada 1 balok sebagai reflektor gelombang juga dapat diperumum ke daerah fluida dengan dua balok atau lebih. Semua gelombang yang ditransmisikan ke L 1 < x < L 0 + L 1 akan bersuperposisi saling melemahkan jika 2L 1 = (n )λ 1 dengan n = 0, 1, 2,... Selanjutnya, di atas kedalaman h 0 semua gelombang transmisi dan refleksi akan bersuperposisi saling melemahkan saat 2L 0 = (n )λ 0 dimana n = 0, 1, 2,... Hal yang serupa juga berlaku, yaitu lebar balok kedua haruslah 2L 2 = (n )λ 2 agar amplitudo gelombang transmisi di x > (L 0 + L 1 + L 2 ) minimum. Sehingga berdasarkan argumentasi fisis ini lebar paling optimal untuk sistem 2 balok dengan tinggi h 0 h 1 dan h 0 h 2 adalah L 1opt = λ 1 4 dan L 2opt = λ 2 4 dan kedua balok ini dipisahkan dengan jarak L 0opt = λ 0 4. Untuk perhitungan secara numerik, dipilih dua balok yang ukurannya identik yaitu tinggi balok h 0 h 1. Skema numerik yang digunakan untuk mengham-

3 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 33 piri solusi adalah metode Lax, masih menggunakan persamaan beda (3.2.4) dan (3.2.5) hanya saja jumlah titik diskontinu menjadi 4, sehingga sumbu x pada hampiran ini dipartisi menjadi lima daerah partisi menggunakan x 0 dan x 1. Di titik diskontinu saat kedalaman air berubah tetap digunakan persamaan beda (3.2.7). Data yang digunakan untuk perhitungan digunakan sebagai berikut: selang spatial [0, 150] dengan waktu pengamatan [0, 22], gravitasi g = 10, frekuensi gelombang = 1 dan dasar berbentuk 4, untuk 50 < x < 50 + L 1opt = 10 atau h(x) = L 0opt + L 1opt = 25 < x < (L 0opt + 2L 1opt = 35) 10, untuk lainnya, Hasil yang diperoleh dari skema numerik menunjukkan bahwa amplitudo gelombang transmisi dengan data-data diatas akan berkurang sebesar 27%. Gambar 4.2: Hasil simulasi numerik dengan L 1opt = 10 dan L 0opt = 15, terlihat pada gambar amplitudo gelombang datang berkurang sebesar 27% Untuk lebar balok yang optimum akan diperiksa secara numerik jarak antara balok yang optimum. Diperoleh: Dari Tabel 4.1 diperoleh jarak L 0opt = 15 yang mendekati nilai L 0 optimum secara analitik yaitu L 0opt = 1λ 4 1 =

4 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 34 L 1opt L 0 t = 0.1, x = 1 Pengurangan amplitudo % % % % % % % % % Tabel 4.1: Hasil numerik untuk kasus 2 buah balok dengan lebar L 1opt untuk beberapa nilai L Desain Reflektor Gelombang n-balok Dalam sub bab ini akan dipelajari mengenai reflektor gelombang terdiri dari n-balok dengan n > 2 (anggap identik untuk menyederhanakan paparan) seperti pada Gambar 4.3. Pada domain fluida dengan balok terendam lebih dari dua yang dimensinya ( x, t) h0 h1 u L0... L1 Gambar 4.3: Domain fluida dengan n-balok sebagai reflektor gelombang identik dengan tinggi (h 0 h 1 ) dan lebar L, maka argumentasi fisis pada kasus dua balok dapat diperumum. Sehingga lebar balok yang paling optimum juga sama yaitu L 1opt = 1λ 4 1 dan terpisah dengan jarak L 0opt = 1λ 4 0. Dengan skema numerik yang sama menggunakan metoda Lax dan data h 1 = 0, 4h 0 dapat diketahui bahwa untuk reflektor gelombang berupa tiga balok terendam akan mengurangi ampltudo

5 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 35 gelombang datang sebesar 40%. Selanjutnya empat balok terendam sebagai reflektor gelombang akan mengurangi amplitudo gelombang datang sampai 50%. Sebagai catatan, dalam perancangan dengan n-balok ini tetap harus memperhatikan domain keberlakuan SWE. Selanjutnya akan dijelaskan mengenai perancangan deretan n-balok versi lain. Misalkan diberikan daerah sepanjang L D dalam fluida dengan kedalaman h 0 dan ingin dibangun serangkaian balok yang terdiri dari n-balok dengan lebar tertentu dan dipisahkan dengan lebar tertentu pula, lihat Gambar 4.4. Ingin dicari ukuran balok reflektor gelombang yang optimal. Secara lebih spesifik akan dicari tinggi dan lebar balok (h 1 dan L 1 ) dan L 0 yang optimum. Kita tahu bahwa lebar balok optimum agar gelombang transmisi bersuperposisi saling melemahkan adalah L 1 = 1 4 λ 1. Juga jarak antar balok yang optimum adalah L 0 = 1 4 λ 0. Dari kedua hubungan di atas dapat diperoleh L 1 = 1 4 λ 1 = 1 2π = 1 4 k 1 4 L 0 = 1 4 λ 0 = 1 2π = 1 4 k 0 4 gh1 gh0 Agar panjang deretan n-reflektor gelombang itu tepat sama dengan L D maka haruslah Sehingga panjang lebar L 1 adalah nl 1 + nl 0 = L D (4.2.1) 1 = L D 4 gh1 n 1 4 gh0

6 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 36 ( x, t) h0 h1 L0... L1 LD Gambar 4.4: Deretan balok sepanjang L D dengan tinggi (h 0 h 1 ) dan lebar L Kaitan antara Deretan n-balok Periodik dengan Fenomena Resonansi Bragg Lebih jauh akan dilihat kaitan antara masalah deretan n-balok dengan resonansi Bragg yang muncul pada kasus dasar laut yang berupa fungsi sinus. Misalkan bilangan gelombang gelombang yang datang adalah k dan bilangan gelombang dasar sinusoidal adalah K. Resonansi Bragg terjadi jika K 2k lihat [3]. Untuk lebih jelasnya lihat Gambar 4.5. ë,k ½ ë,k Gambar 4.5: Dasar sinusoidal yang menyebabkan resonansi bragg jika K = 2k Perhatikan Gambar 4.6, fungsi kedalaman berupa fungsi periodik dengan h 0 + d untuk L 1 < x < L 1, h(x) = (4.3.1) h 0 d untuk L 1 < x < L 2, dengan periode L 1 + L 2.

