BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 5 BAB 2 TINJAUAN PUSTAKA 2.1. Algoritma Genetika Pada tahun 1975, John Holland, di dalam bukunya yang berjudul Adaption in Natural and Artificial Systems, mengemukakan komputasi berbasis evolusi. Tujuannya adalah untuk membuat komputer dapat melakukan apa yang terdapat di alam. Sebagai seorang pakar komputer, Holland memfokuskan diri pada manipulasi dari string dalam bentuk binary bit. Holland mengemukakan algoritma tersebut sebagai suatu konsep abstrak dari evolusi alam. Tahapan algoritma genetika yang dikemukakan oleh Holland dapat direpresentasikan sebagai suatu tahapan berurutan sebagai suatu bentuk populasi dari kromosom buatan menjadi sebuah populasi baru (Negnevitsky, 2005). Algoritma genetika adalah suatu algoritma stokastik yang memodelkan proses evolusi dari spesies biologi melalui seleksi alam (Konar, 2005). Secara umum, populasi ini dibangkitkan secara random dan solusi yang adalah dibangkitkan sesudah tahapan konsekutif dari proses crossover dan mutasi. Setiap individu dari populasi memiliki nilai yang diasosiasikan ke dalam suatu nilai fitness, di dalam kaitannya untuk menyelesaikan suatu permasalahan (Rabunal, 2006). Algoritma genetika yang dikemukakan oleh John Holland menggunakan konsep kromosom yang digunakan untuk menyatakan alternatif solusi dari suatu permasalahan. Tiap kromosom terdiri dari deretan bit string yang berupa bit 0 atau 1 yang disebut sebagai gen. Setiap kromosom dapat mengalami pertukaran materi genetis antara kromosom. Sedangkan proses mutasi akan mengganti secara acak nilai gen di beberapa lokasi pada kromosom. Selain itu dikenal pula istilah invertion yang akan membalikkan urutan beberapa gen yang berurutan di dalam kromosom. (Mitchel, 1999).

2 6 Hal-hal yang harus dilakukan dalam menggunakan algoritma genetika adalah: 1. Mendefinisikan individu, di mana individu menyatakan salah satu solusi (penyelesaian) yang mungkin dari permasalahan yang diangkat. 2. Mendefinisikan nilai fitness, yang merupakan ukuran baik-tidaknya sebuah individu atau baik-tidaknya solusi yang didapatkan. 3. Menentukan proses pembangkitan populasi awal. Hal ini biasanya dilakukan dengan menggunakan pembangkitan acak. 4. Menentukan proses seleksi yang akan digunakan. 5. Menentukan proses perkawinan silang (crossover). 6. Mutasi gen yang akan digunakan. Gambar 2.1. Adapun proses dari algroritma genetika secara umum dapat dilihat pada Gambar 2.1. Siklus Algoritma Genetika (Konar, 2005) Fase awal dari algoritma genetika adalah inisialisasi populasi yang menyatakan alternatif solusi. Elemen dari populasi adalah dideskripsikan dalam bentuk deretan bit string yang berisi bit 0 atau 1 yang disebut sebagai kromosom. Kemudian langkah selanjutnya adalah menghitung nilai fitness berdasarkan gen yang ada pada kromosom dalam tiap populasi. Berdasarkan nilai fitness dari tiap koromosom, maka tahapan selanjutnya adalah tahapan seleksi yang berfungsi untuk memilih kromosom yang terpilih sebagai parent yang akan menjalani crossover.

3 7 Proses crossover yang berjalan dengan beberapa variasi operator crossover berperan penting dalam membentuk kromosom anak (offspring) yang juga berperan penting untuk menambah keanekaragaman string di dalam suatu populasi. Kromosom selanjutnya akan masuk ke dalam tahap mutasi yang berfungsi untuk memastikan bahwa keanekaragaman (diversity) dari kromosom dalam suatu populasi tetap terjaga, untuk menghindari terjadinya konvergensi prematur yang berujung pada terjadinya solusi yang local optima Struktur Umum Algoritma Genetika Algoritma genetik memberikan suatu pilihan bagi penentuan nilai parameter dengan meniru cara reproduksi genetik, membentuk kromosom baru serta seleksi alam seperti yang terjadi pada makhluk hidup. Algoritma genetik secara umum dapat diilustrasikan dalam diagram pada Gambar 2.2. Gambar 2.2 Gambar Diagram Alir Algoritma (Goldberg, 1989)

4 8 Goldberg (1989) mengemukakan bahwa algoritma genetik mempunyai karakteristik-karakteristik yang perlu diketahui sehingga dapat dibedakan dari prosedur pencarian atau optimasi yang lain, yaitu: 1. Algoritma genetika dengan pengkodean dari himpunan solusi permasalahan berdasarkan parameter yang telah ditetapkan dan bukan parameter itu sendiri. 2. Algoritma genetika mencari solusi dari sejumlah individu-individu yang merupakan solusi permasalahan, bukan hanya dari satu individu. 3. Algoritma genetika berpatokan pada objektif (fitness), sebagai cara untuk mengevaluasi individu yang mempunyai solusi terbaik, bukan turunan dari suatu fungsi. 4. Algoritma genetik menggunakan aturan-aturan transisi peluang, bukan aturanaturan deterministik. Variabel dan parameter yang digunakan pada algoritma genetik adalah: (Kuhn et al., 2013) 1. Inisialisasi populasi yang digunakan. Pada bagian ini ditentukan jumlah individu (kromosom) dan gen yang dilibatkan pada setiap generasi. 2. Evaluasi nilai fitness dari setiap individu. 3. Seleksi kromosom yang akan dijadikan kromosom parent untuk dilibatkan di dalam proses crossover berdasarkan nilai fitness. 4. Penentuan nilai PC (Probability Crossover) yang menentukan peluang terjadinya crossover pada setiap individu. 5. Mutation rate yang menentukan sejumlah gen yang dillibatkan dalam proses mutasi. Secara umum struktur dari suatu algoritma genetika dapat didefenisikan dengan langkah-langkah sebagai berikut: (Negnevitsky, 2005) 1. Membangkitkan populasi awal Populasi awal dibangkitkan secara acak sehingga didapatkan solusi awal. Populasi itu sendiri terdiri atas sejumlah kromosom yang merepresentasikan solusi yang diinginkan.

