SILABUS MATA KULIAH. Tanggal Berlaku : 4 September 2015
|
|
|
- Yulia Hartono
- 8 tahun lalu
- Tontonan:
Transkripsi
1 SILABUS MATA KULIAH Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : dan Ruang Vektor 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 5. Elemen : MKK 6. Jenis : Keilmuan dan Keterampilan 7. total : 35 jam B. Unsur-unsur silabus 1 Setelah, mengetahui dan menganalisis fungsi vektor standar kompetensi dan kompetensi definisi vektor penyajian vektor beserta contohnya dan mengetahui operasi-operasi vektor dan mengetahui vektor pada ruang Rn dan mengetahui dalil-dalil vektor mampu mengetahui jenis-jenis vektor dot produk dan menganalisis bebas linier dan Vektor Definisi vektor Penyajian vektor Operasi-operasi vektor Vektor pada ruang R n Dalil-dalil operasi vektor Jenis-jenis vektor Dot produk Bebas Linier dan Bergantung Linier Kombinasi Linier Ceramah Menggunakan media OHP, papan tulis, notebook dan infokus Mahasiswa mencatat Mahasiswa mengerjakan soalsoal satu persatu di papan tulis 450 menit/ 3x soal,
2 2 Setelah mengetahui, matriks, operasi matriks, jenisjenis matriks, sehingga mentransformasi kan elementer baris dan kolom yang akan digunakan untuk rank pada matriks 3 Setelah mengetahui dan permatasi, definisikan dan rumus determinan, bergantung linier beserta contohnya dan menganalisis kombinasi linier beserta contohnya kompetensi pembahasan dan mengetahui matriks dan mengetahui operasi matriks mampu mengetahui dan tanspose matriks mampu mengetahui jenis-jenis matriks dan mentransformasikan elementer baris dan kolom suatu matriks dan menghiltung rank pada matriks kompetensi pembahasan mengenai determinan permutasi sifat-sifat determinan dan minor dan kofaktor dan determinan dengan penguraian (ekspansi) baris dan kolom Pengertian Operasi Transpose Jenis-jenis Transformasi Elementer Baris dan Kolom suatu Rank pada Determinan Permutasi Definisi dan rumus determinan Sifat-sifat Determinan Minor dan Kofaktor Penguraian (ekspansi) baris dan kolom Ceramah Menggunakan media OHP, papan tulis, notebook dan infokus Mahasiswa mencatat Mahasiswa mengeijakan soalsoal satu persatu di papan tulis Ceramah Menggunakan media OHP, papan tulis, notebook dan infokus Mahasiswa mencatat Mahasiswa mengerjakan soalsoal satu persatu di papan tulis 450 menit/ 3x
3 sifat-sifat determinan, sehingga mampu determinan dengan penguraian ekspansi baris dan kolom, mengenal bentuk matriks matriks singular dan non singular 4 Setelah matriks invers, matriks adjoin, serta menggunakan untuk mencari matriks invers dengan matriks adjoin, mengetahui sifat-sifat matriks invers 5 Setelah mampu mengenal dan bentuk matriks singular dan nonsingular Mahasiswa mampu kompetensi pembahasan mengenai limit dan kontinuitas fungsi Mahasiswa mampu definisi limit fungsi Mahasiswa mampu dan menentukan nilai limit Mahasiswa mampu dan menyelesaikan kekontinuan fungsi Mahasiswa mampu dan menyelesaikan suatu fungsi menjadi kontinu kompetensi pembahasan sistem Singular dan nsingular mampu kompetensi pembahasan matriks invers mampu mendefinisikannya mampu dan matriks adjoin mampu dan matriks invers dengan matriks adjoin mampu dan menggunakana sifat-sifat matriks invers Sistem Persamaan Linier Pengertian Ceramah Menggunakan media OHP, papan tulis, notebook dan infokus mencatat mengerjakan soal- soal satu persatu di papan tulis Ceramah Menggunakan media