7 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 37 Dimana sebagai reflektor gelombang akan optimum bila dan L 1 = 1 4 L 2 = 1 4 g(h0 d) g(h0 + d) Jika h(x) direpresentasikan sebagai deret Fourier maka komponen-kompoen Fouriernya berperiode L 1 + L 2. Suku tak konstan pertama dari deret Fourier h(x) akan mempunyai bilangan gelombang π 1 2 (L 1+L 2 ). Bilangan gelombang ini harus sesuai dengan bilangan gelombang dasar sinusoidal penyebab resonansi Bragg, yaitu 2k. Gambar 4.6: Dasar laut berupa deretan balok yang bersifat periodik dengan periode L 1 + L 2 Perhatikan bahwa Untuk nilai d yang relatif kecil maka π 1 (L L 2 ) = π π ( g(h 4 0 d) + g(h 0 + d)) = 4 g(h0 d) + g(h 0 + d) 4 g(h0 d) + g(h 0 + d) 2 gh0 = 2k Jadi dapat disimpulkan bahwa periode dari deretan n-balok dengan ukuran optimal mendekati periode dasar sinusoidal sebagai penyebab resonansi Bragg, jika d relatif kecil.

8 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK Contoh Perancangan Reflektor Gelombang Dalam bab ini akan dijelaskan mengenai aplikasi langsung perancangan balok sebagai reflektor gelombang menggunakan data laut sebenarnya. Setiap laut memiliki karakteristik tertentu seperti kedalaman h 0 tertentu dan perioda rata-rata gelombang di laut tersebut. Maka dengan mengetahui perioda gelombang di laut tertentu juga dapat diperoleh frekuensi gelombangnya (). Melalui website National Oceanic and Atmospheric Administration s ( diperoleh data mengenai laut di Teluk Onslow, North Carolina. Laut di tempat tersebut mempunyai perioda rata-rata 3.8 detik. Sehingga frekuensinya = 2π 3,8 daerah pantai dimisalkan sebesar 1 meter. = Kedalaman di Dari data-data di atas maka dapat diketahui lebar balok L 1opt dan jarak antar balok L 0opt yang optimum. Misalkan ingin didesain reflektor gelombang berupa n-balok identik dengan tinggi 0.6h 0. Kita tahu bahwa L 1opt = 1 4 λ 1 dan L 0opt = 1 4 λ 0 sehingga L 1opt = 1λ 4 1 = 1 2π gh1 4 = 1 2π = meter L 0opt = 1λ 4 0 = 1 2π gh0 4 = 1 2π = meter Jadi daerah pantai dengan kedalaman h 0 = 1 meter dengan = dapat dibangun n-balok dengan tinggi 0.6 meter dimana lebar balok optimumnya sama dengan 1.88 meter dan jarak antar balok sama dengan 2.97 meter. Hasil yang diperoleh di atas menyarankan lebar balok yang optimum sebesar 1.88 meter. Akan tetapi jika tidak memungkinkan dibangun balok dengan lebar optimum ini, maka lebar balok yang kurang dari 1.88 meter masih mereduksi amplitudo gelombang datang. Sehingga balok masih dapat berfungsi sebagai penahan gelombang.

9 BAB 4. REFLEKTOR GELOMBANG BERUPA SERANGKAIAN BALOK 39 Aplikasi lainnya dari hasil studi ini secara lebih fleksibel adalah untuk pembangunan deretan hutan dengan dimensi tertentu sebagai green belt. Alternatif lain adalah pembudidayaan terumbu karang di area laut yang lebih dalam agar mereduksi amplitudo gelombang datang sebelum mencapai pantai.

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK

PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK Bab 4 PEMECAH GELOMBANG BERUPA SERANGKAIAN BALOK 4.1 Kasus 2 buah Balok Dalam bahasan ini akan dipelajari proses transmisi dan refleksi yang terjadi untuk kasus 2 buah balok dengan bentuk geometri yang

Lebih terperinci

Reflektor Gelombang 1 balok

Reflektor Gelombang 1 balok Bab 3 Reflektor Gelombang 1 balok Setelah diperoleh persamaan yang menggambarkan gerak gelombang air setiap saat yaitu SWE, maka pada bab ini akan dielaskan mengenai pengaruh 1 balok terendam sebagai reflektor

Lebih terperinci

Bab 1 PENDAHULUAN. 1.1 Latar Belakang

Bab 1 PENDAHULUAN. 1.1 Latar Belakang Bab 1 PENDAHULUAN 1.1 Latar Belakang Kerusakan pantai bukanlah suatu hal yang asing lagi bagi masyara- kat. Banyak faktor yang dapat menyebabkan kerusakan pantai baik karena ulah manusia maupun karena

Lebih terperinci

1 BAB 4 ANALISIS DAN BAHASAN

1 BAB 4 ANALISIS DAN BAHASAN 1 BAB 4 ANALISIS DAN BAHASAN Pada bab ini akan dibahas pengaruh dasar laut tak rata terhadap perambatan gelombang permukaan secara analitik. Pengaruh dasar tak rata ini akan ditinjau melalui simpangan

Lebih terperinci

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG h Bab 3 DASAR SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG 3.1 Persamaan Gelombang untuk Dasar Sinusoidal Dasar laut berbentuk sinusoidal adalah salah satu bentuk dasar laut tak rata yang berupa fungsi sinus

Lebih terperinci

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Bab 4 DINDING SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Pada bab sebelumnya telah dibahas mengenai dasar laut sinusoidal sebagai reflektor gelombang. Persamaan yang digunakan untuk memodelkan masalah dasar

Lebih terperinci

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah

Bab 1. Pendahuluan. 1.1 Latar Belakang Masalah Bab 1 Pendahuluan 1.1 Latar Belakang Masalah Gelombang air laut merupakan salah satu fenomena alam yang terjadi akibat adanya perbedaan tekanan. Panjang gelombang air laut dapat mencapai ratusan meter