5 9 2. Menghitung Fitness dari Tiap Generasi. Pada tiap generasi, kromosom akan melalui proses evaluasi dengan menggunakan alat ukur yang dinamakan fitness. Nilai fitness suatu kromosom menggambarkan kualitas kromosom dalam populasi tersebut. Fungsi fitness tersebut dapat dilihat pada Persamaan 2.1. Fitness =! (!!!"#$%&!"#$%&'()... (2.1) Dari persamaan 2.1, nilai fitness ditentukan oleh nilai fungsi objektif. Fungsi objektif tersebut menunjukkan hasil penjumlahan jarak pada tiap kromosom. Semakin tinggi nilai fitness akan semakin besar kemungkinan kromosom tersebut terpilih ke generasi berikutnya. Jadi nilai fungsi objektif berbanding terbalik dengan nilai fitness, semakin kecil nilai fungsi objektif semakin besar nilai fitness-nya. 3. Evaluasi Solusi Proses ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom dan mengevaluasinya sampai terpenuhi kriteria berhenti. Bila kriteria berhenti belum terpenuhi maka akan dilanjutkan dengan proses perkawinan. Beberapa kriteria berhenti sering digunakan antara lain: berhenti pada generasi tertentu, berhenti setelah beberapa generasi berturut-turut didapatkan nilai fitness tertinggi tidak berubah, berhenti pada n generasi yang tidak didapatkan nilai fitness yang lebih tinggi. 4. Proses Crossover Menentukan nilai PC (Probability Crossover) dan kemudian menentukan pasangan kromosom yang akan terlibat di dalam proses crossover berdasarkan nilai PC yang dibangkitkan tersebut dengan menggunakan salah satu metode crossover. 5. Proses Mutasi Menentukan nilai mutation rate, dan kemudian berdasarkan nilai bilangan random yang dibangkitkan akan dapat ditentukan gen-gen yang terlibat di dalam proses mutasi tersebut.

6 10 6. Menjadikan Kromosom Anak hasil dari Proses Crossover dan Mutasi sebagai Populasi Baru Teknik Encoding Proses encoding adalah salah satu proses yang sulit di dalam algoritma genetika. Hal ini disebabkan karena proses encoding untuk setiap permasalahan berbeda karena tidak semua teknik encoding cocok untuk tiap permasalahan. Proses encoding menghasilkan string yang kemudian disebut kromosom. String terdiri dari sekumpulan bit yang dikenal sebagai gen. Jadi satu kromosom terdiri dari sejumlah gen (Lukas, 2005). Ada bermacam-macam teknik encoding yang dapat dilakukan dalam algoritma genetika. Beberapa teknik encoding itu antara lain adalah binary encoding, permutation encoding, value encoding, dan tree encoding. Teknik encoding yang digunakan pada Traveling Salesman Problem adalah Permutation Encoding. (Lukas, 2005). Pada Permutation Encoding, kromosom-kromosom adalah kumpulan angka yang mewakili posisi di dalam sebuah rangkaian. Dalam permutatiom encoding, setiap kromosom adalah sebuah string dari nomor-nomor seperti diilustrasikan pada Tabel 2,1, Tabel 2.1. Teknik Permutation Encoding Kromosom (Rute Kota) A B C D E F G H I Gen (Jarak) Pada TSP, kromosom menggambarkan rute kota yang dikunjungi salesman, sedangkan jarak antar kota menggambarkan gen. Pada Tabel 2.1, kromosom (rute kota) A-B-C-D-E-F-G-H-I dengan jarak 1, 5, 3, 2, 6, 4, 7, 9, Operator Genetik Algoritma genetik merupakan proses pencarian yang heuristik dan acak sehingga penekanan pemilihan operator yang digunakan sangat menentukan keberhasilan algoritma genetik dalam menemukan solusi optimum suatu masalah yang diberikan. Hal yang harus diperhatikan adalah menghindari terjadinya konvergensi prematur,

7 11 yaitu mencapai solusi optimum yang belum waktunya, dalam arti bahwa solusi yang diperoleh adalah hasil local optima. Operator pada algoritma genetika terdiri atas sejumlah parameter kontrol yang terdiri-dari: (Taiwo et al., 2013) 1. Ukuran populasi: mendefinisikan berapa banyak kromosom dan berapa banyak gen di dalam satu kromosom yang terlibat selama proses pencarian. 2. Probabilitas crossover: menspesifikasikan probabilitas crossover di antara dua kromosom. 3. Probabilitas mutasi: menspesifikasikan probabilitas dari dilakukannya mutasi bit-wise. 4. Kriteria terminasi: menspesifikasikan kondisi berakhirnya pencarian solusi pada algoritma genetika Proses Seleksi Proses seleksi berhubungan erat dengan nilai fitness yang diperoleh oleh setiap individu. (Reeves, 2003). Proses seleksi dilakukan dengan cara membuat individu yang mempunyai fungsi objektif kecil mempunyai kemungkinan terpilih yang lebih besar atau mempunyai nilai probabilitas yang tinggi (Hermawanto, 2007). Dalam proses seleksi parent, ada banyak metode yang dapat diterapkan. Dua metode umum yang sering digunakan yaitu (Chipperfield. et.al, 2005): 1. Seleksi Roda Roulette (Roulette Wheel Selection) Roulette wheel selection adalah metode seleksi yang paling sederhana. Pada metode ini semua kromosom (individu) di dalam suatu populasi adalah ditempatkan pada roulette wheel sesuai dengan nilai fitness mereka. Besarnya ukuran tiap segmen di dalam roulette adalah sebanding dengan nilai fitness dari tiap individu. Semakin besar nilai fitness maka semakin besar pula ukuran segmen di dalam roulette wheel, kemudian roulette wheel diputar. Individu yang sesuai dengan segmen pada roulette wheel ketika berhenti yang akan dipilih. (Kumar, 2012). Metode roulette wheel selection dapat dilihat pada Gambar 2.3.

