BENTUK DUAL MASALAH SOCP NORMA SATU
|
|
|
- Irwan Agusalim
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BENTUK DUAL MASALAH SOCP NORMA SATU Caturiyati 1, Ch. Rini Indrati 2, Lina Aryati 3 1 Mahasiswa Program Doktor Matematika FMIPA UGM dan Dosen Jurusan Pendidikan Matematika FMIPA UNY, 2,3 Dosen Jurusan Matematika FMIPA UGM 1 [email protected], 2 [email protected], 3 [email protected] Abstrak Second order cone programming (SOCP) norma satu merupakan masalah menentukan solusi optimal atas masalah linear dengan kendala dibatasi pada daerah yang merupakan irisan affine linear dengan beberapa second order cone (SOC) norma satu. Seperti pada masalah linear programming (LP), masalah SOCP juga mempunyai struktur dual. Pada paper ini akan disampaikan bagaimana membangun struktur dual masalah dualitas SOCP norma satu dengan menggunakan fungsi Lagrange melalui dua cara, bentuk dual dan bentuk masalah conic, dengan mengasumsikan dual norma satu adalah norma infinit. Kata kunci: SOCP norma satu, dualitas, primal-dual. Pendahuluan Second order cone programming (SOCP) merupakan masalah program konveks yang berakibat teori dualitasnya dapat dikembangkan. Banyak teori dualitas untuk masalah linear programming (LP), namun ada teori untuk SOCP berbeda dari teori untuk LP. (Alizadeh dan Goldfarb, 2003.) Yang dikembangkan oleh Alizadeh dan Goldfarb pada papernya mengenai dualitas SOCP merupakan dualitas SOCP norma dua. Andersen et.al membahas masalah dualitas pada optimisasi SOC dan p order cone. Pada tahun 2000 dalam papernya Andersen et.al. mengimplementasikan metode titik primal-dual untuk menyelesaikan masalah optimisasi conic kuadratik. Pada paper ini akan dikupas bagaimana membangun struktur dual masalah dualitas pada SOCP norma satu menggunakan bentuk Lagrange dan menggunakan dual conic, dengan asumsi dual norma satu adalah norma infinit. Diberikan masalah SOCP norma satu ( ) sebagai berikut minimumkan (1) dengan kendala, dengan variabel, parameter dan. Dualitas (1) akan ditentukan menggunakan fungsi Lagrange dengan dua cara.
2 Pembahasan 1. Dualitas Lagrange Sebelum membahas dualitas pada SOCP norma satu, akan diurai kembali mengenai bentuk Lagrange dan dulitas pada masalah bentuk Lagrange sebagai berikut. Diberikan masalah optimisasi berkendala bentuk standar (tidak perlu konveks) minimum ( ) dengan kendala ( ) (a) ( ) variabel, domain, nilai optimal. Bentuk Lagrange (a) adalah: Didefinisikan, dengan, ( ) ( ) ( ) ( ) ( ) yang merupakan jumlah terbobot fungsi tujuan dan fungsi kendala, dengan pengganda Lagrange berhubungan dengan ( ) dan pengganda Lagrange berhubungan dengan ( ) Selanjutnya dapat dibentuk suatu fungsi dual Lagrange berikut: Didefinisikan suatu fungsi dual Lagrange:, dengan ( ) ( ) ( ( ) ( ) ( )) suatu fungsi konkaf. Lemma1. Sifat batas bawah: jika, maka ( ) Bukti: Jika fisibel dan, maka ( ) ( ) ( ) ( ) meminimumkan atas semua fisibel memberikan ( ). 2
3 2. Dualitas SOCP Norma Satu Berikut ini akan dibangun struktur dual masalah SOCP norma satu, dengan asumsi dual dari norma satu adalah norma infinit. Bentuk dual masalah SOCP norma satu pada (1) adalah dengan kendala ( ) (2), dengan variabel dan data masalah diberikan sebagai dan. Masalah (2) atau dual SOCP norma satu dapat diperoleh dengan dua cara berikut: 1. Mendefinisikan variabel baru dan dan persamaan,, dan menurunkan dual Lagrange. 2. Dimulai dari formulasi conic dari SOCP dan menggunakan dual conic. Menggunakan fakta bahwa second order cone (SOC) self dual:, untuk semua sehingga Syarat ketaksamaan Cauchy-Schwarz sederhana. Bentuk Dual masalah SOCP Norma Satu Cara I Pertama, didefinisikan variabel baru, dan masalah menjadi: minimumkan dengan kendala, (3), Kedua, dibangun bentuk Lagrange (3) sebagai berikut ( ) ( ) ( ) ( ) 3
