Scientiae Educatia: Jurnal Pendidikan Sains
|
|
|
- Ida Atmadjaja
- 8 tahun lalu
- Tontonan:
Transkripsi
1 Scete Educt: Jul Peddk S (07), Vol 6 (): 47 5 DOI: Publhed b d IPA Bolo, IAIN Sekh Nujt Cebo, Idoe. p-issn: 0-50, e-issn: Scete Educt: Jul Peddk S joul h omepe: Peetu Be Pecept Gvt Bum Meuk Au Mtemt De Beb Metode Peuku Muhmmd M Chu Pom Stud Peddk Fk, UIN Su Guu Djt Bdu *Coepod utho. Jl. AH. Nuto No 05, Kot Bdu, 4064, Jw Bt, Idoe. E-ml ddee: [email protected] t c l e f o b t c t Atcle hto: Receved 4 Febu 07 Receved eved fom 7 Apl 07 Accepted Jue 07 Avlble ole Jue 07 Kewod: eth' vt mthemtcl w meuemet method Kt Kuc: vt bum u mtemt metode peuku Reech h bee doe o the detemto of the cceleto of vt of the eth u mthemtcl w b vou method of meuemet. Dt etevl doe b emov the pedulum ttched to t tht h d the tme. Dt poce doe b le meuemet method, epetble meuemet, meuemet wth wehted me d meuemet wth le eeo wthout weht. Fom the epemetl dt, the eult of the Eth' vt meued u le meuemet method (9.689 ± 0.009) m/, epeted meuemet of (9,8 ± 0.00) m/, epeted meuemet wth wehted vee of (9,85 ± 0.004) m/ d meuemet b le eeo wthout weht b (9,7 ± 0.4) m/. elh dlkuk peelt tet peetu be pecept vt bum meuk u mtemt de beb metode peuku.pembl dt dlkuk de c melepk bdul dktk pd tl tetu kemud dctt wktu. Peolh dt dlkuk de metode pekuku tul, peuku beul, peuku de t-t bebobot d peuku de ee le tp bobot. D dt ekpeme dpeoleh hl be vt bum meuk metode peuku tul ebe (9.689 ± 0.009) m/, peuku beul ebe (9.8 ± 0.00) m/, peuku beul de tt bebobot ebe (9.85 ± 0.004) m/ d peuku de ee le tp bobot ebe (9,7 ± 0.4) m/. 07 Scete Educt: Jul Peddk S. All ht eeved. Pedhulu Pecept vt dlh pecept dlm oleh bed ke bet ed. Bet bed dlh tk bum pd bed teebut. G dlh vt tu tk mek t du m. Ke bum tdk bebetuk bol mk be tdklh m utuk etp tempt d pemuk bum (ple, 998). Hukum vt jt meuut Newto (You & Feedm, 00) dumuk de pem eb bekut: mm F G () de F = tk mek t m m d m m = m bed petm m = m bed kedu = jk t kedu put m G = tetp vt Hukum belku utuk emu mte d jt. Jd meuut hukum bet utu bed d bum dlh: Mm w G () de M = m bum m = m bed = jk bed mp put bum Meuut hukum II Newto bhw F = m. dlm hl dlh w = m., mk pecept vt dlh: M G () 47
2 Pecept vt d pemuk bum dlh: M 0 G (4) de R dlh j-j bum. Ke bum tdk bebetuk bol mk be tdklh m utuk etp tempt d pemuk bum. Hubu t dutu tempt jk dlh d put bum de 0 k dpeoleh: R (5) 0 Utuk utu tempt et h d pemuk bum dpeoleh: R 0 (6) R h Utuk h pj juh lebh kecl d R, mk belku: h R 0 (7) Sec ekpeme be pecept vt bum dpt dtetuk de metode u mtemt epet bekut. Sutu bed dtuk pd utu ttk tetp de eut tl dp tdk bem, kemud tl teebut dmpk ebe udut θ tehdp vetkl mk pulh meuut (Peto, et l., 99) dlh: F m (8) Meuut (Peto, et l., 99) utuk udut θ td etf meujukk h pulh belw de udut mp θ kecl, eh θ = θ = S, de S dlh buu lt bed d dlh pj tl. M ol, eh m tem dp tekumpul h pd pembeb bdul. Bdul kemud du d ttk keetmb de membek udut mp θ kecl. St udut θ kecl, pet ekl utuk kepelu pedekt (Re, 984) Mk pem (8) k mejd: F m S (9) Jk eek tehdp ud d put pd tl dbk mk pem (9) mejd: d S m dt m S d S dt tu S 0 I dlh pem dfeel et el ebm de u d (Shofw, 00) metk hubu t be-be f pd ek bdul: tu 4 (ple, 998) () De demk jk d dpt duku, eh be pecept vt bum pd utu tempt dpt dkethu. Sup dpeoleh dt telt, pelu dpehtk pet eb bekut: l petu hu lebh d m bed. Smp hu kecl (θ < 0 0 ). Geek de ud hu t kecl. G put tdk boleh tejd. (ple, 998) (0) 48