8 12 Kromosom Fitness K1 1 K2 2 K3 0.5 K4 0.5 Jumlah 4 K3 K4 K2 K1 Gambar 2.3 Metode Roulette Wheel Selection (Hassoun, 1995) 2. Stochastic Universal Sampling Karakteristik metode ini adalah memiliki nilai bias nol dan penyebaran yang minimum. Individu-individu dipetakan dalam suatu segmen garis secara berurutan sedemikian hingga tiap-tiap segmen individu memiliki ukuran yang sama dengan ukuran fitness-nya. Kemudian diberikan sejumlah pointer sebanyak individu yang ingin diseleksi pada garis tersebut (Pencheva et.al, 2009). Misal N adalah jumlah individu yang akan diseleksi, maka jarak antar pointer adalah 1/N dan posisi pointer pertama diberikan secara acak pada range [1, 1/N]. Metode stochastic universal sampling dapat dilihat pada Gambar 2.4. Gambar 2.4 Metode Stochastic Universal Sampling (Pencheva, 2009) Pindah Silang (Crossover) Operator crossover memainkan peran penting di dalam menghasilkan generasi baru. Operator crossover adalah operator genetika yang mengombinasikan dua kromosom parents untuk menghasilkan kromosom offspring. Tujuan utama dari adanya crossover adalah menghasilkan kromosom baru yang lebih baik daripada kedua parent

9 13 karena mengambil karakteristik terbaik dari tiap parent. Proses crossover yang terjadi selama proses evolusi sesuai dengan nilai crossover probability yang didefinisikan oleh pengguna (Abuiziah, 2013). Kromosom yang terpilih untuk mengalami crossover ditentukan melalui nilai probability crossover (Pc). Suatu kromosom terpilih untuk mengalami crossover jika nilai random kromosom (Rc) < Pc. Besarnya nilai Pc adalah diantara 0.4 sampai dengan 0.9 (Coley, 1999). Crossover bertujuan menambah keanekaragaman string dalam satu populasi dengan penyilangan antara gen-gen dari induk (Robandi, 2006). Beberapa jenis crossover sebagai berikut: 1) Crossover Pengkodean Biner Ada beberapa metode crossover dengan pengkodean biner, yaitu sebagai berikut: a. One Point Crossover Pada one point crossover, sebuah bilangan acak mendefinisikan segmen yang membagi kromosom ke dalam dua bagian. Kromosom offspring dihasilkan melalui kombinasi kromosom yang dihasilkan pada segmen point berdasarkan bilangan acak tersebut. Bagian pertama adalah sebelum segmen point mengambil kromosom parent yang pertama dan bagian kedua setelah bilangan random adalah mengambil kromosom parent yang kedua. (Andrade, 2008). Illustasi dari proses one point crossover dapat dilihat pada Tabel 2.2. Tabel 2.2. One Point Crossover Kromosom Parent Kromosom Parent Offspring b. Two Point Crossover Two point crossover hampir sama dengan one point crossover. Perbedaannya adalah bahwa pada two point crossover, cut point yang digunakan adalah sebanyak 2, dan dibangkitkan secara acak (Mendes, 2013). Illustrasi dari proes two point crossover dapat dilihat pada Tabel 2.3.

10 14 Tabel 2.3. Two Point Crossover Kromosom Parent Kromosom Parent Offspring ) Uniform Crossover Pada uniform crossover, sebuah vektor bit acak yang berukuran sama dengan kromosom yang digunakan. Di dalam proses untuk menghasilkan kromosom offspring, akan dipilih bit-bit dalam mask vektor bit acak. Jika yang terpilih adalah bit 0, berarti kromosom offspring diperoleh dari parent 1 dan jika yang terpilih adalah bit 1 berarti kromosom offspring diperoleh dari parent 2 (Andrade, 2008). Illustrasi dari proses uniform crossover dapat dilihat pada Tabel 2.4. Tabel 2.4. Uniform Crossover Kromosom Parent Kromosom Parent Mask Offspring ) Arithmetic Crossover Kromosom offspring diperoleh dengan melakukan operasi aritmatika terhadap parent (induk). Terdapat 3 jenis arithmetic crossover, yaitu sebagai berikut. (Picek et al., 2013). 1. Single Arithmetic Crossover Pada single arithmetic crossover, pindah silang terjadi pada salah satu gen yang posisinya ditentukan dengan cara membangkitkan suatu bilangan acak. Pada posisi gen yang ditentukan, nilai gen akan ditentukan melalui operasi aritmatika terhadap nilai gen dari parent menurut persamaan 2.2 (Eiben, 2014). Adapun operasi aritmatika pada single arithmetic crossover dapat dilihat pada Persamaan 2.2 dan Tabel 2.5.