Lebih terperinci

1 BAB 1 PENDAHULUAN. tegak lurus permukaan air laut yang membentuk kurva atau grafik sinusodial.

1 BAB 1 PENDAHULUAN. tegak lurus permukaan air laut yang membentuk kurva atau grafik sinusodial. 1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Gelombang air laut adalah pergerakan naik dan turunnya air dengan arah tegak lurus permukaan air laut yang membentuk kurva atau grafik sinusodial. Terjadinya gelombang

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal (SWE) Bab 2 Landasan Teori Dalam bab ini akan dibahas mengenai Persamaan Air Dangkal dan dasar-dasar teori mengenai metode beda hingga untuk menghampiri solusi dari persamaan diferensial parsial. 2.1 Persamaan

Lebih terperinci

Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai

Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Bab 4 Diskretisasi Numerik dan Simulasi Berbagai Kasus Pantai Pada bab ini sistem persamaan (3.3.9-10) akan diselesaikan secara numerik dengan menggunakan metoda beda hingga. Kemudian simulasi numerik

Lebih terperinci

DASAR LAUT SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG

DASAR LAUT SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG DASAR LAUT SINUSOIDAL SEBAGAI REFLEKTOR GELOMBANG Viska Noviantri Jurusan Matematika dan Statistik, Fakultas Sains dan Teknologi, Binus University Jln. K.H. Syahdan No. 9, Palmerah, Jakarta Barat 11480

Lebih terperinci

PERANCANGAN REFLEKTOR GELOMBANG BERUPA DERETAN N-BALOK, Sebuah Tinjauan Matematis

PERANCANGAN REFLEKTOR GELOMBANG BERUPA DERETAN N-BALOK, Sebuah Tinjauan Matematis PERANCANGAN REFLEKTOR GELOMBANG BERUPA DERETAN N-BALOK, Sebuah Tinjauan Matematis TUGAS AKHIR Diajukan untuk Memenuhi Persyaratan Sidang Sarjana Program Studi Matematika ITB Oleh: Hendrik Darmawan Chendra

Lebih terperinci

BAB IV SIMULASI NUMERIK

BAB IV SIMULASI NUMERIK BAB IV SIMULASI NUMERIK Pada bab ini kita bandingkan perilaku solusi KdV yang telah dibahas dengan hasil numerik serta solusi numerik untuk persamaan fkdv. Solusi persamaan KdV yang disimulasikan pada

Lebih terperinci

Persamaan SWE Linier untuk Dasar Sinusoidal

Persamaan SWE Linier untuk Dasar Sinusoidal Bab 3 Persamaan SWE Linier untuk Dasar Sinusoidal Pada bab ini akan dijelaskan mengenai penggunaan persamaan SWE linier untuk masalah gelombang air dengan dasar sinusoidal. Dalam menyelesaikan masalah

Lebih terperinci

Bab 3 MODEL DAN ANALISIS MATEMATIKA

Bab 3 MODEL DAN ANALISIS MATEMATIKA Bab 3 MODEL DAN ANALISIS MATEMATIKA Pada bab ini akan dimodelkan permasalahan penyebaran virus flu burung yang bergantung pada ruang dan waktu. Pada bab ini akan dibahas pula analisis dari model hingga

Lebih terperinci

BAB IV DERET FOURIER

BAB IV DERET FOURIER BAB IV DERET FOURIER 4.1 Fungsi Periodik Fungsi f(x) dikatakan periodik dengan perioda P, jika untuk semua harga x berlaku: f (x + P) = f (x) ; P adalah konstanta positif. Harga terkecil dari P > 0 disebut

Lebih terperinci

DERET FOURIER DAN APLIKASINYA DALAM FISIKA

DERET FOURIER DAN APLIKASINYA DALAM FISIKA Matakuliah: Fisika Matematika DERET FOURIER DAN APLIKASINYA DALAM FISIKA Di S U S U N Oleh : Kelompok VI DEWI RATNA PERTIWI SITEPU (8176175004) RIFKA ANNISA GIRSANG (8176175014) PENDIDIKAN FISIKA REGULER

Lebih terperinci

RESONANSI BRAGG PADA ALIRAN AIR AKIBAT DINDING SINUSOIDAL DI SEKITAR MUARA SUNGAI

RESONANSI BRAGG PADA ALIRAN AIR AKIBAT DINDING SINUSOIDAL DI SEKITAR MUARA SUNGAI RESONANSI BRAGG PADA ALIRAN AIR AKIBAT DINDING SINUSOIDAL DI SEKITAR MUARA SUNGAI Viska Noviantri Jurusan Matematika dan Statistik, Fakultas Sains dan Teknologi, Universitas Bina Nusantara Jln. K.H. Syahdan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB TINJAUAN PUSTAKA. Definisi Gelombang dan klasifikasinya. Gelombang adalah suatu gangguan menjalar dalam suatu medium ataupun tanpa medium. Dalam klasifikasinya gelombang terbagi menjadi yaitu :. Gelombang

Lebih terperinci

SYARAT DIRICHLET. 1, 1 < t < 0

SYARAT DIRICHLET. 1, 1 < t < 0 SYARAT DIRICHET Misalkan f t adalah fungsi yang licin bagian demi bagian, berperioda, maka deret fourier konvergen. Ke nilai f t untuk setiap titik di mana fungsi f kontinu.. Ke nilai f t + + f t bagi

Lebih terperinci

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER

MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER MATERI 4 MATEMATIKA TEKNIK 1 DERET FOURIER 1 Deret Fourier 2 Tujuan : 1. Dapat merepresentasikan seluruh fungsi periodik dalam bentuk deret Fourier. 2. Dapat memetakan Cosinus Fourier, Sinus Fourier, Fourier

Lebih terperinci

Mutawafaq Haerunnazillah 15B08011

Mutawafaq Haerunnazillah 15B08011 GELOMBANG STASIONER Gelombang stasioner merupakan perpaduan dua gelombang yang mempunyai frekuensi, cepat rambat, dan amplitudo yang sama besar namun merambat dalam arah yang berlawanan. Singkatnya, gelombang