4 ( ) ( ) ( ) ( ) Dari bentuk Lagrange masalah SOCP Norma 1 tersebut, maka a. Minimum atas terbatas bawah jika dan hanya jika ( ) b. Untuk meminimumkan atas, ( ) { c. Minimum atas terbatas bawah jika dan hanya jika. Ketiga, membentuk fungsi dual lagrange sebagain berikut ( ) { ( ) ( ) Keempat, diperoleh masalah dual masalah SOCP Norma satu dengan asumsi dual norma satu adalah norma infinit, dengan kendala ( ) (4). Selanjutnya (4) merupakan suatu SOCP norma infinit. Bentuk Dual masalah SOCP Norma Satu Cara II Pertama, bentuk SOCP sebagai suatu masalah conic minimumkan (5) dengan kendala ( ), 4
5 dengan *( ) +, yaitu SOC norma satu. Dengan asumsi dual dari norma satu adalah norma infinit, maka dual dari SOC adalah SOC norma infinit *( ) +. Kedua, dibangun bentuk Lagrange dari (5) adalah: ( ) ( ) ( ) ( ( )) ( ) untuk ( ) (dengan ) dengan ( ) ( ( )) ( ) dan fungsi dual: ( ) { ( ) ( ) Ketiga, bentuk dual dalam bentuk masalah conic sebagai berikut dengan kendala ( ) ( ). 3. Kesimpulan dan Saran Kesimpulan Membangun struktur dual masalah SOCP norma satu dapat melalui dua cara, cara pertama menggunakan bentuk Lagrange dan cara kedua menggunakan bentuk masalah conic. Masalah ini diperoleh dengan asumsi bahwa dual dari norma satu adalah norma infinit. Diberikan masalah SOCP norma satu berikut minimumkan dengan kendala, dengan variabel, parameter dan. 5
6 1. Struktur dual masalah SOCP norma satu dengan cara pertama dengan kendala ( ). 2. Struktur dual masalah SOCP norma satu dengan cara kedua dengan kendala ( ) ( ). Saran Secara khusus masalah dualitas untuk masalah SOCP norma satu dan SOCP norma infinit, dan secara umum masalah dualitas SOCP norma p, dengan, masih terbuka untuk dipelajari. DAFTAR PUSTAKA Alizadeh, F. and Goldfarb, D Second-order Cone programming. Math. Program, 95, Andersen, E.D., Roos, C., and Terlaky, T Notes on duality in second order and -order Cone optimization. A Journal of Mathematical Programming and Operation Research, Volume 51, Issue 4, pages Andersen, E.D., Roos, C., and Terlaky, T On Implementing a Primal-dual Interior-point Method for Conic Quadratic Optimization. 6
SECOND ORDER CONE (SOC) DAN SIFAT-SIFAT KENDALA SECOND ORDER CONE PROGRAMMING DENGAN NORMA
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 18 Mei 013 SECOND ORDER CONE (SOC) DAN SIFAT-SIFAT KENDALA SECOND ORDER CONE PROGRAMMING
SECOND ORDER CONE (SOC) DAN SIFAT-SIFAT KENDALA SECOND ORDER CONE PROGRAMMING DENGAN NORMA 1
SECOND ORDER CONE (SOC) DAN SIFAT-SIFAT KENDALA SECOND ORDER CONE PROGRAMMING DENGAN NORMA 1 Caturiyati 1, Ch. Rini Indrati 2, Lina Aryati 2 1 Mahasiswa Program Studi S3 Matematika FMIPA UGM dan dosen
KEKONVEKSKAN DAERAH FISIBEL SECOND ORDER CONE PROGRAMMING DENGAN NORMA 1
KEKONVEKSKAN DAERAH FISIBEL SECOND ORDER CONE PROGRAMMING DENGAN NORMA 1 Caturiyati 1, Ch. Rini Indrati 2, Lina Aryati 2 1 Mahasiswa Program Studi S3 Matematika FMIPA UGM dan dosen Jurusan Pendidikan Matematika
OPTIMISASI KONVEKS: KONSEP-KONSEP
Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA, Fakultas MIPA, Universitas Negeri Yogyakarta, 14 Mei 2011 OPTIMISASI KONVEKS: KONSEP-KONSEP Caturiyati 1 dan Himmawati Puji Lestari