3 Gmb. Au Bdul Mtemt Sec ekpeme be pecept vt bum dpt dtetuk de metode u mtemt. Sutu bed dtuk pd utu ttk tetp de eut tl dp tdk bem, kemud tl teebut dmpk ebe udut θ tehdp vetkl. Kemud dpeoleh dt pj tl d peode u, eljut dl de beb metode peuku epet peuku tu peuku tul, peuku beul, peuku beul de t-t bebobot d ee le tp bobot (Bevto & Robo, 00). Bedk hl teebut k dtelt be pecept vt d utu tempt meuk u mtemt de beb metode peuku. Metode Peelt Alt d bh peelt; ) l eb pekt bdul, ) Bdul eb beb, ) Mt utuk meuku pj tl 4) Stop wtch utuk meuku wktu u. Poedu peelt; ) Meuu lt epet pd mb, ) etuk pj tl petu duku d put bol mp de keduduk pejept tl, ) Smpk bol kemud lepk, 4) Ctt wktu dpeluk utuk melkuk 0 kl u. Pembl dt betempt d lbotoum fk d Uvet Ahmd Dhl Yokt. Metode l duk pd peelt dlh peuku tul, peuku beul, peuku beul de t-t bebobot, d ee le tp bobot ebm dtk pd pem bekut.. Peuku tul Pd metode, peuku pj tl d peode u h dlkuk tu kl. Peuku tul dlm fk ebm dkethu k mehlk k tdk telt d tdk peh duk eb metode peuku dlm ekpeme fk d. Metode tetp duk dlm peelt emt-mt utuk meujukk hl peuku utuk dbdk de metode peuku l. Sebm pem (), peode et el bdul dlh: 4 tu eh be pecept vt dlh: () 4 () de ketdkpt peuku dlh: 4 8 (4). Peuku beul Pd metode, peuku pj tl d peode u h dlkuk beul-ul, tuju d dlkuk peuku beul dlh utuk medptk dt bev eh dpeoleh kecedeu. Pd peuku beul dpeoleh pj tl t-t dpeoleh d peode u t-t mehlk ketdkpt ebe: 49
4 50 (5) (6) Seh be pem vt bum t-t beet ketdkpt dpt dtk de pem (7) d (8) eb bekut. 4 (7) 8 4 (8) Seljut hl peuku pecept vt de metode beul dpt dtk de pem: (9). Peuku beul de t-t bebobot Pd metode, hmp m de metode kedu tetp be pecept vt bum meupk kotbu d bebep kelompok m-m melkuk pecob d tempt teebut, eh dpeoleh dt m-m kelompok eb bekut.. Kelompok : (0) b. Kelompok : () c. Kelompok : () d. Kelompok ke- : () Seljut memlk ketdkpt peuku dtk de pem bekut:... (4) d. Ree le tp bobot Pd metode, utuk ked d m fk ee bebetuk luu mk pem ee ec umum dbek oleh pem (), meuut (Bevto & Robo, 00): b (5) de koefe d b dpt dtetuk de pem: ( ) (6) ( ) b (7) 4 eh 4 (8) De memlk ketdkpt d eu pem: ) ( ) ˆ ( (9)
5 4 (0). Hl d Pembh Hl Peelt Dt Pecob Bekut dlh dt dpeoleh d hl pecob u mtemt. bel. tetp (tetetu), duku tu kl (cm) N (kl) t (eko) ,5 bel. duku beul, = 90 cm ; = 0 kl u No (cm) t (eko) bel. V m-m h duku ekl, = 0 kl u No (cm) t (eko) Al Dt. Peuku tul Ketdkpt mt ( l ) d topwtch ( ): l = 0,0005 m, = 0,005. D dt pemt pd tbel, kemud dl meuk pem d 4, eh dpeoleh hl eb bekut: = m/ = m/ ± = (9,689 ±0.009) m/ b. Peuku beul Bedk dt pd tbel, kemud dlkuk l meuk pem 5 d 6, eh dpeoleh hl eb bekut : t = 0, d t = D hl teebut kemud dtepk pd pem 7 d 8, utuk mehtu t-t pecept vt peuku beul, dpeoleh hl eb bekut: G = 9.89 m/ = 0.00 m/ ± = (9.8 ± 0.00) m/ c. Rt-t bebobot Dt pehtu bebobot dmbl d bep kelompok m-m melkuk peuku pecept vt, dpeoleh dt eb bekut. 5
6 bel 4. Rt-t bebobot. Kelompok ± 0. ± 0.09 m/ ± 0.0 m/ 9.8 ± 0.9 m/ ± 0.4 m/ ± m/ De meuk pem d 4, dpeoleh hl eb bekut: = 9.85 m/ = m/ ± = (9.85 ± 0.004) m/ d. Ree e p Bobot D dt pemt pd tbel, eljut dl meuk pem 6, 7, 8, 9 d 0 eh dpeoleh hl eb bekut: ± = (9,7 ± 0.4) m/ Hl d t ju dpt dpeoleh de melkuk ftt fk hubu t kudt peodk ( ) tehdp pj tl (), dtmplk pd mb bekut = 4,699-0, Gmb. Kuv kudt peodk ( ) tehdp pj tl () Bedk ftt fk, dpeoleh de tu l ebe 4,699. Meujuk pd pem, m 4, ekuvle de b. Dm 4 4, eh 9, 7 B. Pembh De u bdul mtemt, pecept vt bum dutu tempt dpt dtetuk etelh dkethu bep be peode u bdul teebut. D pem dpeoleh hubu peode bebd teblk de pecept vt bum. Pd pecob, bdul k beu pbl tl dmpk de udut θ tetetu. Hl debbk ke d be ebd de jk d utu ttk, eh ellu meuju ttk keetmb. Ak tetp udut dbetuk duhk ekecl muk ku d 0 0 dpeoleh dt telt (ple, 998). Bedk pd l dt dpeoleh hl pehtu pecept vt bum d lbotoum fk d UAD de beb metode tu: metode peuku tul dpeoleh hl = (9,689 ± 0,009) m/, metode peuku beul dpeoleh hl = (9,8 ± 0,00) m/, metode t-t bebobot dpeoleh hl = (9,85 ± 0,004) m/ d metode ee le tp bobot dpeoleh hl = (9,7 ± 0,4) m/. Setelh membdk bebep metode m/. 5