4 persaman linier, mengidentifikasi kan persamaan linier dan solusi persamaan linier beserta contohnya 6 Setelah transformasi linier, mentransformasi kan vektor linier, mengoperasikan matriks dan transformasi vektor linier, mengopersikan produk transformasi invers, dan persamaan linier dan mendefinisikan persamaan linier dan solusi sistem persamaan linier beserta contohnya kompetensi pembahasan transformasi linier dan mendefinisikan tranformasi linier dan menstransformasikan vektor linier dan mengoperasikan matriks dan transformasi vektor linier dan mengoperasikan produk transformasi mempu dan menstransformasikan transformasi invers dan akar dan vektor karakteristik (eigenvalue dan eigenvektor) beserta contohnya Persaman Linier Identifikasi Persamaan Linier Solusi Sistem Persamaan Linier Transformasi Linier Pengertian Transformasi Linier Transformasi Vektor Linier dan Transformasi Vektor Linier Produk Transformasi Transformasi Invers Akar dan Vektor Karakteristik (Eigenvalue dan Eigenvektor) OHP, papan tulis, notebook dan infokus mencatat mengerjakan soal- soal satu persatu di papan tulis Ceramah Menggunakan media OHP, papan tulis, notebook dan infokus mencatat mengerjakan soal- soal satu persatu di papan tulis soal,
5 akar dan vektor karakteristik (eigenvalue dan eigenvektor) Daftar Referensi Wajib A. Adiwijaya,Dr. "Aplikasi dan Ruang Vektor", Penerbit Graha Ilmu, B. Ayres Frank JR. PhD, "", Erlangga, 1994 C. Howard Anton, "Aljabar Linier Elementer" D. Imrona Mahmud, Drs., M.T, "Aljabar Linier Dasar"Penerbit Erlangga, 2012 E. Kartono, Drs, Msi, "Aljabar Linier, Vektor, dan Esplorasinya dengan Maple", Penerbit Graha Ilmu, 2002 F. Pudjiastuti BSW, " Teori dan Aplikasi", Penerbit Graha Ilmu, 2006 G. Suryadi D., H.S. Harini. M. 'Teori dan Soal Pendahuluan Aljabar Linier", Ghalia Indonesia, Jakarta, 1985 Anjuran H. Seymour Lipcutz, "Linier Algebra", Schaum Outline Series. I. Serge Lang, "Linier Algebra", Addiison-Wesley Publishing Company Disiapkan oleh : Dosen Pengampu Diperiksa oleh : Ketua Program Studi Disahkan oleh : Dekan Dra. Yuniarsi Rahayu, M. Kom Dr. Ir. Rudy Tjahyono Dr. Eng. Yuliman Purwanto, M.Eng
6
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54303/ Matriks & Ruang Vektor 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode/ Nama Mata Kuliah : E124302 / Matriks d Rug Vektor Revisi : 4 Satu Kredit Semester : 3 Tggal Revisi : 16 Juli 2015 Jumlah Jam Kuliah Dalam Seminggu
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54303/ Matriks & Ruang Vektor Revisi 2 Satuan Kredit Semester : 3 SKS Tgl revisi : Agustus 2014 Jml Jam kuliah dalam
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Diskrit 2 Kode / SKS : IT02 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi. Pendahuluan 2. Vektor.. Pengantar mata kuliah aljabar linier.
.rtl: fli' tr';"'':' -$l \\ 1, RENCANA PROGRAM DAN KEGIATAN PEMBELAJARAN SEMESTER {RPKPS) **l MATRIKS DAN RUANG VEKTOR
RENCANA PROGRAM DAN KEGATAN PEMBELAJARAN SEMESTER {RPKPS) -$l \\ 1,.rtl: t.f/ **l 'J r. lll\l ''r, - '\,- il -t{* r tr';"'':' fli' MATRKS DAN RUANG VEKTOR DSUSUN OLEH: Dra. Yuniarsi Rahayu, M. Kom Bowo
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN
GARIS-GARIS BESAR PROGRAM PEMBELAJARAN Mata Kuliah : Aljabar Linear Kode / SKS : TIF-5xxx / 3 SKS Dosen : - Deskripsi Singkat : Mata kuliah ini berisi Sistem persamaan Linier dan Matriks, Determinan, Vektor
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : Definisi, Notasi, dan Operasi Vektor 2.