OPTIMISASI KONVEKS: Konsep-konsep
OPTIMISASI KONVEKS: Konsep-konsep Caturiyati, M.Si 1 dan Himmawati Puji Lestari, M.Si 2 1,2 Jurdik Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak Pada masalah optimisasi konveks
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan dijelaskan mengenai teori teori yang berhubungan dengan pembahasan ini sehingga dapat dijadikan sebagai landasan berpikir dan akan mempermudah dalam hal pembahasan
BAB II KAJIAN PUSTAKA. pemrograman nonlinear, fungsi konveks dan konkaf, pengali lagrange, dan
BAB II KAJIAN PUSTAKA Kajian pustaka pada bab ini akan membahas tentang pengertian dan penjelasan yang berkaitan dengan fungsi, turunan parsial, pemrograman linear, pemrograman nonlinear, fungsi konveks
PENDEKATAN MASALAH MULTIOBJEKTIF STOKASTIK DENGAN PENDEKTAN STOKASTIK DAN PENDEKATAN MULTIOBJEKTIF
Prosiding Seminar Nasional Penelitian Pendidikan dan Penerapan MIPA Fakultas MIPA Universitas Negeri Yogyakarta 16 Mei 2009 PENDEKATAN MASALAH MULTIOBJEKTIF STOKASTIK DENGAN PENDEKTAN STOKASTIK DAN PENDEKATAN
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak
Syarat Fritz John pada Masalah Optimasi Berkendala Ketaksamaan Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected] 2 [email protected] Abstrak
BAB IV PEMBAHASAN. optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi
BAB IV PEMBAHASAN Pada bab ini akan dipaparkan tentang penerapan model nonlinear untuk optimasi biaya produksi pada home industry susu kedelai Pak Ahmadi menggunakan pendekatan pengali lagrange dan pemrograman
SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN. Caturiyati 1 Himmawati Puji Lestari 2. Abstrak
Syarat Fritz John... (Caturiyati) SYARAT FRITZ JOHN PADA MASALAH OPTIMASI BERKENDALA KETAKSAMAAN Caturiyati 1 Himmawati Puji Lestari 2 1,2 Jurusan Pendidikan Matematika FMIPA UNY 1 [email protected]
BAB II KAJIAN PUSTAKA. Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan,
BAB II KAJIAN PUSTAKA Pada bab ini akan diberikan landasan teori tentang optimasi, fungsi, turunan, pemrograman linear, metode simpleks, teorema dualitas, pemrograman nonlinear, persyaratan karush kuhn
KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI
Jurnal LOG!K@ Jilid 7 No 1 2017 Hal 52-60 ISSN 1978 8568 KOMBINASI PERSYARATAN KARUSH KUHN TUCKER DAN METODE BRANCH AND BOUND PADA PEMROGRAMAN KUADRATIK KONVEKS BILANGAN BULAT MURNI Khoerunisa dan Muhaza
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Zaman yang semakin berkembang membuat persoalan semakin kompleks, tidak terkecuali persoalan yang melibatkan persoalan matematika. Dalam pemecahannya, matematika memegang
Modul Pendalaman Materi Program Linear, PPG Dalam Jabatan hal 1
5. Dualitas Contoh 14. Misalkan kita mempunyai program linear masalah maksimum dalam bentuk baku sebagai berikut. Misalkan kita mempunyai program linear masalah minimum dalam bentuk baku sebagai berikut.
Kasus-kasus Buruk Penggunaan Metode Titik Interior pada Optimisasi Linear
Jurnal Matematika Integratif ISSN 1412-6184 Volume 10 No 1, April 2014, hal 9-17 Kasus-kasus Buruk Penggunaan Metode Titik Interior pada Optimisasi Linear Bib Paruhum Sialalahi Departemen Matematika, Fakultas
BAB I PENDAHULUAN. yang dikemukakan oleh George Dantzig pada tahun Linear Programming (LP) adalah perencanaan aktivitas-aktivitas untuk
BAB I PENDAHULUAN 1.1 Latar Belakang Program Linear adalah suatu alat yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan keterbatasan-keterbatasan sumber daya yang tersedia.