11 15 Child = x,..., x, α. y (1 α). x,..., x 1 k k k n +...(2.2) Ket: α = Variabel pengali yang nilainya berkisar dari 0-1 Tabel 2.5. Single Arithmetic Crossover Kromosom Parent Kromosom Parent Bilangan Acak 8 α 0.5 Kromosom Offspring Kromosom Offspring Simple Arithmetic Crossover Pada simple arithmetic crossover, tentukan bilangan random sebagai titik potong antara 0 sampai sepanjang kromosom pada masing-masing parent. Untuk gen pada kromosom offspring untuk batas sebelum titik potong disalin dari gen pada kromosom parent. Untuk gen setelah titik potong, gen yang ada dibentuk dari operasi aritmatika pada gen dari kromosom parent dengan persamaan seperti pada persamaan 2.3 (Picek, 2013). Illustrasi dari proses simple arithmetic crossover dapat dilihat pada Tabel 2.6. Child= x,..., x, α. y + (1 α). x,..., α. y + (1 α). x 1 k k + 1 k + 1 n n Ket: α = Variabel pengali yang nilainya berkisar dari (2.3) Tabel 2.6. Simple Arithmetic Crossover Kromosom Parent Kromosom Parent Bilangan Acak 6 α 0.5 Kromosom Offspring Kromosom Offspring

12 16 3. Whole Arithmetic Crossover Pada whole arithmetic crossover, gen pada kromosom offspring diperoleh dari hasil operasi aritmatika gen pada kromosom parent, di mana proses aritmatika yang dilakukan sesuai dengan persamaan 2.4 (Eiben, 2014). Illustrasi dari proses whole arithmetic crossover dapat dilihat pada Tabel 2.7. Child= α. x + (1 α). y...(2.4) Ket: α = Variabel pengali yang nilainya berkisar dari 0-1 Tabel 2.7. Whole Arithmetic Crossover Kromosom Parent Kromosom Parent α 0.5 Kromosom Offspring Kromosom Offspring Mutasi Mutasi adalah proses untuk mengubah gen di dalam sebuah kromosom. Mutasi dilakukan setelah proses crossover dilakukan. Mutasi mengubah offspring baru dengan mengubah 1 menjadi 0 atau 0 menjadi 1. Mutasi dapat terjadi pada setiap posisi di dalam string dengan beberapa probabilitas yang umumnya sangat kecil. Mutasi adalah dimaksudkan untuk mencegah hasil pencarian mengarah pada keadaan local optima di dalam sebuah area pencarian (Shaikh, 2012). Operator mutasi merupakan operasi yang menyangkut satu kromosom tertentu. Beberapa cara operasi mutasi diterapkan dalam algoritma genetik menurut jenis pengkodean terhadap phenotype, antara lain: 1. Mutasi dalam Pengkodean Biner Mutasi pada pengkodean biner merupakan operasi yang sangat sederhana. Proses yang dilakukan adalah menginversi nilai pada posisi tertentu yang terpilih secara acak (atau menggunakan skema tertentu) pada kromosom, yang disebut inverse.

13 17 Tabel 2.8. Contoh Mutasi pada Pengkodean Biner Kromosom sebelum mutasi Kromosom setelah mutasi Mutasi dalam Pengkodean Permutasi Proses mutasi yang dilakukan dalam pengkodean biner dengan mengubah langsung - pada kromosom tidak dapat dilakukan pada pengkodean permutasi karena konsistensi urutan permutasi haru diperhatikan. Salah satu cara yang dapat dilakukan adalah dengan memilih dua posisi (locus) dari kromosom dan kemudian nilainya saling dipertukarkan. Tabel 2.9. Contoh Mutasi pada Pengkodean Permutasi Kromosom sebelum mutasi Kromosom setelah mutasi Mutasi dalam Pengkodean Nilai Mutasi pada pengkodean nilai hampir sama dengan yang dilakukan pada pengkodean biner, tetapi yang dilakukan bukan menginversi nilai. Penerapannya bergantung pada jenis nilai yang digunakan. Sebagai contoh untuk nilai riil, proses mutasi dapat dilakukan seperti yang dilakukan pada pengkodean permutasi, dengan saling mempertukarkan nilai dua gen pada kromosom. 4. Mutasi dalam Pengkodean Pohon Mutasi dalam pengkodean pohon dapat dilakukan antara lain dengan cara mengubah operator (+, -, *, /) atau nilai yang terkandung pada suatu verteks pohon yang dipilih. Atau, dapat juga dilakukan dengan memilih dua verteks dari pohon dan saling mempertukarkan operator atau nilainya Parameter Genetik Pengoperasian algoritma genetik dibutuhkan 4 parameter (Juniawati, 2003)yaitu: 1. Probabilitas Persilangan (Crossover Probability) Menunjukkan kemungkinan crossover terjadi antara 2 kromosom. Jika tidak terjadi crossover maka keturunannya akan sama persis dengan kromosom