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER JURUSAN : TEKNIK KOMPUTER JUMLAH SKS : 3 Minggu Ke Pokok Bahasan dan TIU Sub Pokok Bahasan Sasaran Belajar Cara Pengajaran Media Tugas Referens i 1
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT / 2 SKS
SATUAN ACARA PERKULIAHAN MATA KULIAH : ALJABAR LINIER KODE / SKS : IT0143231 / 2 SKS Deskripsi: - Mata kuliah ini mempelajari konsep aljabar linear sebagai dasar untuk membuat algoritma dalam permasalahan
1.1. Definisi, Notasi, dan Operasi Vektor 1.2. Susunan Koordinat Ruang R n 1.3. Vektor di dalam R n 1.4. Persamaan garis lurus dan bidang rata
SATUAN ACARA PERKULIAHAN (SAP) MATA KULIAH : MATEMATIKA INFORMATIKA 2 JURUSAN : S1-TEKNIK INFORMATIKA KODE MATA KULIAH : IT-045214 Referensi : [1]. Yusuf Yahya, D. Suryadi. H.S., Agus S., Matematika untuk
Program Studi Sistem Informasi
FIK / SI /S- 24-0-204 Pengesahan Nama Dokumen : SILABUS ALJABAR LINIER No Dokumen : FIK/SI/S- No Diajukan oleh ISO 900:2008/IWA 2 dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy
PROGRAM STUDI TEKNIK KOMPUTER
12-08-28 Pengesahan Nama Dokumen : SILABUS No Dokumen : FIK/TK-III/S-1 No Diajukan oleh ISO 90:2008/IWA 2 1dari 5 Ir. Hastha Sunardi, MT (Dosen Pengampu) Diperiksa oleh Ir. Dedy Hermanto, MT (GKM) Disetujui
SILABUS MATAKULIAH. Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11. 54812 / Metode Numerik 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks
MODUL E LEARNING SEKSI -1 MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA 151 : 5099 : DRA ENDANG SUMARTINAH,MA
MODUL E LEARNING SEKSI - MATA KULIAH : ALJABAR LINIER KODE MATA KULIAH : ESA DOSEN : : DRA ENDANG SUMARTINAH,MA TUJUAN MATA KULIAH : A.URAIAN DAN TUJUAN MATA KULIAH : Mahasiswa mempelajari Matriks, Determinan,
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Kalkulus Perubah Banyak 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS
MATRIKS SATUAN ACARA PERKULIAHAN
MATRIKS SATUAN ACARA PERKULIAHAN Mata Kuliah Jurusan SKS Kode M. Kuliah : Kalkulus IA : Teknik Elektro : 2 SKS : KD-0420 Minggu ke Pokok Bahasan dan TIU Sub Pokok Bahasan dan Sasaran Belajar Cara Pengajaran
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI AGROTEKNOLOGI UNIVERSITAS GUNADARMA Tanggal Penyusunan 29/01/2016 Tanggal revisi - Kode dan Nama MK KU064210 Matematika SKS dan Semester SKS 2 Semester I (PTA)
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Teori Probabilitas 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
SILABUS MATA KULIAH. Pengalaman Pembelajaran. Dasar-dasar vektor dan vektor pada bidang datar (dimensi dua)
SILABUS MATA KULIAH Program Studi : Teknik Industri Kode Mata Kuliah : TKI-206 Nama Mata Kuliah : Matriks dan Vektor Jumlah SKS : 2 Semester : III Mata Kuliah Pra Syarat : TKI-111 Matematika Industri II
Satuan Acara Perkuliahan
FM-UAD-PBM-08-05/R0 Satuan Acara Perkuliahan Kode / Nama Mata Kuliah : TC19153 /Matriks dan Ruang Vektor Revisi ke : 0 Satuan Kredit Semester : 3 sks Tanggal revisi : - Jumlah jam kuliah dalam seminggu
Garis Entry Behavior. Mata kuliah: Matriks dan Ruang Vektor (IT ) / 2 sks CAPAIAN PEMBELAJARAN MATA KULIAH MATRIKS DAN RUANG VEKTOR:
Mata kuliah: Matriks dan Ruang Vektor (IT 043331) / 2 sks CAPAIAN PEMBELAJARAN MATA KULIAH MATRIKS DAN RUANG VEKTOR: 1. Mahasiswa mampu menerapkan pemikiran logis, kritis, sistematis, dan inovatif (KU1);
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124102 / Kalkulus 1 Revisi 4 Satuan Kredit Semester : 2 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu : 100
Program Studi Teknik Mesin S1
SATUAN ACARA PERKULIAHAN MATA KULIAH : MATEMAA TEKNIK 1 KODE / SKS : IT042220 / 2 SKS Pokok Bahasan Pertemuan dan 1 Vektor : pengertian vektor, operasi aljabar vektor ruang, vektor cross product serta
BAB 3 : INVERS MATRIKS