III RELAKSASI LAGRANGE
III RELAKSASI LAGRANGE Relaksasi Lagrange merupakan salah satu metode yang terus dikembangkan dalam aplikasi pemrograman matematik. Sebagian besar konsep teoretis dari banyak aplikasi menggunakan metode
OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI
OPTIMASI BIAYA PRODUKSI PADA HOME INDUSTRY SUSU KEDELAI MENGGUNAKAN PENDEKATAN PENGALI LAGRANGE DAN PEMROGRAMAN KUADRATIK TUGAS AKHIR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Salah satu observasi yang berguna dalam bidang komputasi di tahun 1970 adalah observasi terhadap permasalahan relaksasi Lagrange. Josep Louis Lagrange merupakan tokoh ahli
PENENTUAN SOLUSI OPTIMAL DAN NILAI OPTIMAL ANALISIS PARAMETRIK TERHADAP OPTIMASI LINEAR MUHAMAD AVENDI
PENENTUAN SOLUSI OPTIMAL DAN NILAI OPTIMAL ANALISIS PARAMETRIK TERHADAP OPTIMASI LINEAR MUHAMAD AVENDI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR
BAB I PENDAHULUAN 1.1. Latar Belakang dan Rumusan Masalah
1 BAB I PENDAHULUAN Pada bagian ini akan dijelaskan latar belakang dan rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka, metode penelitian, serta sistematika penulisan. 1.1. Latar Belakang
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) PADA OPTIMASI NONLINIER BERKENDALA SKRIPSI Diajukan sebagai salah satu syarat untuk memperoleh gelar Sarjana Program Strata Satu (S1) pada Program Studi Matematika
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR
40 Jurnal Matematika Vol 6 No 2 Tahun 2017 OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR OPTIMIZATION OF FOOD CROPS IN MAGELANG WITH QUADRATIC
PENYELESAIAN MASALAH PEMROGRAMAN LINIER BILANGAN BULAT MURNI DENGAN METODE REDUKSI VARIABEL
Jurnal Matematika UNAND Vol. 3 No. 3 Hal. 17 5 ISSN : 303 910 c Jurusan Matematika FMIPA UNAND PENYELESAIAN MASALAH PEMROGRAMAN LINIER BILANGAN BULAT MURNI DENGAN METODE REDUKSI VARIABEL PESTI NOVTARIA
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI
METODE SEQUENTIAL QUADRATIC PROGRAMMING (SQP) UNTUK MENYELESAIKAN PERSOALAN NONLINEAR BERKENDALA SKRIPSI YANI 070803040 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA
BAB 2 KAJIAN PUSTAKA. Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut:
BAB 2 KAJIAN PUSTAKA 2.1 Masalah Optimisasi dan Program Non Linier Menurut Asghar (2000), secara garis besar masalah optimisasi terbagi dalam beberapa tipe berikut: 1. Masalah optimisasi tanpa kendala.
PERBANDINGAN ANALISIS SENSITIVITAS MENGGUNAKAN PARTISI OPTIMAL DAN BASIS OPTIMAL PADA OPTIMASI LINEAR MIRNA SARI DEWI
PERBANDINGAN ANALISIS SENSITIVITAS MENGGUNAKAN PARTISI OPTIMAL DAN BASIS OPTIMAL PADA OPTIMASI LINEAR MIRNA SARI DEWI DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN
BAB 2 KAJIAN PUSTAKA
BAB 2 KAJIAN PUSTAKA 2.1 Program Linier Penyelesaian program linear dengan algoritma interior point dapat merupakan sebuah penyelesaian persoalan yang kompleks. Permasalahan dalam program linier mungkin
BAB II KAJIAN PUSTAKA
BAB II KAJIAN PUSTAKA A. Efektivitas Efektivitas berasal dari kata efektif, yang merupakan kata serapan dari bahasa Inggris yaitu effective yang artinya berhasil. Menurut kamus ilmiah popular, efektivitas
DEFINISI LP FUNGSI-FUNGSI DALAM PL MODEL LINEAR PROGRAMMING. Linear Programming Taufiqurrahman 1
DEFINISI LP PENGANTAR LINEAR PROGRAMMING Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan baik.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA. Riset Operasi Masalah pengoptimalan timbul sejak adanya usaha untuk menggunakan pendekatan ilmiah dalam memecahkan masalah manajemen suatu organisasi. Sebenarnya kegiatan yang
MEDIA PEMBELAJARAN RISET OPERASI UNTUK METODE DUALITY LINIER PROGRAMMING BERBASIS MULTIMEDIA
MEDIA PEMBELAJARAN RISET OPERASI UNTUK METODE DUALITY LINIER PROGRAMMING BERBASIS MULTIMEDIA 1 Anis Febriana Sari (07018176), 2 Ardi Pujiyanta(0529056601) 1,2 Program Studi Teknik Informatika Universitas
BAB I PENDAHULUAN. Riset Operasi, dalam artian sempit merupakan penerapan dari model-model
BAB I PENDAHULUAN A. LATAR BELAKANG Riset Operasi, dalam artian sempit merupakan penerapan dari model-model ilmiah khususnya dalam bidang matematika dan statistika (Kandiller, 2007 : 1). Riset Operasi
BAB III. KERANGKA PEMIKIRAN
BAB III. KERANGKA PEMIKIRAN 3.1. Kerangka Pemikiran Teoritis 3.1.1. Teori Produksi Produksi dapat diartikan sebagai suatu kegiatan atau proses yang mentransformasi masukan (input) menjadi hasil keluaran
CCR-314 #2 Pengantar Linear Programming DEFINISI LP
PENGANTAR LINEAR PROGRAMMING DEFINISI LP Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan baik.