14 18 orangtua, tetapi tidak berarti generasi yang baru akan sama persis dengan generasi yang lama. Jika probabilitas crossover 100% maka semua keturunannya dihasilkan dari crossover. Crossover dilakukan dengan harapan bahwa kromosom yang baru akan lebih baik. 2. Probabilitas Mutasi (Mutation Probability) Menunjukkan kemungkinan mutasi terjadi pada gen-gen yang menyusun sebuah kromosom. Jika tidak terjadi mutasi maka keturunan yang dihasilkan setelah crossover tidak berubah. Jika terjadi mutasi bagian kromosom akan berubah. Jika probabilitas 100%, semua kromosom dimutasi. Jika probabilitasnya 0%, tidak ada yang mengalami mutasi. 3. Jumlah Individu Menunjukkan jumlah kromosom yang terdapat dalam populasi (dalam satu generasi). Jika hanya sedikit kromosom dalam populasi maka algoritma genetika akan mempunyai sedikit variasi kemungkinan untuk melakukan crossover antara orang tua karena hanya sebagian kecil dari search space yang dipakai. Sebaliknya jika terlalu banyak maka algoritma genetika akan berjalan lambat. 4. Jumlah Populasi Menetukan jumlah populasi atau banyaknya generasi yang dihasilkan, digunakan sebagai batas akhir proses seleksi, persilangan, dan mutasi Traveling Salesman Problem (TSP) Permasalahan matematika tentang Traveling Salesman Problem dikemukakan pada tahun 1800 oleh matematikawan Irlandia William Rowan Hamilton dan matematikawan Inggris Thomas Penyngton. Permasalahan TSP ini merupakan permasalahan di mana seorang salesman harus mengunjungi semua kota di mana tiap kota hanya dikunjungi sekali, dan dia harus mulai dan kembali ke kota asal. Tujuan yang ingin dicapai pada permasalahan TSP adalah mencari rute terpendek bagi seorang salesman. (Biggs et.al, 1976).

15 Penelitian-Penelitian Terkait Penelitian Terdahulu Lin et al. (2009), menggunakan algoritma genetika untuk mencari jarak terpendek pada sistem ITS (Intelligent Transportation System) di Taiwan dengan menggunakan variasi jumlah gen dan kromosom. Hasil penelitian Lin et.al (2009) memberikan hasil bahwa semakin banyak gen dan kromosom maka solusi optima akan lebih cepat diperoleh. Ada beberapa penelitian lain yang telah dilakukan berkenaan dengan algoritma genetika. Samuel, et al. (2005) membahas bagaimana algoritma genetik menyelesaikan TSP dengan menggunakan metode order crossover sebagai teknik rekombinasi dan metode insertion mutation sebagai teknik mutasi yang digunakan pada algoritma genetik. (Annies,et al, 2002) menunjukkan bahwa algoritma genetika dapat digunakan untuk menyelesaikan masalah optimasi yang kompleks seperti mencari rute paling optimum, menggunakan beberapa metode seleksi yaitu roulette wheel, elitism, dan gabungan antara metode roulette wheel dan elitism. Ada dua jenis crossover yang digunakan yaitu one cut point crossover dan two cut point crossover. Nasution (2012) membahas analisis penyelesaian TSP menggunakan partially mapped crossover dengan menentukan nilai probabilitas crossover 20%, 40%, 60%, 80%, dan 99%. Deep & Mebrahtu (2012) membuat variasi pada partially mapped crossover dengan menentukan letak kromosom dalam posisi acak. Kemudian, Al kasasbeh, et al. (2012) menambahkan sebuah procedure baru pada algoritma genetika untuk menyelesaikan TSP yaitu dengan metode shared neighbour. Penelitian terbaru yang dilakukan oleh Picek et.al (2013) yang membandingkan beberapa metode crossover di dalam menyelesaikan 24 permasalahan dengan menggunakan 16 metode crossover, yang menarik dari hasil penelitian adalah bahwa metode whole arithmetic crossover memiliki performance yang lebih baik daripada metode simple arithmetic crossover dan simple arithmetic crossover memiliki performance yang lebih baik daripada single arithmetic crossover. Penelitian yang dilakukan oleh Picek et al. (2013) cukup menarik, karena secara luas membandingkan beberapa metode crossover yang ada sehingga memberikan sumbangsih yang cukup berarti di dalam perkembangan konsep algoritma genetika. Namun, yang belum dibahas di dalam penelitian ini adalah apakah terdapat keterkaitan langsung antara jumlah gen yang mengalami crossover di dalam sebuah kromosom dapat berpengaruh cukup signifikan terhadap performance

16 20 crossover. Hal ini mengingat terdapatnya peningkatan performance bila dikaitkan dengan jumlah gen yang mengalami crossover. Mengingat performance yang merupakan hasil penelitian adalah whole arithmetic crossover memiliki performance yang lebih baik dari simple arithmetic crossover dan Simple arithmetic crossover memiliki performance yang lebih baik daripada single arithmetic crossover Perbedaan Penelitian Perbedaan penelitian yang pernah dilakukan dengan penelitian yang dilakukan oleh peneliti dapat dilihat pada Tabel Tabel Perbedaan Penelitian No Nama Peneliti Persamaan Perbedaan 1. Lin Chu Hsing, Jui Ling Yu, Jung Chun Liu, Wei Shen Lai, dan Chia Han Ho (2009) Sama-sama menerapkan algoritma genetika untuk mencari rute terpendek pada ITS (Intelligent Transportation System) di Taiwan Pembahasan dititikberatkan pada pengaruh jumlah gen dan kromosom di dalam mendapatkan solusi optimal. Penelitian ini tidak membahas mengenai pengaruh gen yang mengalami crossover di dalam mendapatkan solusi 2. Lukas Samuel, Toni Anwar, dan Willi Yuliani (2005) 3. Annies Hannawati, Thing, dan Eleazar (2002) 4. K. Nasution (2012) Sama-sama menerapkan algoritma genetika untuk menyelesaikan permasalahan Traveling Salesman Problem (TSP) Menerapkan algoritma genetika untuk menyelesaikan masalah optimasi yang kompleks seperti mencari rute paling optimum Sama-sama menerapkan algoritma genetika untuk menyelesaikan permasalahan Traveling Salesman Problem optimal. Pembahasan penelitian mengenai penggunaan metode order crossover digabungkan dengan teknik insertion mutation untuk menyelesaikan permasalahan TSP. Penelitian ini hanya membahas penyelesaian permasalahan TSP dan tidak membahas mengenai performance dari algoritma genetika. Penelitian ini menggunakan beberapa metode seleksi yaitu roulette wheel, elitism, dan gabungan antara metode roulette wheel dan elitism, selain itu juga menggunakan dua jenis crossover yaitu one cut point crossover dan two cut point crossover. Namun, penelitian tidak membahas mengenai performance Atas metode arithmetic crissover dalam kaitannya dengan jumlah gen yang mengalami crossover. Penelitian ini difokuskan pada pembahasan mengenai pengaruh dari nilai probabilitas crossover di dalam partially mapped crossover dan tidak membahas mengenai performance atas arithmetic crossover dalam kaitannya