BAB 3 : INVERS MATRIKS PEMBAGIAN MATRIKS DAN INVERS MATRIKS Pada aljabar biasa, bila terdapat hubungan antara 2 besaran a dengan x sedemikian sehingga ax1, maka dikatakan x adalah kebalikan dari a dan
MA Analisis dan Aljabar Teori=4 Praktikum=0 II (angka. 17 Juli
INSTITUT TEKNOLOGI KALIMANTAN JURUSAN MATEMATIKA DAN TEKNOLOGI INFORMASI PROGRAM STUDI MATEMATIKA SILABUS MATA KULIAH KODE Rumpun MK BOBOT (sks) SEMESTER Tgl Penyusunan Aljabar Linear ELementer MA Analisis
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI
MATEMATIKA INFORMATIKA 2 TEKNIK INFORMATIKA UNIVERSITAS GUNADARMA FENI ANDRIANI SAP (1) Buku : Suryadi H.S. 1991, Pengantar Aljabar dan Geometri analitik Vektor Definisi, Notasi, dan Operasi Vektor Susunan
MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1
Mata : MATEMATIKA TEKNIK 1 Jurusan : TEKNIK ELEKTRO SKS : 2 Sks Kode Mata : KD-041205 MATRIKS SATUAN ACARA PERKULIAHAN MATA KULIAH MATEMATIKA TEKNIK 1 Minggu Ke Pokok Bahasan dan TIU 1 Vektor tentang pengertian
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I)
ALJABAR LINIER MAYDA WARUNI K, ST, MT ALJABAR LINIER (I) 1 MATERI ALJABAR LINIER VEKTOR DALAM R1, R2 DAN R3 ALJABAR VEKTOR SISTEM PERSAMAAN LINIER MATRIKS, DETERMINAN DAN ALJABAR MATRIKS, INVERS MATRIKS
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI : S1 SISTEM KOMPUTER Semester : 2 Berlaku mulai: Genap/2011 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR NOMOR KODE / SKS : 410202051/ 3 SKS PRASYARAT
Matriks Jawab:
Matriks A. Operasi Matriks 1) Penjumlahan Matriks Jika A dan B adalah sembarang Matriks yang berordo sama, maka penjumlahan Matriks A dengan Matriks B adalah Matriks yang diperoleh dengan cara menjumlahkan
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) ALJABAR LINEAR JURUSAN SISTEM KOMPUTER Oleh: Dra. Harmastuti,M.Kom FAKULTAS SAINS TERAPAN INSTITUT SAINS & TEKNOLOGI AKPRIND YAOGYAKARTA 2017 I. NALISIS INSTRUKSIONAL
MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304
MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT 304 Deskripsi: Perkuliahan ini bertujuan mengembangkan kemampuan mahasiswa memahami konsep-konsep dasar Aljabar Matriks sebagai bekal untuk mengajar matematika
SILABUS. A. Identitas Mata Kuliah. Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten
SILABUS A. Identitas Mata Kuliah Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten Aljabar GD 320 3 7 PGSD S-1 Kelas Riana Irawati, M.Si B. Tujuan Pembelajaran Umum Setelah
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1
GARIS-GARIS BESAR PROGRAM PENGAJARAN PROGRAM STUDI: S1 SISTEM INFORMASI Semester : 1 Berlaku mulai: Gasal/2010 MATA KULIAH : MATRIK DAN TRANSFORMASI LINEAR KODE MATA KULIAH / SKS : 410102042 / 3 SKS MATA
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124401 / Kalkulus Perubah Banyak Revisi : 4 Satuan Kredit Semester : 2 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September Indikator Pokok Bahasan/Materi Aktivitas Pembelajaran
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Pendidikan Agama 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Total Quality Management 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September Indikator Materi pokok Strategi Pembelajaran Alokasi waktu
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Statistika Industri 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
SILABUS MATAKULIAH. Revisi : 3 Tanggal Berlaku : 02 Maret 2012
SILABUS MATAKULIAH Revisi : 3 Tanggal Berlaku : 02 Maret 2012 A. Identitas 1. Nama Matakuliah : Fisika Dasar1 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 3 SKS 5. Elemen Kompetensi
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : A11. 54812 / Metode Numerik Revisi - Satuan Kredit Semester : 3 SKS Tgl revisi : - Jml Jam kuliah dalam seminggu : 3 x 50