CCR314 - Riset Operasional Materi #2 Ganjil 2015/2016 CCR314 RISET OPERASIONAL
Materi #2 CCR314 RISET OPERASIONAL Definisi LP 2 Linear Programming/LP (Program Linear) merupakan salah satu teknik dalam Riset Operasional (Operation Research) yang paling luas digunakan dan dikenal dengan
II. TINJAUAN PUSTAKA 2.1. Definisi Usaha Kecil Menengah
II. TINJAUAN PUSTAKA 2.1. Definisi Usaha Kecil Menengah Pengertian Usaha Kecil Menengah (UKM) menurut Keputusan Presiden RI No. 99 tahun 1998, yaitu kegiatan ekonomi rakyat yang berskala kecil dengan bidang
PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI
METODE TITIK-INTERIOR PADA PEMROGRAMAN KUADRATIK KONVEKS Skripsi Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Sains Program Studi Matematika Oleh: Fenny Basuki NIM: 831143 PROGRAM
PENERAPAN ALGORITMA AFFINE SCALING UNTUK MEMINIMALKAN BIAYA TRANSPORTASI
PENERAPAN ALGORITMA AFFINE SCALING UNTUK MEMINIMALKAN BIAYA TRANSPORTASI Kristina Paseru Jurusan Matematika, Universitas Hasanuddin, Makassar, Indonesia [email protected] ABSTRACT Generally, transportation
BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic
BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.
DAFTAR ISI. BAB II DASAR TEORI Himpunan Fuzzy Bilangan Fuzzy Masalah Transportasi Program Linear Multiobjective..
DAFTAR ISI HALAMAN JUDUL..... i HALAMAN PENGESAHAN... ii HALAMAN PERNYATAAN.. iii HALAMAN PERSEMBAHAN... iv KATA PENGANTAR... v DAFTAR ISI. vii DAFTAR LAMBANG DAN SINGKATAN... ix DAFTAR TABEL. x DAFTAR
RENCANA PEMBELAJARAN SEMESTER (RPS)
RENCANA PEMBELAJARAN SEMESTER (RPS) IKG2B3 METODE KOMPUTASI Disusun oleh: PROGRAM STUDI S1 ILMU KOMPUTASI FAKULTAS INFORMATIKA TELKOM UNIVERSITY LEMBAR PENGESAHAN Rencana Pembelajaran Semester
1. BAB I PENDAHULUAN. 1.1 Latar Belakang
1. BAB I PENDAHULUAN 1.1 Latar Belakang Secara umum sistem tenaga listrik terdiri dari pusat pembangkit, saluran transmisi dan pusat beban. Perkembangan beban sistem saat ini sudah tidak sesuai dengan
OPTIMASI PEMROGRAMAN KUADRATIK KONVEKS DENGAN MENGGUNAKAN METODE PRIMAL-DUAL PATH-FOLLOWING
OPIMASI PEMROGRAMAN KUADRAIK KONVEKS DENGAN MENGGUNAKAN MEODE PRIMAL-DUAL PAH-FOLLOWING Raras yasnurita ), Wiwik Anggraeni ), Rully Soelaiman 3) ) Jurusan Sistem Informasi 3) Jurusan eknik Informatika
III KERANGKA PEMIKIRAN
III KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Sistem Produksi Secara umum produksi dapat diartikan sebagai suatu kegiatan atau proses yang mentransformasikan masukan (input) menjadi hasil
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Masalah keputusan ekonomi mengenai pemilihan dan/atau penempatan fasilitas yang tepat untuk memenuhi permintaan secara efisien, banyak sekali terjadi dalam
PENYELESAIAN MODEL NONLINEAR MENGGUNAKAN SEPARABLE PROGRAMMING DENGAN ALGORITMA GENETIKA PADA PRODUKSI TEMPE
Penyelesaian Model Nonlinear... (Asep Iindriana) 1 PENYELESAIAN MODEL NONLINEAR MENGGUNAKAN SEPARABLE PROGRAMMING DENGAN ALGORITMA GENETIKA PADA PRODUKSI TEMPE SOLUTION OF NONLINEAR MODEL USING SEPARABLE
PROGRAM FRAKSIONAL LINIER DENGAN KOEFISIEN INTERVAL. Annisa Ratna Sari 1, Sunarsih 2, Suryoto 3. Jl. Prof. H. Soedarto, S.H. Tembalang Semarang
PROGRAM FRAKSIONAL LINIER DENGAN KOEFISIEN INTERVAL Annisa Ratna Sari 1, Sunarsih 2, Suryoto 3 1,2,3 Jurusan Matematika FSM Universitas Diponegoro Jl. Prof. H. Soedarto, S.H. Tembalang Semarang Abstract.
SEMINAR NASIONAL ke 8 Tahun 2013 : Rekayasa Teknologi Industri dan Informasi MASALAH TRANSPORTASI DENGAN FUZZY SUPPLY DAN FUZZY DEMAND
MASALAH TRANSPORTASI DENGAN FUZZY SUPPLY DAN FUZZY DEMAND Ridayati Ircham Jurusan Teknik Sipil STTNAS Jalan Babarsari Caturtunggal Depok Sleman e-mail: [email protected] ABSTRAK Tulisan ini membahas tentang
BAB I PENDAHULUAN. berkembang sejak Perang Dunia II (Simarmata, 1982: ix). Model-model Riset. sebagainya, maka timbullah masalah optimasi.