17 21 No Nama Peneliti Persamaan Perbedaan dengan jumlah gen yang mengalami crossover. 5. Kusum Deep dan Hadush Mebrahtu (2012) 6. Stjepan Picek, Domagoj Jakobovic dan Marin Gloub (2013) 7. Sri Melvani Hardi (2014) Penelitian ini sama seperti penelitian yang dilakukan oleh peneliti membahas mengenai penerapan algoritma genetika di dalam menyelesaikan permasalahan Traveling Salesman Problem Penelitian ini membahas mengenai perbandingan performance atas metode arithmetic crossover dan beberapa metode crossover yang lain Penelitian ini membahas mengenai pengaruh crossover di dalam performance algoritma genetika di dalam menyelesaikan permasalahan Traveling Salesman Problem (TSP) Penelitian ini membahas mengenai pembuatan variasi pada partially mapped crossover dengan menentukan letak kromosom dalam posisi acak dan tidak membahas mengenai kaitan antara jumlah gen yang mengalami crossover dengan performance atas metode arithmetic crossover Penelitian ini membandingkan beberapa metode crossover di dalam menyelesaikan 24 permasalahan dengan menggunakan 16 metode crossover, tetapi penelitian ini tidak membahas mengenai kaitan antara jumlah gen yang mengalami crossover terhadap performance dari crossover khususnya arithmetic crossover Penelitian ini pengaruh dari variasi terhadap performance dari algoritma genetika dan tidak membahas mengenai kaitan antara jumlah gen yang mengalami crossover dengan performance dari algoritma genetika Kontribusi yang Diberikan Melalui penelitian ini diharapkan dapat diperoleh hasil analisis keterkaitan jumlah gen yang mengalami crossover dengan performance algoritma genetika dengan setiap metode arithmetic crossover yang ada.

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika

BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika 6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.

Lebih terperinci

ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA

ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA JURNAL TEKNOLOGI INFORMASI DAN KOMUNIKASI Vol. 4 No. 2, Desember 2015 : 76-87 ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA PERFORMANCE ANALYSIS OF THE METHOD ARITHMETIC

Lebih terperinci

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang

BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang Traveling Salesman Problem (TSP) adalah permasalahan dimana seorang salesman harus mengunjungi semua kota yang ada dan kota tersebut hanya boleh dikunjungi tepat satu

Lebih terperinci

Lingkup Metode Optimasi

Lingkup Metode Optimasi Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga

Lebih terperinci

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK

OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION

PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Pendahuluan Pada bab ini akan dibahas tentang travelling salesman problem (TSP), metodemetode yang digunakan dalam penyelesaian TSP. Khusus penggunaan metode algoritma genetika

Lebih terperinci

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi

PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM

Lebih terperinci

BAB III. Metode Penelitian

BAB III. Metode Penelitian BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan

Lebih terperinci

Algoritma Evolusi Dasar-Dasar Algoritma Genetika

Algoritma Evolusi Dasar-Dasar Algoritma Genetika Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin [email protected] Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya

Lebih terperinci

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI

BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma

Lebih terperinci

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi

BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika

Lebih terperinci

ERWIEN TJIPTA WIJAYA, ST.,M.KOM

ERWIEN TJIPTA WIJAYA, ST.,M.KOM ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk

Lebih terperinci

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika

Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Algoritma Genetika Algoritma genetika sebagai cabang dari algoritma evolusi merupakan metode yang digunakan untuk memecahkan suatu pencarian nilai dalam permasalahan-permasalahan

Lebih terperinci

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)

Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar [email protected] Abstrak

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut

Lebih terperinci

Bab II Konsep Algoritma Genetik

Bab II Konsep Algoritma Genetik Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.

Lebih terperinci

Genetic Algorithme. Perbedaan GA

Genetic Algorithme. Perbedaan GA Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari

Lebih terperinci

PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek

PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK Fajar Saptono 1, Taufiq Hidayat 2 Laboratorium Pemrograman dan Informatika Teori Jurusan Teknik Informatika, Fakultas Teknologi Industri,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T

PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar

Lebih terperinci

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning

ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan optimasi kombinatorial (kombinasi permasalahan). Banyak permasalahan yang dapat direpresentasikan

Lebih terperinci

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply

BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply BAB II KAJIAN TEORI Berikut diberikan beberapa teori pendukung untuk pembahasan selanjutnya. 2.1. Distribusi Menurut Chopra dan Meindl (2010:86), distribusi adalah suatu kegiatan untuk memindahkan barang

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 36 BAB 2 LANDASAN TEORI 2.1 Pengurutan Pekerjaan (Job Sequencing) 2.1.1 Deskripsi Umum Dalam industri manufaktur, tujuan penjadwalan ialah untuk meminimasikan waktu dan biaya produksi, dengan cara mengatur

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG

IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG Adnan Buyung Nasution 1 1,2 Sistem Infomasi, Tehnik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas

Lebih terperinci

ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning

ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma

Lebih terperinci

BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan

BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan BAB II LANDASAN TEORI 2.1 Sejarah Perusahaan Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan pengadaan suku cadang computer. Dalam bidang tersebut diharuskan berbadan hukum PD,

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Algoritma

BAB 2 LANDASAN TEORI. 2.1 Algoritma 13 BAB 2 LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap

Lebih terperinci

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika

Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy ([email protected]) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.