Lebih terperinci

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda

BAB II KAJIAN TEORI. syarat batas, deret fourier, metode separasi variabel, deret taylor dan metode beda BAB II KAJIAN TEORI Pada bab ini akan dibahas tentang beberapa teori dasar yang digunakan sebagai landasan pembahasan pada bab III. Beberapa teori dasar yang dibahas, diantaranya teori umum tentang persamaan

Lebih terperinci

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah

BAB II KAJIAN TEORI. homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah ini adalah BAB II KAJIAN TEORI Pada bab ini akan dibahas suatu jenis persamaan differensial parsial tak homogen yang dikenal sebagai persamaan forced Korteweg de Vries (fkdv). Persamaan fkdv yang dikaji dalam makalah

Lebih terperinci

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal

Bab 2 LANDASAN TEORI. 2.1 Penurunan Persamaan Air Dangkal Bab 2 LANDASAN TEORI 2.1 Penurunan Persamaan Air Dangkal Persamaan air dangkal atau Shallow Water Equation (SWE) berlaku untuk fluida homogen yang memiliki massa jenis konstan, inviscid (tidak kental),

Lebih terperinci

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu.

1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 1. Jarak dua rapatan yang berdekatan pada gelombang longitudinal sebesar 40m. Jika periodenya 2 sekon, tentukan cepat rambat gelombang itu. 2. Sebuah gelombang transversal frekuensinya 400 Hz. Berapa jumlah

Lebih terperinci

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation)

Bab 2. Landasan Teori. 2.1 Persamaan Air Dangkal Linier (Linier Shallow Water Equation) Bab 2 Landasan Teori Dalam bab ini akan dijelaskan mengenai Persamaan Air Dangkal linier (Linear Shallow Water Equation), metode beda hingga, metode ekspansi asimtotik biasa, dan metode ekspansi asimtotik

Lebih terperinci

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier

Aplikasi Deret Fourier (FS) Deret Fourier Aplikasi Deret Fourier Aplikasi Deret Fourier (FS) 1. Deret Fourier Menurut Fourier setiap fungsi periodik dapat dinyatakan sebagai jumlah fungsi sinus dan cosinus yang tak berhingga jumlahnya dan dihubungkan secara harmonis.

Lebih terperinci

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi

Fisika Umum (MA-301) Getaran dan Gelombang Bunyi Fisika Umum (MA-301) Topik hari ini: Getaran dan Gelombang Bunyi Getaran dan Gelombang Hukum Hooke F s = - k x F s adalah gaya pegas k adalah konstanta pegas Konstanta pegas adalah ukuran kekakuan dari

Lebih terperinci

GELOMBANG BERJALAN DAN GELOMBANG STATIONER

GELOMBANG BERJALAN DAN GELOMBANG STATIONER GELOMBANG BERJALAN DAN GELOMBANG STATIONER Bahan Ajar Fisika SMA Kelas XI Semester II Nama : Kelas : Gelombang Berjalan dan Gelombang Stationer Page 1 Satuan Pendidikan : SMA N 9 PADANG Kelas : XI MIA

Lebih terperinci

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut.

BAB III PEMBAHASAN. dengan menggunakan penyelesaian analitik dan penyelesaian numerikdengan. motode beda hingga. Berikut ini penjelasan lebih lanjut. BAB III PEMBAHASAN Pada bab ini akan dibahas tentang penurunan model persamaan gelombang satu dimensi. Setelah itu akan ditentukan persamaan gelombang satu dimensi dengan menggunakan penyelesaian analitik

Lebih terperinci

Spektrum dan Domain Sinyal

Spektrum dan Domain Sinyal Spektrum dan Domain Sinyal 1 Sinyal dan Spektrum Sinyal Komunikasi merupakan besaran yang selalu berubah terhadap besaran waktu Setiap sinyal dapat dinyatakan di dalam domain waktu maupun di dalam domain

Lebih terperinci

FUNGSI DAN GRAFIK FUNGSI

FUNGSI DAN GRAFIK FUNGSI FUNGSI DAN GRAFIK FUNGSI Apabila suatu besaran y memiliki nilai yang tergantung dari nilai besaran lain x, maka dikatakan bahwa besaran y tersebut merupakan fungsi besaran x. secara umum ditulis: y= f(x)

Lebih terperinci

BAB IV PEMODELAN DAN ANALISIS

BAB IV PEMODELAN DAN ANALISIS BAB IV PEMODELAN DAN ANALISIS Pemodelan dilakukan dengan menggunakan kontur eksperimen yang sudah ada, artificial dan studi kasus Aceh. Skenario dan persamaan pengatur yang digunakan adalah: Eksperimental

Lebih terperinci

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis

Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis Bab III Solusi Dasar Persamaan Lapisan Fluida Viskos Tipis III.1 III.1.1 Solusi Dasar dari Model Prekursor Persamaan Fluida Tipis Dimensi Satu Sebagai langkah pertama untuk memahami karakteristik aliran

Lebih terperinci

Fisika Dasar. Gelombang Mekanik 08:36:22. Mampu menentukan besaran-besaran gelombang yaitu amplitudo,

Fisika Dasar. Gelombang Mekanik 08:36:22. Mampu menentukan besaran-besaran gelombang yaitu amplitudo, Kompetensiyang diharapkan Gelombang Mekanik Mampu mendeskripsikan gejala dan ciri-ciri gelombang secara umum Mampu menentukan besaran-besaran gelombang yaitu amplitudo, frekuensi, kecepatan, fasa dan konstanta

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG GEARAN DAN GELOMBANG Getaran dapat diartikan sebagai gerak bolak balik sebuah benda terhadap titik kesetimbangan dalam selang waktu yang periodik. Dua besaran yang penting dalam getaran yaitu periode getaran

Lebih terperinci

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T

KOMUNIKASI DATA SUSMINI INDRIANI LESTARININGATI, M.T Data dan Sinyal Data yang akan ditransmisikan kedalam media transmisi harus ditransformasikan terlebih dahulu kedalam bentuk gelombang elektromagnetik. Bit 1 dan 0 akan diwakili oleh tegangan listrik dengan