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dipaparkan mengenai konsep dasar tentang matriks meliputi definisi matriks, jenis-jenis matriks, operasi matriks, determinan, kofaktor, invers suatu matriks, serta
RENCANA PEMBELAJARAN SEMESTER
RENCANA PEMBELAJARAN SEMESTER F-0653 Issue/Revisi : A0 Tanggal Berlaku : 1Februari 2016 Untuk Tahun Akademik : 2015/2016 Masa Berlaku : 4 (empat) tahun Jml Halaman : Xx halaman Mata Kuliah : Probabilitas
SILABUS MATAKULIAH. Indikator Pokok Bahasan/ Materi Aktivitas Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : Maret 2014 A. Identitas 1. Nama Matakuliah : A11.54201 / Kalkulus II 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks :
Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER
UNIVERSITAS GADJAH MADA FAKULTAS MIPA, JURUSAN MATEMATIKA PROGRAM STUDI S1 MATEMATIKA Sekip Utara Yogyakarta Buku 1: RPKPS (Rencana Program dan Kegiatan Pembelajaran Semester) ALJABAR LINEAR ELEMENTER
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Standardisasi 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Menggambar Teknik 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode/ Nama Mata Kuliah : E124204 / KALKULUS 2 Revisi : 4 Satuan Kredit Semester : 2 SKS Tanggal Release : 16 Juli 2015 Jml Jam Kuliah Dalam Seminggu
SILABUS. A. Identitas Mata Kuliah. Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten
SILABUS A. Identitas Mata Kuliah Nama Mata Kuliah Kode Mata Kuliah Jumlah SKS Semester Program Studi Dosen/Asisten Konsep Dasar Matematika GD 103 3 1 PGSD S-1 Kelas Riana Irawati, M.Si B. Tujuan Pembelajaran
Kriteria Unjuk Kerja. Besaran vektor. Vektor satuan Menggambar Vektor
DESKRIPSI KOMPETENSI MATA KULIAH Mata Kuliah : Matematika Kode Mata Kuliah : TKF 201 SKS : 2 Unit Kompetensi : Memecahkan persoalan matematika dasar. Kompetensi 1. Menguasai teori a) Menggambar Vektor
S I L A B U S. Kode Mata Kuliah : SKS : 3. Dosen Pembimbing : M. Soenarto
081316373780 S I L A B U S Mata Kuliah : ALJABAR LINIER Kode Mata Kuliah : SKS : 3 Prasyarat : MATEMAA DASAR Dosen Pembimbing : M. Soenarto Prodi / Jenjang : MATEMAA / S1 Buku Sumber : Singapore : Mc-Graw-
Tujuan. Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse
Matriks Tujuan Mhs dapat mendemonstrasikan operasi matriks: penjumlahan, perkalian, dsb. serta menentukan matriks inverse Pengertian Matriks Adalah kumpulan bilangan yang disajikan secara teratur dalam
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL. Anis Fitri Lestari. Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK
MATRIKS UNITER, SIMILARITAS UNITER DAN MATRIKS NORMAL Anis Fitri Lestari Mahasiswa Universitas Muhammadiyah Ponorogo ABSTRAK Matriks normal merupakan matriks persegi yang entri-entrinya bilangan kompleks
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN Determinan Matriks Determinan Matriks Sub Pokok Bahasan Permutasi dan Determinan Matriks Determinan dengan OBE Determinan dengan Ekspansi Kofaktor Beberapa Aplikasi
Pertemuan 8 Aljabar Linear & Matriks
Pertemuan 8 Aljabar Linear & Matriks 1 Jika A adl matriks nxn yg invertible, untuk setiap matriks b dgn ukuran nx1, maka sistem persamaan linier Ax = b mempunyai tepat 1 penyelesaian, yaitu x = A -1 b
MATRIKS. Matematika. FTP UB Mas ud Effendi. Matematika
MATRIKS FTP UB Mas ud Effendi Pokok Bahasan Transpos suatu matriks Matriks khusus Determinan suatu matriks bujursangkar Invers suatu matriks bujursangkar Penyelesaian set persamaan linier Nilai-eigen dan
Part III DETERMINAN. Oleh: Yeni Susanti
Part III DETERMINAN Oleh: Yeni Susanti Perhatikan determinan matriks ukuran 2x2 berikut: Pada masing-masing jumlahan dan Terdapat wakil dari setiap baris dan setiap kolom. Bagaimana dengan tanda + (PLUS)
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI A. Matriks 1. Pengertian Matriks Definisi II. A. 1 Matriks didefinisikan sebagai susunan segi empat siku- siku dari bilangan- bilangan yang diatur dalam baris dan kolom (Anton, 1987:22).