BAB I PENDAHULUAN A. LATAR BELAKANG MASALAH Riset Operasi adalah suatu cabang ilmu pengetahuan baru yang berkembang sejak Perang Dunia II (Simarmata, 1982: ix). Model-model Riset Operasi adalah teknik-teknik
METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR. Asep Teguh Suhanda, Shantika Martha, Helmi
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 1 (216), hal 45 52 METODE AFFINE SCALING SEBAGAI ALTERNATIF PENYELESAIAN MASALAH PROGRAM LINEAR Asep Teguh Suhanda, Shantika Martha, Helmi
III. KERANGKA PEMIKIRAN
III. KERANGKA PEMIKIRAN 3.1 Kerangka Pemikiran Teoritis 3.1.1 Teori Produksi Produksi adalah suatu kegiatan atau proses yang mentransformasikan masukan (input) menjadi hasil keluaran (output) yang berupa
BAB III PEMBAHASAN. = tujuan atau target yang ingin dicapai. = jumlah unit deviasi yang kekurangan ( - ) terhadap tujuan (b m )
BAB III PEMBAHASAN A. Penyelesaian Perencanaan Produksi dengan Model Goal Programming Dalam industri makanan khususnya kue dan bakery, perencanaan produksi merupakan hasil dari optimisasi sumber-sumber
PROGRAM LINIER : ANALISIS POST- OPTIMAL. Pertemuan 6
PROGRAM LINIER : ANALISIS POST- OPTIMAL Pertemuan 6 Pengantar Biasanya, setelah solusi optimal dari masalah program linier ditemukan maka peneliti cenderung untuk berhenti menganalisis model yang telah
OPTIMALISASI JADWAL KUNJUNGAN EKSEKUTIF PEMASARAN DENGAN GOAL PROGRAMMING
OPTIMALISASI JADWAL KUNJUNGAN EKSEKUTIF PEMASARAN DENGAN GOAL PROGRAMMING Abstrak Oleh : Sintha Yuli Puspandari 1206 100 054 Dosen Pembimbing : Drs. Sulistiyo, M.T Jurusan Matematika Fakultas Matematika
BAB I PENDAHULUAN. adalah optimasi digunakan untuk memaksimalkan keuntungan yang akan diraih
BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam kehidupan sehari-hari, baik disadari maupun tidak disadari, manusia sebenarnya telah melakukan upaya optimasi untuk memenuhi kebutuhan hidupnya. Akan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Bi-level Mathematical Programming (BLMP) diidentifikasi sebagai pemrograman matematika yang memecahkan masalah perencanaan desentralisasi dengan dua pengambil keputusan
BAB III PEMBAHASAN. digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear
BAB III PEMBAHASAN Pada bab ini akan dijelaskan tentang konsep dasar metode kuadrat terkecil yang digunakan untuk membentuk fungsi tujuan dari masalah pemrograman nonlinear dan langkah-langkah penyelesaiannya
SVM untuk Regresi Ordinal
MMA10991 Topik Khusus - Machine Learning Dr. rer. nat. Hendri Murfi Intelligent Data Analysis (IDA) Group Departemen Matematika, Universitas Indonesia Depok 16424 Telp. +62-21-7862719/7863439, Fax. +62-21-7863439,
Bahan A: 6x + 4x 24. Bahan B Harga jual ($1000) 5 4. Identifikasi fungsi tujuan Pendapatan total yang harus dimaksimumkan adalah
Lecture 2: Graphical Method Khusus untuk masalah Program Linear dengan 2 peubah dapat diselesaikan melalui grafik, meskipun dalam praktek masalah Program Linear jarang sekali yang hanya memuat 2 peubah.