Lebih terperinci

3. METODOLOGI PENELITIAN

3. METODOLOGI PENELITIAN 3. METODOLOGI PENELITIAN 3.1. Waktu dan Tempat Penelitian Peta lokasi penelitian di perairan Teluk Bone, Perairan Sulawesi dan sekitarnya, Indonesia (Gambar 6). Gambar 6. Peta Lokasi Penelitian Teluk Bone,

Lebih terperinci

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK

BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK BAB II PENGANTAR SOLUSI PERSOALAN FISIKA MENURUT PENDEKATAN ANALITIK DAN NUMERIK Tujuan Instruksional Setelah mempelajari bab ini pembaca diharapkan dapat: 1. Menjelaskan cara penyelesaian soal dengan

Lebih terperinci

Fisika Dasar I (FI-321)

Fisika Dasar I (FI-321) Fisika Dasar I (FI-31) Topik hari ini Getaran dan Gelombang Getaran 1. Getaran dan Besaran-besarannya. Gerak harmonik sederhana 3. Tipe-tipe getaran (1) Getaran dan besaran-besarannya besarannya Getaran

Lebih terperinci

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan

(2) dengan adalah komponen normal dari suatu kecepatan partikel yang berhubungan langsung dengan tekanan yang diakibatkan oleh suara dengan persamaan Getaran Teredam Dalam Rongga Tertutup pada Sembarang Bentuk Dari hasil beberapa uji peredaman getaran pada pipa tertutup membuktikan bahwa getaran teredam di dalam rongga tertutup dapat dianalisa tidak

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

Fisika I. Gelombang Mekanik 01:26:19. Mampu menentukan besaran-besaran gelombang yaitu amplitudo,

Fisika I. Gelombang Mekanik 01:26:19. Mampu menentukan besaran-besaran gelombang yaitu amplitudo, Kompetensiyang diharapkan Mampu mendeskripsikan gejala dan ciri-ciri gelombang secara umum Mampu menentukan besaran-besaran gelombang yaitu amplitudo, frekuensi, kecepatan, fasa dan konstanta penjalaran.

Lebih terperinci

DERET FOURIER. 1. Pendahuluan

DERET FOURIER. 1. Pendahuluan DERET FOURIER 1. Pendahuluan Teorema Fourier: Suatu fungsi periodik terhadap waktu, x p (t), dengan perioda dasar T 0, dapat dinyatakan sebagai jumlah tak hingga dari gelombang-gelombang sinusoidal. Fungsi

Lebih terperinci

Refleksi dan Transmisi

Refleksi dan Transmisi Pertemuan 4 1 Refleksi dan Transmisi Bgmn jk gel merambat dan kemudian menemui perubahan dlm medium perambatannya (misalnya dari medium udara kemudian masuk ke medium air)? Ada 2 kejadian yg mungkin: 1.

Lebih terperinci

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang.

3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata. Persamaan Gelombang. KOMPETENSI DASAR 3.11 Menganalisis besaran-besaran fisis gelombang stasioner dan gelombang berjalan pada berbagai kasus nyata INDIKATOR 3.11.1. Mendeskripsikan gejala gelombang mekanik 3.11.2. Mengidentidikasi

Lebih terperinci

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN

SEKOLAH TINGGI MANAJEMEN INFORMATIKA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN SEKOLAH TINGGI MANAJEMEN INFORMAA & KOMPUTER JAKARTA STI&K SATUAN ACARA PERKULIAHAN Mata : TEKNIK RANGKAIAN LISTRIK Kode Mata : DK - 23202 Jurusan / Jenjang : S1 SISTEM KOMPUTER Tujuan Instruksional Umum

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar belakang

BAB 1 PENDAHULUAN 1.1 Latar belakang BAB 1 PENDAHULUAN 1.1 Latar belakang Perkembangan elektronika daya telah membuat inverter menjadi bagian yang tidak terpisahkan dari mesin-mesin listrik AC. Penggunaan inverter sebagai sumber untuk mesin-mesin

Lebih terperinci

BAB I PENDAHULUAN. I.1 Latar Belakang

BAB I PENDAHULUAN. I.1 Latar Belakang BAB I PENDAHULUAN I.1 Latar Belakang Wilayah pesisir merupakan wilayah yang sangat dinamis dan mempunyai karakteristik yang beragam pada setiap wilayah di kabupaten/kota. Wilayah pesisir itu sendiri merupakan

Lebih terperinci

PENDAHULUAN Anda harus dapat

PENDAHULUAN Anda harus dapat PENDAHULUAN Di dalam modul ini Anda akan mempelajari Teori Pita Energi yang mencakup : asal mula celah energi, model elektron hampir bebas, model Kronig-Penney, dan persamaan sentral. Oleh karena itu,

Lebih terperinci

GETARAN DAN GELOMBANG

GETARAN DAN GELOMBANG 1/19 Kuliah Fisika Dasar Teknik Sipil 2007 GETARAN DAN GELOMBANG Mirza Satriawan Physics Dept. Gadjah Mada University Bulaksumur, Yogyakarta email: mirza@ugm.ac.id GETARAN Getaran adalah salah satu bentuk

Lebih terperinci

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt.

Gambar 1. Bentuk sebuah tali yang direnggangkan (a) pada t = 0 (b) pada x=vt. 1. Pengertian Gelombang Berjalan Gelombang berjalan adalah gelombang yang amplitudonya tetap. Pada sebuah tali yang panjang diregangkan di dalam arah x di mana sebuah gelombang transversal sedang berjalan.