7 peuku teebut mk de melht k medekt de efee d melht k ketdkpt peuku dlh metode peuku beul d metode t-t bebobot. 4. Smpul D peelt telh dlkuk dpt dmpulk bhw ekpeme peetu pecept vt bum d Yokt de beb metode l peuku tu de peuku tul ebe (9,689 ± 0,009) m/, peuku beul ebe (9,8 ± 0,00) m/, peuku beul de t-t bebobot ebe (9,85 ± 0,004) m/ d peuku de ee le tp bobot ebe (9,7 ± 0,4) m/. 5. Dft Putk Bevto, P. & Robo, D. K., (00). Dt Reducto Ad Eo Al Fo he Phcl Scece. New Yok: McGw-Hll. Peto,., He,. K. & Setw, S., (99). Meet Fk. Petm peut. Yokt: Ad Offet. Re, A., (984). A- Ilmu Alm Uvet Jld. I. Uju Pd: Bd Kejm Peuu Nee. Idoe B mu. Shofw, M., (00). Pe Pem Dfeel e Ode Kedu pd Au Bdul, Ml: Uvet Nee Ml. ple, P. A., (998). Fk : utuk d tekk. Jkt: El. You, H. D. & Feedm, R. A., (00). Fk Uvet. Jkt: El. 5
Jurnal Pengajaran MIPA, Vol. 3 No. 1 Juni 2002
PLIKSI MTRIKS NKEL PD PERITUNGN RESULTN DU POLINOMIL Oleh: R. Rowt Juu Pek Mtetk Fkult Mtetk Ilu Peethu l Uvet Nee Yokt BSTRCT Let F e el F[] wth ee ee. Coput eultt two polol wth kel t ve ze o t le th
Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif
Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh
Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)
BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs
BAB V ENERGI DAN POTENSIAL
ENERGI DN POTENSIL 4. Eegi g dipeluk meggek mut titik dlm med listik. Itesits med listik didefiisik sebgi g g betumpu pd mut uji stu pd titik g igi kit dptk hg med vekt. Jik mut uji tesebut digekk melw
Bab 4 ANALISIS REGRESI dan INTERPOLASI
Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp
BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor
BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor
x 1 M = x 1 m 1 + x 2 m x n m n = x i
Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl
BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS -Q +Q. Muatan satu coulomb menimbulkan muatan listrik satu coulomb. (C/m 2 )
BAB III KERAPATAN FLUKS LISTRIK DAN HUKUM GAUSS KERAPATAN FLUKS LISTRIK Fluk litik bemul di mutn poitif dn bekhi di mutn negtif ( tu bekhi di tk tehingg klu tidk d mutn negtif (b + - + -~ Gi fluk ( (b
1 yang akan menghasilkan
Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr
Bentuk Umum Perluasan Teorema Pythagoras
Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model
DASAR MATEMATIKA. Untuk mempelajari teori sistem kontrol diperlukan latar belakang matematika. bidang s. s 1. σ 1. Gambar 2-1 Bidang kompleks
DASAR MATEMATIKA Utu mempelj teo tem otol dpelu lt belg mtemt Koep Peubh Komple Peubh Komple jω bdg σ jω σ σ Gmb - Bdg omple Gmb - meggmb betu bdg omple, yg m tt ddef oleh oodt σ σ d ω ω, tu ec edeh dtul
CNH2B4 / KOMPUTASI NUMERIK
CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk
REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut
REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1
REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut
MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI
MATERI DAN SOAL MATEMATIKA SMP Mter Dn Sol Mtetk SMP GEOMETRI Geoetr dn MODUL Bnun Run PENDALAMAN MATERI ESENSIAL DAN SULIT MATA PELAJARAN : MATEMATIKA ASPEK : GEOMETRI STANDAR KOMPETENSI LULUSAN. Meh
( X ) 2 ANALISIS REGRESI
ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk