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Pada suatu eksperimen atau pengamatan terhadap suatu keadaan, pengambilan data merupakan salah satu bagian terpenting, agar hasil dari eksperimen dapat lebih
SILABUS MATA KULIAH. Tujuan
SILABUS MATA KULIAH NAMA MATAKULIAH KODE MATAKULIAH KREDIT/SKS SEMESTER DESKRIPSI TUJUAN UMUM PERKULIAHAN Matematika Ekonomi EKO 500 3 (3-0) 1 Kuliah ini terdiri dari tiga bagian pokok, yakni aljabar matriks,
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI
OPTIMASI TANAMAN PANGAN DI KOTA MAGELANG DENGAN PEMROGRAMAN KUADRATIK DAN METODE FUNGSI PENALTI EKSTERIOR SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
TEORI DUALITAS. Pertemuan Ke-9. Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia
TEORI DUALITAS MATAKULIAH RISET OPERASIONAL Pertemuan Ke-9 Riani Lubis JurusanTeknik Informatika Universitas Komputer Indonesia 1 PENGANTAR Diperlukan sebagai dasar interpretasi ekonomis suatu persoalan
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Quadratic Assignment Problem (QAP) adalah sebuah permasalahan kombinatorial dalam menempatkan fasilitas pada lokasi tertentu, sedemikian hingga meminimumkan fungsi
OPTIMALISASI JADWAL KUNJUNGAN EKSEKUTIF PEMASARAN DENGAN GOAL PROGRAMMING
OPTIMALISASI JADWAL KUNJUNGAN EKSEKUTIF PEMASARAN DENGAN GOAL PROGRAMMING Oleh : Sintha Yuli Puspandari 1206 100 054 Dosen Pembimbing : Drs. Sulistiyo, M. T Jurusan Matematika Fakultas Matematika dan Ilmu
BAB 3 LEXICOGRAPHIC GOAL PROGRAMMING 3.1 DESKRIPSI UMUM LEXICOGRAPHIC GOAL PROGRAMMING
BAB 3 LEXICOGRAPHIC GOAL PROGRAMMING 3.1 DESKRIPSI UMUM LEXICOGRAPHIC GOAL PROGRAMMING Lexicographic goal programming adalah salah satu jenis dari goal programming. Model ini adalah model paling umum digunakan
METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 01 No. 1 (2012) hal 23 30. METODE SIMPLEKS FUZZY UNTUK PERMASALAHAN PEMROGRAMAN LINEAR DENGAN VARIABEL TRAPEZOIDAL FUZZY Anastasia Tri Afriani
OPTIMASI PEMROGRAMAN KUADRATIK DENGAN MENGGUNAKAN ALGORITMA PRIMAL-DUAL INTERIOR POINT
TUGAS AKHIR CF 1380 OPTIMASI PEMROGRAMAN KUADRATIK DENGAN MENGGUNAKAN ALGORITMA PRIMAL-DUAL INTERIOR POINT NIKE DWI WINARTI NRP 5202 100 028 Dosen Pembimbing Rully Soelaiman, S.Kom, M.Kom JURUSAN SISTEM
I PENDAHULUAN II LANDASAN TEORI
I PENDAHULUAN 1.1 Latar Belakang Sukarelawan adalah seseorang atau sekelompok orang yang secara ikhlas karena panggilan nuraninya memberikan apa yang dimilikinya tanpa mengharapkan imbalan. Sukarelawan
PEMANFAATAN EXCEL SOLVER DALAM PEMBELAJARAN PEMROGRAMAN LINEAR. Oleh : Himmawati Puji Lestari. Caturiyati. Jurusan Pendidikan Matematika FMIPA UNY
PEMANFAATAN EXCEL SOLVER DALAM PEMBELAJARAN PEMROGRAMAN LINEAR Oleh : Himmawati Puji Lestari Caturiyati Jurusan Pendidikan Matematika FMIPA UNY [email protected] [email protected] Abstrak Dalam
METODE REDUCED-GRADIENT PADA OPTIMASI NONLINIER BERKENDALA PERTIDAKSAMAAN NONLINIER SKRIPSI. Oleh : Normayati Sumanto J2A
METODE REDUCED-GRADIENT PADA OPTIMASI NONLINIER BERKENDALA PERTIDAKSAMAAN NONLINIER SKRIPSI Oleh : Normayati Sumanto J2A 005 037 PROGRAM STUDI MATEMATIKA JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN Pada bab ini akan diberikan pendahuluan sebelum menginjak pembahasan pokok. Pendahuluan ini meliputi latar belakang masalah, rumusan masalah, tujuan dan manfaat penelitian, tinjauan pustaka,
BAB I PENDAHULUAN Latar Belakang Permasalahan
BAB I PENDAHULUAN 1.1. Latar Belakang Permasalahan Pemetaan merupakan konsep yang tidak pernah terlepas dari bahasan matematika analisis. Pengaitan setiap anggota dari suatu himpunan dengan tepat satu
PROGRAM STUDI PENDIDIKAN EKONOMI FAKULTAS EKONOMI UNIVERSITAS NEGERI MEDAN
KONSEP DUALITAS DI SUSUN OLEH : Miswari Fathur Nasution (7123341069) Nela Permata Sari Lubis (7123341075) Theresia A. Hutabarat (7123341115) Kelas B Eks PROGRAM STUDI PENDIDIKAN EKONOMI FAKULTAS EKONOMI
Teori Dualitas dan Penerapannya (Duality Theory and Its Application)
Teori Dualitas dan Penerapannya (Duality Theory and Its Application) Kuliah 6 TI2231 Penelitian Operasional I 1 Materi Bahasan 1 Teori dualitas 2 Metode simpleks dual TI2231 Penelitian Operasional I 2
Jurnal MIPA 36 (1): (2013) Jurnal MIPA.