Lebih terperinci

Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi

Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi Hutahaean ISSN 853-98 Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil Model Refraksi-Difraksi Gelombang Air oleh Batimetri dengan Mengerjakan Persamaan Kekekalan Energi Syawaluddin Hutahaean Kelompok

Lebih terperinci

PENENTUAN GELOMBANG SOLITON PADA FIBER BRAGG GRATING DENGAN MENGGUNAKAN METODE STEP-SPLIT. Theresa Febrina Siahaan*, Saktioto, Muhammad Edisar

PENENTUAN GELOMBANG SOLITON PADA FIBER BRAGG GRATING DENGAN MENGGUNAKAN METODE STEP-SPLIT. Theresa Febrina Siahaan*, Saktioto, Muhammad Edisar PENENTUAN GELOMBANG SOLITON PADA FIBER BRAGG GRATING DENGAN MENGGUNAKAN METODE STEP-SPLIT Theresa Febrina Siahaan*, Saktioto, Muhammad Edisar Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam

Lebih terperinci

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan

BAB 4 BAB 3 HASIL DAN PEMBAHASAN METODE PENELITIAN. 3.2 Peralatan 4 3.2 Peralatan..(9) dimana,, dan.(10) substitusi persamaan (10) ke persamaan (9) maka diperoleh persamaan gelombang soliton DNA model PBD...(11) agar persamaan (11) dapat dipecahkan sehingga harus diterapkan

Lebih terperinci

BAB IV HASIL PENGUKURAN LAPANGAN, PENGOLAHAN, DAN ANALISIS DATA SEISMOELEKTRIK

BAB IV HASIL PENGUKURAN LAPANGAN, PENGOLAHAN, DAN ANALISIS DATA SEISMOELEKTRIK BAB IV HASIL PENGUKURAN LAPANGAN, PENGOLAHAN, DAN ANALISIS DATA SEISMOELEKTRIK 4.1 Data Hasil Pengukuran Lapangan Dalam bab ini akan dijelaskan hasil-hasil yang diperoleh dari pengukuran langsung di lapangan

Lebih terperinci

BAB II TEORI TERKAIT

BAB II TEORI TERKAIT II. TEORI TERKAIT BAB II TEORI TERKAIT 2.1 Pemodelan Penjalaran dan Transformasi Gelombang 2.1.1 Persamaan Pengatur Berkenaan dengan persamaan dasar yang digunakan model MIKE, baik deskripsi dari suku-suku

Lebih terperinci

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method

Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 T - 4 Pemodelan Penjalaran Gelombang Tsunami Melalui Pendekatan Finite Difference Method Yulian Fauzi 1, Jose Rizal 1, Fachri Faisal 1, Pepi

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN 23 BAB IV HASIL DAN PEMBAHASAN 4.1 Visualisasi Gelombang di Dalam Domain Komputasi Teknis penelitian yang dilakukan dalam menguji disain sensor ini adalah dengan cara menembakkan struktur sensor yang telah

Lebih terperinci

BAB IV Pengujian. Gambar 4.1 Skema pengujian perangkat keras

BAB IV Pengujian. Gambar 4.1 Skema pengujian perangkat keras BAB IV Pengujian 4.1 Pendahuluan Untuk mengetahui kinerja perangkat filter anti-gempa yang telah dibuat, dalam tahap akhir penelitian ini dilakukan beberapa pengujian. Pengujian yang dilakukan terdiri

Lebih terperinci

C.1 OSILASI GANDENG PEGAS

C.1 OSILASI GANDENG PEGAS Mata Kuliah GELOMBANG-OPTIK OPTIK TOPIK I SUB TOPIK OSILASI GANDENG C. SISTEM OSILASI DUA DERAJAT KEBEBASAN:OSILASI GANDENG Satu derajat kebebasan: Misalkan: pegas yang memiliki satu simpangan Dua derajat

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang Masalah

BAB I PENDAHULUAN Latar Belakang Masalah BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam kehidupan sehari-hari banyak permasalahan yang muncul di lingkungan sekitar. Hal tersebut yang memicu kreatifitas berpikir manusia untuk menyelesaikan

Lebih terperinci

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi

BAB I PENDAHULUAN. terbagi dalam berberapa tingkatan, gelombang pada atmosfir yang berotasi BAB I PENDAHULUAN 1.1. Latar Belakang. Fenomena gelombang Korteweg de Vries (KdV) merupakan suatu gejala yang penting untuk dipelajari, karena mempunyai pengaruh terhadap studi rekayasa yang terkait dengan

Lebih terperinci

B. LANDASAN TEORI Getaran adalah gerak bolak balik melalui titik keseimbangan. Grafik getaran memiliki persamaan: y= A sin ( ωt +φ o)

B. LANDASAN TEORI Getaran adalah gerak bolak balik melalui titik keseimbangan. Grafik getaran memiliki persamaan: y= A sin ( ωt +φ o) A. TUJUAN PERCOBAAN. Mengetahui berbagai pola lissajous dengan variasi frekuensi dan amplitudo. Menggambarkan pola-pola lissajous menggunakan fungsi sinusoidal pada sumbu x dan sumbu y 3. Membandingkan

Lebih terperinci

Bab III Metode Penelitian

Bab III Metode Penelitian Bab III Metode Penelitian 3.1 Tahapan Penelitian Studi penelitian yang telah dilakukan bersifat eksperimental di Kolam Gelombang Laboratorium Lingkungan dan Energi Laut, Jurusan Teknik Kelautan FTK, ITS

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Daerah Penelitian Kecamatan Muara Gembong merupakan daerah pesisir di Kabupaten Bekasi yang berada pada zona 48 M (5 0 59 12,8 LS ; 107 0 02 43,36 BT), dikelilingi oleh perairan

Lebih terperinci

BAB 3 ALGORITMA DAN MODEL 2K FFT-IFFT CORE

BAB 3 ALGORITMA DAN MODEL 2K FFT-IFFT CORE BAB 3 ALGORITMA DAN MODEL 2K FFT-IFFT CORE Pada Bab ini dibahas mengenai penentuan algoritma, menentukan deskripsi matematis dari algoritma, pembuatan model fixed point menggunakan Matlab, dan pengukuran

Lebih terperinci

ANALISIS PERAMBATAN GELOMBANG AIR MELALUI DASAR TAK RATA DENGAN METODE PERTUBATION BERBASIS BAHASA PYTHON

ANALISIS PERAMBATAN GELOMBANG AIR MELALUI DASAR TAK RATA DENGAN METODE PERTUBATION BERBASIS BAHASA PYTHON 1 ANALISIS PERAMBATAN GELOMBANG AIR MELALUI DASAR TAK RATA DENGAN METODE PERTUBATION BERBASIS BAHASA PYTHON David Kurniawan Anggadi Jalan Thalib IV no 9, Jakarta +628999839863 davidanggadi@gmail.com ABSTRAK

Lebih terperinci

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai.