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
ATA KLAH : ATATKA A FAKLTAS : T. SPL & PCAAA JSA / JJA : TKK ASTKT - S KOD : KD-03223 SATA ACAA PKLAHA VSTAS ADAA POKOK AHASA S POKOK AHASA T K S HPA. Pengertian himpunan 2. Diagram Venn 3. Operasi antar
SILABUS MATA KULIAH FM-UDINUS-PBM-08-04/R0. Revisi : 4 Tanggal Berlaku : 4 September 2015
SILABUS MATA KULIAH Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Analisis Peracangan Sistem Informasi 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot
SATUAN ACARA PERKULIAHAN
1 SATUAN ACARA PERKULIAHAN Mata Kuliah : Aljabar Linear Kode Mata Kuliah : Bobot Kuliah/Praktek : 3 SKS Semester : II (Dua) Tujuan Instruksional Umum : memahami konsep-konsep dan tranformasi linier, dan
Aljabar Linier Elementer. Kuliah 7
Aljabar Linier Elementer Kuliah 7 Materi Kuliah Ekspansi kofaktor Aturan Cramer 2 2.4 Espansi Kofaktor; Aturan Cramer Definisi: Jika A adalah matriks bujur sangkar, maka minor dari entri a ij dinyatakan
KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 04, No. 3 (2015), hal 279 284. KAJIAN METODE KONDENSASI CHIO PADA DETERMINAN MATRIKS Adrianus Sumitro, Nilamsari Kusumastuti, Shantika Martha
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS)
RENCANA PROGRAM KEGIATAN PERKULIAHAN SEMESTER (RPKPS) Kode / Nama Mata Kuliah : E124304 / Teori Probabilitas Revisi 4 Satuan Kredit Semester : 2 SKS Tgl revisi : 16 Juli 2015 Jml Jam kuliah dalam seminggu
S I L A B U S. : Memecahkan Masalah Berkaitan dengan Konsep Matrik. Alokasi Waktu. Kompetensi Dasar. Materi Pembelajaran. Sumber Belajar.
S I L A B U S Nama Sekolah Mata Pelajaran Kelas / Semester Standar Kompetensi : SMKN NEGERI II Surabaya : MATEMATIKA : X / II : Memecahkan Masalah Berkaitan dengan Konsep Matrik : 36 x 45 menit Kompetensi
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September Materi Pokok. a. Cakupan dan metode ilmu ekonomi b. Bidang-bidang ilmu ekonomi
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Pengantar Ilmu Ekonomi 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5.
Silabus Matakuliah. Revisi : 4 Tanggal Berlaku : 4 September Kompetensi Dasar Indikator Pokok Bahasan/Materi Aktifitas Pembelajaran Rujukan
Silabus Matakuliah Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Teknik Presentasi 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot SKS : 2 SKS 5. Standar
GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO
GARIS BESAR PROGRAM PEMBELAJARAN (GBPP) UNIVERSITAS DIPONEGORO SPMI- UNDIP GBPP xx.xx.xx xx Revisi ke Tanggal Dikaji Ulang Oleh Dikendalikan Oleh Disetujui Oleh Ketua Program Studi GPM DekanFakultas. UNIVERSITAS
MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR
MENENTUKAN NILPOTENT ORDE 4 PADA MATRIKS SINGULAR MENGGUNAKAN TEOREMA CAYLEY HAMILTON TUGAS AKHIR Diajukan sebagai Salah Satu Syarat untuk Memperoleh Gelar Sarjana Sains pada Jurusan Matematika Oleh: IRMA
Matriks. Baris ke 2 Baris ke 3
Matriks A. Matriks Matriks adalah susunan bilangan yang diatur menurut aturan baris dan kolom dalam suatu jajaran berbentuk persegi atau persegi panjang. Susunan bilangan itu diletakkan di dalam kurung
SILABUS MATAKULIAH FM-UDINUS-PBM-08-04/R0. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Perilaku Perancangan Organisasi 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks
Perluasan Teorema Cayley-Hamilton pada Matriks
Vol. 8, No.1, 1-11, Juli 2011 Perluasan Teorema Cayley-Hamilton pada Matriks Nur Erawati, Azmimy Basis Panrita Abstrak Teorema Cayley-Hamilton menyatakan bahwa setiap matriks bujur sangkar memenuhi persamaan
SILABUS MATAKULIAH. Revisi : 2 Tanggal Berlaku : September Indikator Pokok Bahasan/Materi Strategi Pembelajaran