Jurnal MIPA 36 (1): 98-106 (2013) Jurnal MIPA http://journal.unnes.ac.id/nju/index.php/jm ANALISIS METODE KARMARKAR UNTUK MENYELESAIKAN MASALAH PROGRAM LINIER DR Indriani, H Suyitno, Mashuri Jurusan Matematika,
Prosiding Matematika ISSN:
Prosiding Matematika ISSN: 2460-6464 Solusi dan Analisis Sensitivitas Program Linier Menggunakan Big-M dan Solver The Solution And The Sensitivity Analysis Of Linear Programming Used Big-M And Solver Melinda
PENYELESAIAN MASALAH INTEGER PROGRAMMING DENGAN METODE RELAKSASI LAGRANGE YUSEP MAULANA
PENYELESAIAN MASALAH INTEGER PROGRAMMING DENGAN METODE RELAKSASI LAGRANGE YUSEP MAULANA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR 2009 ABSTRACT
Dualitas Dalam Model Linear Programing
Maximize or Minimize Z = f (x,y) Subject to: g (x,y) = c Dualitas Dalam Model Linear Programing Prof. Dr. Ir. ZULKIFLI ALAMSYAH, M.Sc. Program Studi Agribisnis Fakultas Pertanian Universitas Jambi KONSEP
BAB I PENDAHULUAN Latar Belakang Masalah
BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Dalam matematika dikenal konsep fungsi naik monoton dan fungsi turun monoton. Jika f : R R merupakan fungsi naik monoton maka untuk setiap x, y R dengan x
Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach
Ketunggalan titik Tetap Pemetaan Kondisi Tipe Kontraktif pada Ruang Banach Badrulfalah 1,Khafsah Joebaedi 2 1 Departemen Matematika FMIPA Universitas Padjadjaran [email protected] 2 Departemen Matematika
BAB 2 OPTIMISASI KOMBINATORIAL. Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang
BAB 2 OPTIMISASI KOMBINATORIAL 2.1 Masalah Model Optimisasi Kombinatorial Masalah optimisasi merupakan suatu proses pencarian varibel bebas yang memenuhi kondisi atau batasan yang disebut kendala dari
MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 6 No. 02 (2017), hal 69 76. MODIFIKASI METODE NEWTON-RAPHSON UNTUK MENCARI SOLUSI PERSAMAAN LINEAR DAN NONLINEAR Mahmul, Mariatul Kiftiah, Yudhi
Modul Matematika 2012
Modul Matematika 0 Minggu ke dan MAKSIMISASI ATAU MINIMISASI (MAXIMIZATION ATAU MINIMIZATION) : A FREE OPTIMUM. Pengertian dan persyaratan Global maximum atau global minimum, Relative maximum atau relative
BAB 2 PROGRAM LINIER DAN TAK LINIER. Program linier (Linear programming) adalah suatu masalah matematika
BAB 2 PROGRAM LINIER DAN TAK LINIER 2.1 Program Linier Program linier (Linear programming) adalah suatu masalah matematika yang mempunyai fungsi objektif dan kendala berbentuk linier untuk meminimalkan
Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi
42 ISSN 2302-7290 Vol. 2 No. 2, April 2014 Konvergensi Global Metode Spectral Conjugate Descent yang Baru Menggunakan Pencarian Garis Armijo yang Termodifikasi Global Convergence of the New Spectral Conjugate
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Permasalahan transportasi merupakan permasalahan yang sering terjadi dalam kehidupan sehari-hari. Transportasi merupakan bentuk khusus dari program linear yang digunakan
APLIKASI PROGRAM LINEAR DALAM MASALAH ALOKASI DENGAN MENGGUNAKAN PROGRAM DINAMIK. Erlia Sri Wijayanti ABSTRAK
APLIKASI PROGRAM LINEAR DALAM MASALAH ALOKASI DENGAN MENGGUNAKAN PROGRAM DINAMIK Erlia Sri Wijayanti ABSTRAK Dalam permasalahan sehari-hari, kita sering menggunakan salah satu cabang ilmu dalam matematika
Model Linear Programming:
Model Linear Programming: Pengertian, Contoh masalah dan Perumusan model Metode penyelesaian (grafik dan simpleks) Interpretasi hasil Analisis sensistivitas Model Dualitas Penyelesaian kasus (Aplikasi
BAB I PENDAHULUAN 1.1. Latar Belakang
BAB I PENDAHULUAN 1.1. Latar Belakang Saat ini semakin banyak permasalahan pada kehidupan sehari-hari yang memerlukan pendekatan optimisasi dalam penyelesaiannya. Sebagai contoh, misalkan sebuah perusahaan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Program Linear Program Linear adalah suatu cara yang digunakan untuk menyelesaikan masalah optimasi suatu model linear dengan berbagai kendala yang dihadapinya. Masalah program