I. PENDAHULUAN. dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk. ke dalam sungai dan langsung tercampur dengan air sungai. I. PENDAHULUAN 1.1 Latar Belakang dan Masalah Dalam kehidupan, polusi yang ada di sungai disebabkan oleh limbah dari pabrikpabrik dan kotoran manusia atau kotoran binatang. Semua polutan tersebut masuk

Lebih terperinci

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu

Jika sebuah sistem berosilasi dengan simpangan maksimum (amplitudo) A, memiliki total energi sistem yang tetap yaitu A. TEORI SINGKAT A.1. TEORI SINGKAT OSILASI Osilasi adalah gerakan bolak balik di sekitar suatu titik kesetimbangan. Ada osilasi yang memenuhi hubungan sederhana dan dinamakan gerak harmonik sederhana.

Lebih terperinci

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH

PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH PROPOSAL TUGAS AKHIR PENGARUH JUMLAH SUKU FOURIER PADA PENDEKATAN POLAR UNTUK SISTEM GEOMETRI KARTESIAN OLEH : IRMA ISLAMIYAH 1105 100 056 JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT

Lebih terperinci

BAB II. Landasan Teori

BAB II. Landasan Teori BAB II Landasan Teori 2.1 Prinsip Kerja Perangkat Fourier Sumber cahaya laser menghasilkan berkas cahaya berdiameter kecil dengan distribusi intensitas mendekati Gaussian. Untuk mendapatkan diameter berkas

Lebih terperinci

Deret Fourier untuk Sinyal Periodik

Deret Fourier untuk Sinyal Periodik x( t T ) x( Analisis Fourier Jean Baptiste Fourier (1768-1830, ahli fisika Perancis) membuktikan bahwa sembarang fungsi periodik dapat direpresentasikan sebagai penjumlahan sinyal-sinyal sinus dengan frekuensi

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Prinsip Dasar Pengukuran Satelit Altimetri =( )/2 (2.1)

BAB 2 DASAR TEORI. 2.1 Prinsip Dasar Pengukuran Satelit Altimetri =( )/2 (2.1) BAB 2 DASAR TEORI 2.1 Prinsip Dasar Pengukuran Satelit Altimetri Pengukuran pada satelit altimetri adalah pengukuran jarak dari altimeter satelit ke permukaan laut. Pengukuran jarak dilakukan dengan memanfaatkan

Lebih terperinci

01. Panjang gelombang dari gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0 m (D) 4,0 m (E) 6,0 m 02.

01. Panjang gelombang dari gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0 m (D) 4,0 m (E) 6,0 m 02. 01. t = 0.4s Panjang gelombang dari gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0 m (D) 4,0 m (E) 6,0 m 02. t = 0.4s Amplituda dari gelombang pada gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0

Lebih terperinci

DAFTAR GAMBAR. No. Gambar Judul Gambar Halaman. Bab I Skema Pengurangan Berat Batuan Pelindung Selama Penanganan

DAFTAR GAMBAR. No. Gambar Judul Gambar Halaman. Bab I Skema Pengurangan Berat Batuan Pelindung Selama Penanganan DAFTAR GAMBAR No. Gambar Judul Gambar Halaman Bab I Gambar 1.1 Skema Pengurangan Berat Batuan Pelindung Selama Penanganan 2 Bab II Gambar 2.1 Pengaruh Relatif Tinggi Puncak terhadap Stabilitas 20 Gambar

Lebih terperinci

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding

BAB III. TEORI DASAR. benda adalah sebanding dengan massa kedua benda tersebut dan berbanding 14 BAB III. TEORI DASAR 3.1. Prinsip Dasar Metode Gayaberat 3.1.1. Teori Gayaberat Newton Teori gayaberat didasarkan oleh hukum Newton tentang gravitasi. Hukum gravitasi Newton yang menyatakan bahwa gaya

Lebih terperinci

BAB 4 HASIL DAN PEMBAHASAN

BAB 4 HASIL DAN PEMBAHASAN BAB 4 HASIL DAN PEMBAHASAN Melalui penerapan metode bedahingga dengan interpolasi Lagrange sebagai syarat batas terkait, maka solusi numerik dari dinamika dan interaksi soliton DNA model PBD dapat dicari

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1. Pengujian Sampel Peredam Sampel peredam yang digunakan memiliki bentuk balok dengan dimensi 5cm x 5cm x 5cm dengan variasi pola permukaan yang tidak rata dan terdapat lubang

Lebih terperinci

HAND OUT FISIKA DASAR 2/GELOMBANG : Gelombang Tali, Gelombang berdiri, superposisi

HAND OUT FISIKA DASAR 2/GELOMBANG : Gelombang Tali, Gelombang berdiri, superposisi HAND OUT FISIKA DASAR /GELOMBANG : Gelombang Tali, Gelombang berdiri, superposisi GELOMBANG : Traveling Wave, Standing Wave, Superposisi Gelombang M. Ishaq Salah satu fenomena fisis yang menarik dalam

Lebih terperinci

BAB III 3. METODOLOGI

BAB III 3. METODOLOGI BAB III 3. METODOLOGI 3.1. Pasang Surut Pasang surut pada umumnya dikaitkan dengan proses naik turunnya muka laut dan gerak horizontal dari massa air secara berkala yang ditimbulkan oleh adanya gaya tarik

Lebih terperinci

Akar-Akar Persamaan. Definisi akar :

Akar-Akar Persamaan. Definisi akar : Akar-Akar Persamaan Definisi akar : Suatu akar dari persamaan f(x) = 0 adalah suatu nilai dari x yang bilamana nilai tersebut dimasukkan dalam persamaan memberikan identitas 0 = 0 pada fungsi f(x) X 1

Lebih terperinci

PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA

PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA PENENTUAN SOLUSI GELOMBANG NONLINIER KORTEWEG DE VRIES MENGGUNAKAN METODE HIROTA Dra. HIDAYATI,.M.Si, Disampaikun pada Seminar Nasional, Mubes Ikutan Alumni FPMIPA-FMIPA UhP musan FISIKA FAKULTAS MATEMATIKA

Lebih terperinci

TUJUAN PERCOBAAN II. DASAR TEORI

TUJUAN PERCOBAAN II. DASAR TEORI I. TUJUAN PERCOBAAN 1. Menentukan momen inersia batang. 2. Mempelajari sifat sifat osilasi pada batang. 3. Mempelajari sistem osilasi. 4. Menentukan periode osilasi dengan panjang tali dan jarak antara