BAB VI ANALISIS REGRESI
BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet
PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS
PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu
a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6
home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk
Teorema Gauss. Garis Gaya oleh muatan negatip. Garis gaya listrik. Garis gaya oleh sebuah muatan titik. Sebuah muatan negatip
Gs Gy Lstk Konsep fluks Teoem Guss Teoem Guss Penggunn Teoem Guss Medn oleh mutn ttk Medn oleh kwt pnjng tk behngg Medn lstk oleh plt lus tk behngg Medn lstk oleh bol solto dn kondukto Medn lstk oleh slnde
PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI
PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte
INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
I PENDAHULUAN II TINJAUAN PUSTAKA
I PENDAHULUAN. Lt Belkg Kt-kt mu p t mempuy pebe bt peget. Bebep kt mugk mempuy t yg lebh umum bgk eg yg ly. Det kemp u kt tk pelu met tu ttf. Sebg cotoh w meh mempuy peget yg lebh umum lebh lu bgk eg
A. Barisan Geometri. r u. 1).Definisi barisan geometri. 2). Suku ke-n barisan geometri
A. Bis Geometi ).Defiisi bis geometi Sutu bis yg suku-sukuy dipeoleh deg c meglik suku sebelumy deg sutu kostt (sio/pembdig) tu ili kost. Betuk umum bis geometi (deg suku wl d sio ) dlh : + + + +... +
PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial
Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl
CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)
CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :
5 S u k u B u n g a 1 5 %
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) U S A H A A B O N I K A N B A N K I N D O N E S I A K A
Dr.Eng. Agus S. Muntohar Department of Civil Engineering
Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg
Lampiran 1. Prosedur analisa kadar amilosa modifikasi metode IRRI (AOAC1995)
LMPIRN Lmpn 1. Pedu nl kd ml mdfk metde IRRI (OC1995) Senyk 1 mg mpel dlutkn dlm 1 ml etnl 95% dn 9 ml NOH 1N. Kemudn lutn dpnkn pd uhu 8-1 C elm ± 1 ment mp tegeltn. Lutn ddngnkn llu dte pd lu tk 1 ml
Jika tahta kegelapan berjaya, perempuan telah diperlakukan bahkan bukan sebagai manusi a. Mere
Refle Ed 1 : Ger Peremp t Ct Kem Dtl ole AD Kmty Se 08 J 2009 11:09 - Terr Dperbr Rb 17 J 2009 23:47 J tt eelp berjy peremp tel dperl b b eb m Mere d p eb et bl ederw o r erl t ebt ml l y pt t 1 / 20 Refle
m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )
I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+
FAKULTAS DESAIN dan TEKNIK PERENCANAAN UJIAN AKHIR SEMESTER SEMESTER GENAP TA 2006/2007
FKULTS DSIN d TKNIK PRNCNN UJIN KHIR SMSTR SMSTR GNP T 006/007 Js : Tekik Sipil Hi / Tl : Sels -05-007 Mt Klih : Stkt Bj I Wkt : 10.50 1.30 Dose : I. Wiyto Dewoboto, MT. Seeste : IV Sift Uji : ope ote
Sudaryatno Sudirham. Analisis Keadaan Mantap Rangkaian Sistem Tenaga
Sudyt Sudh l Ked Mtp gk Ste Teg Peyulg d Slu T Slu t peyulg eupk kd yg hu dllu dl peylu eeg ltk Kt k ebh lu ud (deg kdukt tebuk) d pebh kt bg dl du bb. bb kt ebh ped d dt lu t, edgk d bb bekuty k kt bh
MATRIKS REFLEKSIF TERGENERALISASI. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Riau Kampus Binawidya Pekanbaru (28293), Indonesia
MTRIKS REFLEKSIF TERGENERLISSI Hed Myulis, Si Gemwti, sli Siit Mhsisw Pogm Studi S Mtemtik Dose Juus Mtemtik Fkults Mtemtik d Ilmu Pegethu lm Uivesits Riu Kmpus Biwidy Pekbu (893), Idoesi [email protected]
BARISAN DAN DERET. 2. Tuliskan tiga suku berikutnya dari setiap barisan berikut ini dan tentukan rumus sederhana suku ke n! a.