SILABUS MATAKULIAH Revisi : 2 Tanggal Berlaku : September 2014 A. Identitas 1. Nama Matakuliah : A11. 54101 / Kalkulus I 2. Program Studi : Teknik Informatika-S1 3. Fakultas : Ilmu Komputer 4. Bobot sks
BAB II LANDASAN TEORI. yang biasanya dinyatakan dalam bentuk sebagai berikut: =
BAB II LANDASAN TEORI 2.1 Matriks Definisi 2.1 (Lipschutz, 2006): Matriks adalah susunan segiempat dari skalarskalar yang biasanya dinyatakan dalam bentuk sebagai berikut: Setiap skalar yang terdapat dalam
BAB II DETERMINAN DAN INVERS MATRIKS
BAB II DETERMINAN DAN INVERS MATRIKS A. OPERASI ELEMENTER TERHADAP BARIS DAN KOLOM SUATU MATRIKS Matriks A = berdimensi mxn dapat dibentuk matriks baru dengan menggandakan perubahan bentuk baris dan/atau
PM-11 PENINGKATAN KUALITAS PEMBELAJARAN DENGAN MENGOPTIMALKAN MEDIA DAN TEKNOLOGI PADA MATAKULIAH ALJABAR LINEAR ELEMENTER
Kode Makalah PM-11 PENINGKATAN KUALITAS PEMBELAJARAN DENGAN MENGOPTIMALKAN MEDIA DAN TEKNOLOGI PADA MATAKULIAH ALJABAR LINEAR ELEMENTER Oleh: R. Sulaiman dan Pradnyo Wijayanti (Jurusan Matematika FMIPA
RENCANA PELAKSANAAN PEMBELAJARAN NO. 11/1
RENCANA PELAKSANAAN PEMBELAJARAN NO. 11/1 Nama Sekolah : SMK Diponegoro Lebaksiu Mata Pelajaran : Matematika Kelas / Semester : X / 1 Alokasi Waktu : 4 x 45 menit (1 x pertemuan) Standar Kompetensi Kompetensi
KONTRAK PERKULIAHAN (ALJABAR LINIER)
KONTRAK PERKULIAHAN (ALJABAR LINIER) Bobot SKS : 3 SKS Semester : 4 Hari Pertemuan : 16 Pertemuan Dosen Pengampuh : Dra. Cecil Hiltrimartin, M.Si 1. Deskripsi Mata Kuliah Mata kuliah ini membahas konsep
MATRIKS. a A mxn = 21 a 22 a 2n a m1 a m2 a mn a ij disebut elemen dari A yang terletak pada baris i dan kolom j.
MATRIKS A. Definisi Matriks 1. Definisi Matriks dan Ordo Matriks Matriks adalah susunan bilangan (elemen) yang disusun menurut baris dan kolom dan dibatasi dengan tanda kurung. Jika suatu matriks tersusun
Aljabar Linear Elementer
BAB I RUANG VEKTOR Pada kuliah Aljabar Matriks kita telah mendiskusikan struktur ruang R 2 dan R 3 beserta semua konsep yang terkait. Pada bab ini kita akan membicarakan struktur yang merupakan bentuk
SATUAN ACARA PERKULIAHAN UNIVERSITAS GUNADARMA
Mata Kuliah : Matematika Dasar 1 Kode / SKS : IT012314 / 3 SKS Program Studi : Sistem Komputer Fakultas : Ilmu Komputer & Teknologi Informasi 1 & 2 HIMPUNAN BILANGAN Mahasiswa memahami konsep himpunan
SILABUS. Mengenal matriks persegi. Melakukan operasi aljabar atas dua matriks. Mengenal invers matriks persegi.
SILABUS Nama Sekolah Mata Pelajaran Kelas / Program Semester : SMA NEGERI 2 LAHAT : MATEMATIKA : XII / IPA : GANJIL STANDAR KOMPETENSI: 3. Menggunakan konsep matriks, vektor, dan transformasi dalam pemecahan
MEDIA PEMBELAJARAN PERHITUNGAN DETERMINAN REDUKSI MINOR EKSPANSI KOFAKTOR DAN ADJOIN
MEDIA PEMBELAJARAN PERHITUNGAN DETERMINAN REDUKSI MINOR EKSPANSI KOFAKTOR DAN ADJOIN 1 Sigit Buddy Prakoso (0701827), 2 Ardi Pujiyanta(02906601) 1,2 Program Studi Teknik Informatika Universitas Ahmad Dahlan
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Mekanika Teknik 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304. (1) (2) (3) (4) (5) (6) (7) (8) (9) 1 Matriks dan Operasinya. 1. Pengertian Matriks
JURUSAN PENDIDIKAN MATEMATIKA FPMIPA UNIVERSITAS PENDIDIKAN MATEMATIKA MINGGU KE SILABUS MATA KULIAH : ALJABAR MATRIKS (2 SKS) KODE: MT304 POKOK & SUB POKOK TUJUAN INSTRUKSIONAL TUJUAN INSTRUKSIONAL KHUSUS
BAB II KAJIAN PUSTAKA. operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas
BAB II KAJIAN PUSTAKA Pada bab ini akan diuraikan mengenai matriks (meliputi definisi matriks, operasi matriks, determinan dan invers matriks), aljabar max-plus, matriks atas aljabar max-plus, dan penyelesaian