Lebih terperinci

PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG

PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG Afen Prana Utama 1, Edison Sinaga 1 D-3 Manajemen Informatika - STMIK Mikroskil Medan [email protected] Abstrak Teka-teki silang merupakan

Lebih terperinci

Tugas Mata Kuliah E-Bisnis REVIEW TESIS

Tugas Mata Kuliah E-Bisnis REVIEW TESIS Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 17 BAB II LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap

Lebih terperinci

PENDAHULUAN. Latar Belakang

PENDAHULUAN. Latar Belakang Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi

Lebih terperinci

BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM

BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM 3.1 TRAVELLING SALESMAN PROBLEM Sebelum membahas pencarian solusi Travelling Salesman Problem menggunakan algoritma

Lebih terperinci

IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM

IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra Jl. Siwalankerto 121-131,

Lebih terperinci

Algoritma Evolusi Real-Coded GA (RCGA)

Algoritma Evolusi Real-Coded GA (RCGA) Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin [email protected] Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.

Lebih terperinci

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN

PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.

Lebih terperinci

Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial

Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 [email protected],

Lebih terperinci

ABSTRAK. Universitas Kristen Maranatha

ABSTRAK. Universitas Kristen Maranatha ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam

Lebih terperinci

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:

BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10: BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari

Lebih terperinci

PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM

PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM Nico Saputro dan Suryandi Wijaya Jurusan Ilmu Komputer Universitas Katolik Parahyangan [email protected]

Lebih terperinci

Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN

Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]

Lebih terperinci

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM

OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM Poetri Lestari Lokapitasari Belluano [email protected] Universitas Muslim Indonesia Abstrak Non Dominated Sorting pada

Lebih terperinci

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta

BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan

Lebih terperinci

ANALISIS MAPPING PADA PARTIALLY MAPPED CROSSOVER DALAM ALGORITMA GENETIKA PADA TRAVELLING SALESMAN PROBLEM

ANALISIS MAPPING PADA PARTIALLY MAPPED CROSSOVER DALAM ALGORITMA GENETIKA PADA TRAVELLING SALESMAN PROBLEM ANALISIS MAPPING PADA PARTIALLY MAPPED CROSSOVER DALAM ALGORITMA GENETIKA PADA TRAVELLING SALESMAN PROBLEM Sri Melvani Hardi 1), Muhd. Zarlis 2),Erna Budiarti 3) Abstract Traveling salesman problem is

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1.Pendahuluan Bab ini menjelaskan secara singkat tentang review untuk mengidentifikasikasi dalam penyelesaian pencarian rute terpendek dengan adanya lintasan terlarang (Forbidden

Lebih terperinci

BAB III PEMBAHASAN. Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan

BAB III PEMBAHASAN. Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan BAB III PEMBAHASAN Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan Algoritma Genetika dan Metode Nearest Neighbour pada pendistribusian roti di CV. Jogja Transport. 3.1 Model Matetematika

Lebih terperinci

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika

Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Pencarian Rute Terpendek untuk Pengoptimalan Ditribusi Sales Rokok Gudang Garam di kecamatan Wuluhan Kabupaten Jember Menggunakan Algoritma Genetika Priza Pandunata, Rachmad Agung Bagaskoro, Agung Ilham

Lebih terperinci

BAB II KAJIAN TEORI. dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle

BAB II KAJIAN TEORI. dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle BAB II KAJIAN TEORI Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu optimasi, graf, traveling salesman problem (TSP), vehicle routing problem (VRP), capacitated

Lebih terperinci

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas.

ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas. ABSTRAK Job shop scheduling problem merupakan salah satu masalah penjadwalan yang memiliki kendala urutan pemrosesan tugas. Pada skripsi ini, metode yang akan digunakan untuk menyelesaikan job shop scheduling

Lebih terperinci

PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE

PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE PENERAPAN ALGORTMA GENETK UNTUK OPTMAS DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE Samuel Lukas, M.Tech." Abstract The purpose of this paper is to introducing genetic algorithm. This algorithm is one

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN CAPACITATED VEHICLE ROUTING PROBLEM

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN CAPACITATED VEHICLE ROUTING PROBLEM PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN CAPACITATED VEHICLE ROUTING PROBLEM (CVRP) UNTUK DISTRIBUSI SURAT KABAR KEDAULATAN RAKYAT DI KABUPATEN SLEMAN SKRIPSI Diajukan Kepada Fakultas Matematika

Lebih terperinci

BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat

BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat BAB I PENDAHULUAN A. Latar Belakang Masalah Objek pariwisata di Yogyakarta sudah semakin beragam mulai dari wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat wisatawan dapat dibuat

Lebih terperinci

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika

Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan

Lebih terperinci

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang

Lebih terperinci

Analisis Operator Crossover pada Permasalahan Permainan Puzzle

Analisis Operator Crossover pada Permasalahan Permainan Puzzle Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang

Lebih terperinci

ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA TESIS ERIANTO ONGKO

ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA TESIS ERIANTO ONGKO 1 ANALISIS PERFORMANCE ATAS METODE ARITHMETIC CROSSOVER DALAM ALGORITMA GENETIKA TESIS ERIANTO ONGKO 127038063 PROGRAM STUDI S2 TEKNIK INFORMATIKA FAKULTAS ILMU KOMPUTER DAN TEKNOLOGI INFORMASI UNIVERSITAS

Lebih terperinci

BAB II KAJIAN TEORI. digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP),

BAB II KAJIAN TEORI. digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP), BAB II KAJIAN TEORI Secara umum, pada bab ini membahas mengenai kajian teori yang digunakan dalam penelitian yaitu teori graf, vehicle routing problem (VRP), capacitated vehicle routing problem with time