BARIAN DAN DERET A. BARIAN BILANGAN Bis dlh himpu semg usu-usu yg ditulis sec euut. Bis ilg dlh susu ilg yg disusu meuut sutu pol/ tu tetetu. Cotoh :.. Cotoh ol. Cilh 4 suku petm di is eikut, jik :.. c..
KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT
Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]
Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)
Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker
PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss
Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk
DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275
DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)
PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel
Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDUKSI MATEMATIKA
BAB XVIII. NOTASI SIGMA, BARISAN, DERET DAN INDKSI MATEMATIKA Notsi Sigm : dlh otsi sigm, diguk utuk meytk pejumlh beuut di sutu bilg yg sudh bepol. meupk huuf cpitl S dlm bjd Yui dlh huuf petm di kt SM
1, 1 PENANGKAPAN IKAN DENGAN PURSE SEINE
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N A N G K A P A N I K A N D E N G A N P U R S E S E I N E P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N A N G K A P A
TEORI KONTROL OPTIMUM
EO KONOL OPMUM UG Oleh N PY NM : 6 Pogm td Mtemt NU EKNOLOG NDUNG 9 .-5 Como of Dffeet Dete Cotolle, 8. Fd the oe-loo otol, to dve the tl tte to whle mmzg the ot Che yo we y mlto (.e., ly yo, to the lt
Solusi Sistem Persamaan Linear
Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems
Pemain P 1. Teorema 4.1 (Teorema minimax). Untuk setiap matriks pembayaran (pay off matrix), terdapat strategi optimal x* dan y* sedemikian sehingga
Rset Opers Probblstk Teor Permnn (Gme Theor) Deprtement of Mthemtcs FMIPA UNS Lecture 4: Med Strteg A. Metode Cmpurn (Med Strteg) D dlm permnn d mn permnn tersebut tdk mempun ttk peln, mk pr pemn kn bersndr
TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh
TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh
INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :
INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI
INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser
LIMIT FUNGSI. lim lim. , c = konstanta 6. lim f(x) Penting : Persoalan limit adalah mengubah bentuk tak tentuk menjadi bentuk tertentu.
LIMIT FUNGSI Teoem. f() g() f() g( ). f().g() f(). g( ) f(). f() g() f() g( ). deg g() g() g(). c.f() c. f(), c = kostt. f() f() f() Betuk Tk Tetu Betuk di dlm mtemtik d mcm, yitu :. Betuk tedefiisi (tetetu)
BAB 2 LANDASAN TEORI
8 BB LNDN TEORI. Peget Belj Belj dlh key tem, tlh kuc yg lg vtl dlm et uh eddk, ehgg t belj yg eugguhy tk eh d eddk. ebg utu oe,, belj elu medt temt yg lu dlm bebg dl lmu yg bekt deg uy eddk, mly kolog
Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya
Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler
FISIKA. Sesi INDUKSI MAGNETIK A. KAWAT LURUS BERARUS
FISIKA KELAS XII IPA - KURIKULUM GABUNGAN 07 Ses NGAN INDUKSI MAGNETIK Pd bd kesembln bels, Hns Chrstn Oersted (777-85) membuktkn keterktn ntr gejl lstrk dn gejl kemgnetn. Oersted mengmt st jrum kmps dtempelkn
BASIS ORTOGONAL. Bila V ruang Euclides, S V disebut Himpunan Ortogonal bila tiap dua unsur S ortogonal.
BASIS ORTOGONA Bts Bl V rg Ecldes S V dsebt Hmp Ortogol bl tp d sr S ortogol DAI J S hmp ortogol yg terdr dr K bh etor t ol dlm rg Ecldes V m S bebs ler V hssy bl dmes V S bss t V dsebt Bss ortogol DAI
MATEMATIKA DISKRIT FUNGSI 2 FUNGSI PEMBANGKIT (GENERATION FUNGTIONS) TITI RATNASARI, SSi., MSi. Modul ke: Fakultas ILKOM
MATEMATIKA DISKRIT Modul e: FUNGSI 2 FUNGSI PEMBANGKIT GENERATION FUNGTIONS Fults ILKOM TITI RATNASARI, SSi., MSi Pogm Studi TEKNIK INFORMATIKA www.mecubu.c.id Fugsi pembgit Fugsi pembgit digu utu meepesetsi
Analisa Kestabilan Pendahuluan Konsep Umum Kestabilan
Ali Ketil 4 Ali Ketil.. Pedhulu Hl yg mt petig dlm dei item kotrol dlh mlh tilit item. Buk hl yg rhi lgi hw pokok tuju terpetig dlm li d dei kotrol dlh meiptk utu item yg til. Sutu item diktk til pil teript
Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai
Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit
24/02/2014. Sistem Persamaan Linear (SPL) Beberapa Aplikasi Sistem Persamaan Linear Rangkaian listrik Jaringan Komputer Model Ekonomi dan lain-lain.