Minggu II Lanjutan Matriks
Minggu II Lanjutan Matriks Pokok Bahasan Sub Pokok Bahasan Tujuan Instruksional Umum Tujuan Instruksional Khusus Jumlah Pertemuan : Matriks : A. Transformasi Elementer. Transformasi Elementer pada baris
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 04 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 04 September 2015 A. Identitas 1. Nama Matakuliah : Sistem Cerdas 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
BAB II TINJAUAN PUSTAKA
5 BAB II TINJAUAN PUSTAKA A Matriks 1 Pengertian Matriks Definisi 21 Matriks adalah kumpulan bilangan bilangan yang disusun secara khusus dalam bentuk baris kolom sehingga membentuk empat persegi panjang
MATRIKS INVERS TERGENERALISIR
MATRIKS INVERS TERGENERALISIR Tasari Program Studi Pendidikan Matematika, Universitas Widya Dharma Klaten ABSTRAK Tujuan penelitian ini adalah : () untuk mengetahui pengertian invers tergeneralisir dari
Trihastuti Agustinah
TE 467 Teknik Numerik Sistem Linear Trihastuti Agustinah Bidang Studi Teknik Sistem Pengaturan Jurusan Teknik Elektro - FTI Institut Teknologi Sepuluh Nopember O U T L I N E OBJEKTIF 2 3 CONTOH 4 SIMPULAN
SATUAN ACARA PERKULIAHAN PROGRAM STUDI ILMU KOMUNIKASI
Kode Mata : IT 081303 Media : Kertas Kerja, Infocus, Mata : Matematika 1 Perangkat Siaran Jumlah SKS : 3 Evaluasi : Kehadiran, Penilaian terhadap tugas/praktek Proses Belajar Mengajar : Dosen : Menjelaskan,
SILABUS MATAKULIAH. Revisi : 4 Tanggal Berlaku : 4 September 2015
SILABUS MATAKULIAH Revisi : 4 Tanggal Berlaku : 4 September 2015 A. Identitas 1. Nama Matakuliah : Kimia Industri 2. Program Studi : Teknik Industri 3. Fakultas : Teknik 4. Bobot sks : 2 SKS 5. Elemen
APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta Telp: ;
APLIKASI MATRIKS DAN RUANG VEKTOR, oleh Dr. Adiwijaya Hak Cipta 2014 pada penulis GRAHA ILMU Ruko Jambusari 7A Yogyakarta 55283 Telp: 0274-889398; Fax: 0274-889057; E-mail: [email protected] Hak Cipta
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV. Norma Puspita, ST. MT. a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n
METODE MATRIKS (MATRIKS) Mekanika Rekayasa IV Norma Puspita, ST MT Matriks Matriks adlah susunan bilangan (elemen) yang disusun menurut baris dan kolom sehingga berbentuk persegi panjang Matriks dinotasikan
FM-UDINUS-PBM-08-04/R0 SILABUS MATAKULIAH. Revisi : - Tanggal Berlaku : 4 Agustus 2014
SILABUS MATAKULIAH Revisi : - Tanggal Berlaku : 4 Agustus 2014 A. Identitas 1. Nama Matakuliah : A22.53313 / Pengantar GIS 2. Program Studi : Teknik Informatika-D3 3. Fakultas : Ilmu Komputer 4. Bobot
Aljabar Linear Dasar Edisi Kedua
Buku Aljabar Linear Dasar Edisi Kedua ini merupakan penyempurnaan dari buku edisi pertama. Buku ini disusun berdasarkan pengalaman mengajar penulis di IT Telkom (sebelumnya STT Telkom) sejak tahun 1993.
SILABUS RANCANGAN PEMBELAJARAN SATU SEMESTER SEMESTER GANJIL
SILABUS RANCANGAN PEMBELAJARAN SATU SEMESTER SEMESTER GANJIL 2017-2018 Kelompok Mata Kuliah : Keilmuan dan Keterampilan (MKK) Nama/Kode Mata : Matematika Bisnis / AKT1.52.1001 Kuliah Bobot : 3 SKS Jurusan
Invers Tergeneralisasi Matriks atas Z p
SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA UNY 2016 Invers Tergeneralisasi Matriks atas Z p Evi Yuliza 1 1 Fakultas MIPA Universitas Sriwijaya evibc3@yahoocom PM A-1 - Abstrak Sebuah matriks
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI PACITAN
RENCANA PEMBELAJARAN SEMESTER PROGRAM STUDI PENDIDIKAN MATEMATIKA STKIP PGRI PACITAN MATA KULIAH KODE RUMPUN MK BOBOT (Sks) SEMESTER DIREVISI Matematika Ekonomi Lihat Panduan akademik MKK T=3 P=1 II OTORISASI