Lebih terperinci

BAB V HASIL DAN PEMBAHASAN

BAB V HASIL DAN PEMBAHASAN BAB V HASIL DAN PEMBAHASAN Hasil simulasi model penjalaran gelombang ST-Wave berupa gradien stress radiasi yang timbul sebagai akibat dari adanya perubahan parameter gelombang yang menjalar memasuki perairan

Lebih terperinci

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b)

Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduyanus Yosep Godja a), Andi Ihwan a)*, Apriansyah b) POSITRON, Vol. VI, No. 1 (1), Hal. 17 - ISSN : 1-9 Penentuan Distribusi Suhu pada Permukaan Geometri Tak Tentu Menggunakan Metode Random Walk Balduanus Yosep Godja a), Andi Ihwan a)*, Apriansah b) a Jurusan

Lebih terperinci

s(t) = C (2.39) } (2.42) atau, dengan menempatkan + )(2.44)

s(t) = C (2.39) } (2.42) atau, dengan menempatkan + )(2.44) 2.9 Analisis Fourier Alasan penting untuk pusat osilasi harmonik adalah bahwa virtually apapun osilasi atau getaran dapat dipecah menjadi harmonis, yaitu getaran sinusoidal. Hal ini berlaku tidak hanya

Lebih terperinci

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons

Referensi : Hirose, A Introduction to Wave Phenomena. John Wiley and Sons SILABUS : 1.Getaran a. Getaran pada sistem pegas b. Getaran teredam c. Energi dalam gerak harmonik sederhana 2.Gelombang a. Gelombang sinusoidal b. Kecepatan phase dan kecepatan grup c. Superposisi gelombang

Lebih terperinci

Pembahasan soal latihan dari buku fisika 3A Bab 1 untuk SMA, karangan Mikrajuddin Abdullah. 1. perhatikan gambar gelombang pada disamping.

Pembahasan soal latihan dari buku fisika 3A Bab 1 untuk SMA, karangan Mikrajuddin Abdullah. 1. perhatikan gambar gelombang pada disamping. Pembahasan soal latihan dari buku fisika 3A Bab 1 untuk SMA, karangan Mikrajuddin Abdullah Bagian A 1. perhatikan gambar gelombang pada disamping. a. Berapakah panjang gelombang? b. Berapakah amplitudo

Lebih terperinci

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1

KELAS XII FISIKA SMA KOLESE LOYOLA SEMARANG SMA KOLESE LOYOLA M1-1 KELAS XII LC FISIKA SMA KOLESE LOYOLA M1-1 MODUL 1 STANDAR KOMPETENSI : 1. Menerapkan konsep dan prinsip gejala gelombang dalam menyelesaikan masalah KOMPETENSI DASAR 1.1. Mendeskripsikan gejala dan ciri-ciri

Lebih terperinci

MATERI PERKULIAHAN. Gambar 1. Potensial tangga

MATERI PERKULIAHAN. Gambar 1. Potensial tangga MATERI PERKULIAHAN 3. Potensial Tangga Tinjau suatu partikel bermassa m, bergerak dari kiri ke kanan pada suatu daerah dengan potensial berbentuk tangga, seperti pada Gambar 1. Pada daerah < potensialnya

Lebih terperinci

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga

Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga J. Math. and Its Appl. ISSN: 1829-605X Vol. 2, No. 2, Nov 2005, 93 101 Simulasi Model Gelombang Pasang Surut dengan Metode Beda Hingga Lukman Hanafi, Danang Indrajaya Jurusan Matematika FMIPA ITS Kampus

Lebih terperinci

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik

Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Analisa dan Sintesa Bunyi Dawai Pada Gitar Semi-Akustik Eko Rendra Saputra, Agus Purwanto, dan Sumarna Pusat Studi Getaran dan Bunyi, Jurdik Fisika, FMIPA, UNY ABSTRAK Penelitian ini bertujuan untuk menganalisa

Lebih terperinci

Antiremed Kelas 12 Fisika

Antiremed Kelas 12 Fisika Antiremed Kelas 12 Fisika Gelombang Mekanik - Latihan Soal Doc. Name: AR12FIS0198 Version: 2012-09 halaman 1 01. t = 0.4s Panjang gelombang dari gambar di atas adalah. (A) 0,5 m (B) 1,0 m (C) 2,0 m (D)

Lebih terperinci

Gejala Gelombang. gejala gelombang. Sumber:

Gejala Gelombang. gejala gelombang. Sumber: Gejala Gelombang B a b B a b 1 gejala gelombang Sumber: www.alam-leoniko.or.id Jika kalian pergi ke pantai maka akan melihat ombak air laut. Ombak itu berupa puncak dan lembah dari getaran air laut yang

Lebih terperinci

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. (

Gelombang Stasioner Gelombang Stasioner Atau Gelombang Diam. gelombang stasioner. ( Gelombang Stasioner 16:33 Segala ada No comments Apa yang terjadi jika ada dua gelombang berjalan dengan frekuensi dan amplitudo sama tetapi arah berbeda bergabung menjadi satu? Hasil gabungan itulah yang

Lebih terperinci

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr

Gelombang FIS 3 A. PENDAHULUAN C. GELOMBANG BERJALAN B. ISTILAH GELOMBANG. θ = 2π ( t T + x λ ) Δφ = x GELOMBANG. materi78.co.nr Gelombang A. PENDAHULUAN Gelombang adalah getaran yang merambat. Gelombang merambat getaran tanpa memindahkan partikel. Partikel hanya bergerak di sekitar titik kesetimbangan. Gelombang berdasarkan medium

Lebih terperinci

Frekuensi Dominan Dalam Vokal Bahasa Indonesia

Frekuensi Dominan Dalam Vokal Bahasa Indonesia Frekuensi Dominan Dalam Vokal Bahasa Indonesia Tjong Wan Sen #1 # Fakultas Komputer, Universitas Presiden Jln. Ki Hajar Dewantara, Jababeka, Cikarang 1 wansen@president.ac.id Abstract Pengenalan ucapan

Lebih terperinci