// Alj Lie Elemete MUGE SKS Silus : B I Mtiks d Oesi B II Detemi Mtiks B III Sistem Pesm Lie B IV Vekto di Bidg d di Rug B V Rug Vekto B VI Rug Hsil Kli Dlm B VII Tsfomsi Lie B VIII Rug Eige // :8 MUGE
1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.
KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk
A. Pusat Massa Suatu Batang
Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel
Bab 3 SISTEM PERSAMAAN LINIER
Alis Numerik Bh Mtrikulsi B SISTEM PERSAMAAN LINIER Pedhulu Pd kulih ii k dipeljri eerp metode utuk meelesik sistem persm liier Peelesi sistem persm deg jumlh vriel g tidk dikethui serig ditemui didlm
POTENSIAL LISTRIK Oleh : Sabar Nurohman,M.Pd
POTNSIL LISTRIK Oleh : S Nuohmn,M.Pd Ke Menu Utm Liht Tmpiln eikut: POTNSIL LISTRIK il seuh ptikel emutn egek dlm seuh medn listik, mk medn itu kn mengehkn seuh gy yng dpt melkukn kej pd ptikel teseut.
BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai
BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut
INTERPOLASI PERTEMUAN : S K S - T E K N I K I N F O R M A T I K A - S1 M O H A M A D S I D I Q
INTERPOLASI 3 S K S - T E K N I K I N F O R M A T I K A - S M O H A M A D S I D I Q PERTEMUAN : - SEBELUM-UTS Pegtr Metode Numerik Sistem Bilg d Keslh Peyji Bilg Bult & Pech Nili Sigiik Akursi d Presisi
X I I M S A SEMIN R A I P
BA B I PENDAHULUA N A. L Bek g Peddk pd dy meupk uu poe peub g k ku d yg dk u mej d u d begug ec eu meeu d m kedup mu meu og. Dm p eddk fom eog k membuuk eog guu uuk membmbg d meuuy dm keg pembej. Keg
Hendra Gunawan. 21 Februari 2014
MA0 MATEMATIKA A Hedr Guw Semester II, 03/04 Februri 04 Kulih Sebelumy 9.4 Deret Positif: Uji Liy Memeriks kekoverge deret positif deg ujiperbdigd ujirsio 9.5 Deret Gti Td: Kekoverge Mutlk d Kekoverge
BAB VI KESIMPULAN DAN SARAN
59 BAB VI KESIMPULAN DAN SARAN 6.1. Kesimpulan Berdasarkan hasil data survai dan analisis yang dilakukan pada lahan parkir Rumah Sakit Umum Daerah RAA Soewondo Pati selama 3 hari dapat diambil kesimpulan
Soal-soal dan Pembahasan Matematika Dasar SBMPTN - SNMPTN 2008
Sol-sol d Pembhs Mtemtik Dsr SBMPTN - SNMPTN 8 y. Dlm betuk pgkt positif, ( y). A. ( + y ) ( y ) C. ( y ) E. - ( y ) B. - ( + y ) ( y ) D. ( y ) y ( y) y ( y) y y ( y) y (y). (y) y - ( y ) ( y + ) - (-y+
Sistem Bilangan dan Kesalahan. Sistim Bilangan Metode Numerik 1
Sistem Bilg d Keslh Sistim Bilg Metode Numerik Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Sistim Bilg Metode Numerik Cotoh : 673 * 3 6* 7* 3*
T e b l 1. 2 Ba d Me
J SAT I Te Teooo Ju I S Le ee Uve u J u Teooo III( : 3 I S SN : 87 8 Mooo S Ke A Vu Deu e F e H C o B/ Au Sw B u Zu L S L oou Teoo B A Me J uu Te K Uve u Ku B w J H Su K eu 893 E : u@u A e o we o o oe
INTEGRAL TERTENTU. 5.1 Pengertian Integral Tertentu
INTEGRAL TERTENTU Iegl Teeu. Pege Iegl Teeu Defs.. Ps P pd evl [,] dlh suu suse ehgg P {,,,, } d [,] deg < < <
PENGGUNAAN PERANGKAT DERET SENSOR GAS DALAM USAHA PENENTUAN FORMALIN PADA BAHAN MAKANAN
PENGGUNAAN PERANGKAT DERET SENSOR GAS DALAM USAHA PENENTUAN FORMALIN PADA BAHAN MAKANAN BAIQ LAELY HERAWATY 1409 201 725 DOSEN PEMBIMBING Prof. Dr. TASLIM ERSAM SUPRAPTO, P.hD Dr. MUHAMMAD RIVAI, ST.,MT
TRANSFORMASI-Z RASIONAL
TRANSFORMASI-Z RASIONAL. Pole d Zeo Zeo di sutu tsfomsi- dlh ili-ili deg X() = 0. Pole di sutu tsfomsi- dlh ili-ili deg X() =. Jik X() dlh fugsi siol, mk () Jik 0 0 d 0 0, kit dt meghidi gkt egtif deg
matematika WAJIB Kelas X KUADRAN SUDUT Kurikulum 2013 A. Besar Sudut pada Setiap Kuadran
Kuikulum 03 Kels mtemtik WAJIB KUADRAN SUDUT Tujun Pembeljn Setelh mempelji ini, kmu dihpkn memiliki kemmpun beikut.. Memhmi bes sudut di setip kudn.. Memhmi pebndingn tigonometi sudut-sudut di setip kudn.