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Penjadwalan Menurut Dian (2011), penjadwalan merupakan proses untuk menyusun suatu jadwal atau urutan proses yang diperlukan dalam sebuah persoalan. Persoalan penjadwalan biasanya

Lebih terperinci

BAB II KAJIAN TEORI. berbeda di, melambangkan rusuk di G dan jika adalah. a. dan berikatan (adjacent) di. b. rusuk hadir (joining) simpul dan di

BAB II KAJIAN TEORI. berbeda di, melambangkan rusuk di G dan jika adalah. a. dan berikatan (adjacent) di. b. rusuk hadir (joining) simpul dan di 1. Teori graf BAB II KAJIAN TEORI 1. Definisi Graf G membentuk suatu graf jika terdapat pasangan himpunan ) )), dimana ) (simpul pada graf G) tidak kosong dan ) (rusuk pada graf G). Jika dan adalah sepasang

Lebih terperinci

BAB 2 LANDASAN TEORI. 2.1 Penjadwalan Iklan

BAB 2 LANDASAN TEORI. 2.1 Penjadwalan Iklan 5 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Iklan Penjadwalan adalah proses penyusunan menentukan jadwal yang tepat terhadap suatu pekerjaan untuk mencapai suatu tujuan tertentu terhadap sumber daya yang tersedia

Lebih terperinci

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic

BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.

Lebih terperinci

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data

8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN  Studi Pustaka Pembentukan Data Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Hemofilia Hemofilia adalah gangguan produksi faktor pembekuan yang diturunkan, hemofilia berasal dari bahasa Yunani yaitu haima yang artinya darah dan philein yang artinya mencintai

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1. Teka-Teki Silang Teka-teki silang merupakan permainan sederhana yang banyak dimainkan dari berbagai kalangan. Cara bermain permaian ini memang sederhana, hanya merangkaikan jawaban

Lebih terperinci

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR

ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB 2 LANDASAN TEORI 2.1 Penjadwalan Kampanye Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian aktivitas kerja (Jiupe, 2008). Penjadwalan juga merupakan

Lebih terperinci

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner

Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses

Lebih terperinci

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA

OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail

Lebih terperinci

PRESENTASI TUGAS AKHIR KI091391

PRESENTASI TUGAS AKHIR KI091391 PRESENTASI TUGAS AKHIR KI091391 PENDEKATAN CROSSOVER TERBARU UNTUK MENYELESAIKAN MULTIPLE TRAVELLING SALESMEN PROBLEM MENGGUNAKAN ALGORITMA GENETIKA (Kata kunci: multiple salemen problem, algoritma genetika,

Lebih terperinci

BAB III PEMBAHASAN. diperoleh menggunakan algoritma genetika dengan variasi seleksi. A. Model Matematika CVRPTW pada Pendistribusian Raskin di Kota

BAB III PEMBAHASAN. diperoleh menggunakan algoritma genetika dengan variasi seleksi. A. Model Matematika CVRPTW pada Pendistribusian Raskin di Kota BAB III PEMBAHASAN Pada bab ini akan dibahas mengenai model matematika pada pendistribusian raskin di Kota Yogyakarta, penyelesaian model matematika tersebut menggunakan algoritma genetika serta perbandingan

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: [email protected] ABSTRAK: Permasalahan pencarian rute terpendek dapat

Lebih terperinci

BAB III MODEL DAN TEKNIK PEMECAHAN

BAB III MODEL DAN TEKNIK PEMECAHAN BAB III MODEL DAN TEKNIK PEMECAHAN III.1. Diskripsi Sistem Sistem pendistribusian produk dalam penelitian ini adalah berkaitan dengan permasalahan vehicle routing problem (VRP). Berikut ini adalah gambar

Lebih terperinci

Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah

Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah

Lebih terperinci

APLIKASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA KULIAH

APLIKASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA KULIAH APLIKASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA KULIAH (Studi Kasus: Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta) SKRIPSI Diajukan kepada Fakultas Matematika dan Ilmu Pengetahuan

Lebih terperinci

Implementasi Algoritma Genetika Untuk Pencarian Rute Berdasarkan Waktu Tercepat Objek Wisata Di Kabupaten Ngawi. Makalah

Implementasi Algoritma Genetika Untuk Pencarian Rute Berdasarkan Waktu Tercepat Objek Wisata Di Kabupaten Ngawi. Makalah Implementasi Algoritma Genetika Untuk Pencarian Rute Berdasarkan Waktu Tercepat Objek Wisata Di Kabupaten Ngawi Makalah Disusun sebagai salah satu syarat menyelesaikan Program Studi Strata I pada Jurusan

Lebih terperinci

2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks

2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks 4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad

Lebih terperinci

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA

KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu

Lebih terperinci

PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR

PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR Karels, Rheeza Effrains 1), Jusmawati 2), Nurdin 3) [email protected]

Lebih terperinci

Pencarian Rute Optimum Menggunakan Algoritma Genetika

Pencarian Rute Optimum Menggunakan Algoritma Genetika Jurnal Teknik Elektro Vol. 2, No. 2, September 2002: 78-83 Pencarian Rute Optimum Menggunakan Algoritma Genetika Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas

Lebih terperinci

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)

PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Abstrak PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Aulia Fitrah 1, Achmad Zaky 2, Fitrasani 3 Program Studi Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi

Lebih terperinci

PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES

PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES J~ICON, Vol. 2 No. 2, Oktober 2014, pp. 84 ~ 91 84 PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES Emsi M. Y. Monifani 1, Adriana

Lebih terperinci