BAB III LIMIT FUNGSI DAN KEKONTINUAN
BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk
PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange
Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.
Sistem Bilangan dan Kesalahan. Metode Numerik
Sistem Bilg d Keslh Peyji Bilg Bult Bilg ult yg serig diguk dlh ilg ult dlm sistem ilg desiml yg didefiisik s: N ( )...... Cotoh : 673 * 3 6* 7* 3* Bilg ult deg ilg dsr c didefiisik segi : ( )... c N c
adalah jika sebuah benda bergerak membentuk suatu lingkaran dengan kecepatan konstan. v1 = v2 = v
Gek Melingk Betun (GMB) dlh jik sebuh bend begek ebentuk sutu lingkn dengn keceptn konstn. 1 = = Peceptn dlh bes peubhn keceptn selng wktu t, h keceptn jug enyebbkn peceptn. 1 = peubhn keceptn t = peubhn
USAHA KONVEKSI PAKAIAN JADI
P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H ( P P U K -S Y A R I A H ) U S A H A K O N V E K S I P A K A I A N J A D I P O L A P E M B I A Y A A N U S A H A K E C I L S Y A R I A H (
TEOREMA ABEL-DINI DAN DUAL KÖTHE-TOEPLITZ PADA DERET GANDA
Prosdg Semr Nsol Ss d Peddk Ss VIII, Fkults Ss d Mtemtk, UKSW Sltg, 5 Ju 203, Vol 4, No, ISSN:2087 0922 TEOREM BEL-DINI DN DUL KÖTHE-TOEPLITZ PD DERET GND Sumrdoo, Soer DW 2 & Sum 3 PPPPTK Mtemtk, Mhssw
III PEMBAHASAN. peubah. Sistem persamaan (6) dapat diringkas menjadi Bentuk Umum dari Magic Square, Bilangan Magic, dan Matriks SPL
III PEMBAHASAN 3.1. Betuk Umum dri Mgic Squre, Bilg Mgic, d Mtriks SPL Mislk eleme dri bris ke-i d kolom ke-j dlh i,j mk mgic squrey secr umum dlh 1,1 1, 1,,1,,,1,, Gmbr 1. Betuk umum mgic squre deg: i,j
Titik Biasa dan Titik Singular Misalkan ada suatu persamaan diferensial orde dua h(x)y + p(x)y + q(x)y = 0 (3)
PERSAMAAN LEGENDRE Fugi Rel Alitik Sutu fugi f( diktk litik pd jik fugi itu dpt diytk dl deret pgkt deg rdiu kovergei poitif. f ( ( + ( + ( + ( +... dl elg kovergeiy diperoleh f ( ( f '( f "(. f '''(......
ALJABAR. 1. AMS (Algemeene Middelbare School)-HBS (Hogere Burger School), 1949 Y terletak pada garis y
Megeg Jejk Sebgi Kecil Bgs Idoesi Yg Peh Megikuti Uji Sekolh Pd Awl Ms Keedek UJIAN PENGHABISAN SEKOLAH MENENGAH TINGKAT ATAS TAHUN 949 ALJABAR. AMS (Algeeee Middelbe School)-HBS (Hogee Buge School), 949
Metodologi Penelitian
MOUL PERKULIAHAN VIII Meodolog Peel ANALISA REGRESI Fkuls Pogm Sud Tp Muk Kode MK susu Oleh Psc Sj Mgse Tekk 54 3 Hmzh Hll Eleko 8 Asc Kulh keemp memu me eg lss pedks deg megguk meode kud ekecl: eges le
III PEMBAHASAN. x x. 3.1 Analisis Metode Perhatikan persamaan integral Volterra berikut. x. atau (11)
III PEMBAHASAN 3 Alisis Metode Perhtik persm itegrl Volterr berikut y ( f( λ Ktyt ( ( (8 deg y( merupk fugsi yg k ditetuk sutu kostt f( fugsi sembrg yg dikethui d terdefiisi pd R d K(ty(t sutu fugsi yg
Model Tak Penuh. Definisi dapat di-uji (testable): nxp
Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)
INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :
INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.
BARISAN DAN DERET A. POLA BILANGAN B. BARISAN BILANGAN. Contoh Soal
BARIAN DAN DERET A. POLA BILANGAN Bergi jeis ilg yg serig it pergu mempuyi pol tertetu. Pol ii serig digu dlm meetu urut / let ilg dri seumpul ilg yg ditetu, cotoh ilg gjil e-5 dri ilg :,, 5, 7, yitu 9.
USAHA PENANGKAPAN IKAN PELAGIS DENGAN ALAT TANGKAP GILLNET
P O L A P E M B I A Y A A N U S A H A K E C I L ( P P U K ) P E N A N G K A P A N I K A N P E L A G I S D E N G A N A L A T T A N G K A P G I L L N E T P O L A P E M B I A Y A A N U S A H A K E C I L (
BAB 3. DIFFERENSIAL. lim. Motivasi:
BAB. DIFFERENSIAL Motivsi: bim meetuk rdie ris siu sutu kurv di sutu titik pd kurv bim meetuk kecept sest sutu bed bererk sepj ris lurus Deiisi: mislk dl usi terdeiisi pd sel buk memut. Turu usi di diotsik
Ringkasan Limit Fungsi Kelas XI IPS 1 NAMA : KELAS : theresiaveni.wordpress.com
Riks Limit Fusi Kels XI IPS NAMA : KELAS : theresivei.wordpress.com Riks Limit Fusi Kels XI IPS LIMIT FUNGSI Limit dlm kt-kt sehri-hri: Medekti hmpir, sedikit li, tu hr bts, sesutu y dekt tetpi tidk dpt
um Y Gmu ol P Mu 6 3 mo ol mu m o l mo P l yu c u lm y c c y K 0 l lm y c - 4 c y /m l - 8 /m l 00 u K ) m ol l P j mu o oul w o o - m l ol mu u u m u
J ST J ul Toolo 1) 01 : 35 S SN : 087 548 P ol Mu o T Gmu Y um T Toolo Jul lm S Lm Pl Uv Ru mw B N oz L ooum T R Km Juu T K m Uv Ru Pu Kmu Bwy Jl HR Su Km15 Pu 893 E- ml: y u@uc F c P w w wc v ow colo
Hukum Gerak Newton FIS 1 A. PENDAHULUAN B. HUKUM NEWTON I C. HUKUM NEWTON II KINEMATIKA GERAK (I) materi78.co.nr
tei78.co.n Huku Gek ewton A. PEDAHULUA Huku gek ewton enjelskn hubungn gy dn gek yng dikibtkn oleh gy tesebut. Huku gek ewton tedii di huku kelebn, huku ewton II dn huku ksieksi. B. HUKUM EO I Huku ewton
BAB IV METODA ANALISIS RANGKAIAN
6 BAB METODA ANALSS RANGKAAN Metod nlss rngkn sebenrny merupkn slh stu lt bntu untuk menyeleskn sutu permslhn yng muncul dlm mengnlss sutu rngkn, blmn konsep dsr tu hukum-hukum dsr sepert Hukum Ohm dn
JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER 1
FITRIANA RICHA HIDAYATI 7 46 Dose Pembimbig M. ARIEF BUSTOMI, M.Si Surby, Jui JURUSAN FISIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH NOPEMBER Alis disesuik deg geometri
II. Potensial listrik
II. Potensil listik Penjelsn/deskipsi gejl listik: * gy * potensil * medn * enegi Enegi Potensil Listik enegi yng dipelukn untuk memindhkn seuh mutn ( melwn gy listik) q E enegi potensil pestun mutn potensil
KEMENTERIAN KESEHATAN RENIA KL TAHUN SEKRETARIAT IENDERAL 4 APRIL 2014 I '-I. "l I t t I
KMRA KHAA RA K AHU 01 '- KRARA DRA 4 APR 0. -l "l . UMUM 1. Keee/e. U 0. M U 4. e. Ke P. P 7. Pe [u Rup,l 1. Rup Pe. Pep. Pep. PH u PD RMUR R CAA KRA KM'RA/MBAA (RA- K) AHU AARA 01 KMRA KHAA eke leel 04.01.01.
