KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA
|
|
|
- Inge Lesmana
- 9 tahun lalu
- Tontonan:
Transkripsi
1 LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro ( ) Barkah Nur Anita ( ) Radityo Basith ( ) Ilmi Hayyu Dinna ( ) IF INSTITUT TEKNOLOGI TELKOM DEPARTEMEN TEKNIK INFORMATIKA BANDUNG 2008
2 1. KNAPSACK PROBLEM Knapsack Problem merupakan suatu masalah bagaimana cara menentukan pemilihan barang dari sekumpulan barang dimana setiap barang mempunyai weight dan profit masing masing, sehingga dari pemilihan barang tersebut didapatkan profit yang maksimum. Knapsack problem merupakan salah satu dari persoalan klasik yang banyak ditemukan dalam literatur literatur lama dan hingga kini permasalahn tersebut masih sering ditemukan dalam kehidupan sehari hari. Contoh nyata dari Knapsack Problem ini misalnya, jika ada seorang pedagang barang kebutuhan rumah tangga yang berkeliling menggunakan gerobak. Tentu saja gerobaknya memiliki kapasitas maksimum, sehingga ia tidak bisa memasukkan semua barang dagangannya dengan seenak hatinya. Pedagang tersebut harus memilih barang barang mana saja yang harus ia angkut, dengan pertimbangan berat dari barang yang dibawanya tidak melebihi kapasitas maksimum gerobak dan memaksimalkan profit dari barang barang yang ia bawa. Banyak algoritma yang dapat digunakan untuk menyelesaikan Knapsack Problem ini, misalnya Algoritma Brute Force, Branch and Bound, Greedy, dana lain lain. Untuk tugas AI kali ini, kami akan mencoba menyelesaikan Knapsack Problem dengan menggunakan Algoritma Genetika. 2. ALGORITMA GENETIKA Algoritma genetika adalah algoritma komputasi yang diinspirasi oleh teori evolusi yang kemudian diadopsi menjadi algoritma komputasi untuk mencari solusi suatu permasalahan dengan cara yang alamiah. Algoritma ini dikembangkan oleh Goldberg yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi oleh aturan yang kuat adalah yang menang. Darwin juga mengatakan bahwa kelangsungan hidup suatu makhluk dapat dipertahankan melalui proses reduksi, crossover, dan mutasi. Sebuah solusi yang dibangkitkan dalan Algoritma Genetika disebut sebagai kromosom, sedangkan kumpulan kromosom kromosom tersebut disebut sebagai populasi. Sebuah kromosom dibentuk dari komponen komponen penyusun yang disebuat sebagai gen dan nilainya dapat berupa bilangan numerik, biner, simbol atau pun karakter tergantung dari permasalahan yang ingin diselesaikan. Kromosom kromosom tersebut akan berevolusi secara berkelanjutan yang disebut dengan generasi. Dalam tiap generasi, kromosom kromosom tersebut dievaluasi tingkat keberhasilan nilai solusinya terhadap masalah yang ingin diselesaikan (fungsi_objektif) menggunakan ukuran yang disebut fitness. Untuk memilih kromosom yang tetap dipertahankan untuk generasi selanjutnya, dilakukanlah proses seleksi. Kromosom dengan nilai fitness tinggi akan memiliki peluang lebih besar untuk terpilih lagi pada generasi selanjutnya.
3 Offspring merupakan kromosom kromosom baru yang dibentuk dengan cara melakukan perkawinan antar kromosom dalam satu generasi, atau sering disebut sebagai proses crossover. Jumlah kromosom yang mengalami crossover ditentukan oleh parameter Pcrossover. Mekanisme perubahan susunan unsur penyusun makhluk hidup akibat adanya faktor alam disebut dengan mutasi. Jadi, mutasi direpresentasikan sebagai suatu proses berubahnya satu atau leih nilai gen dalam kromosom dengan suatu nilai acak. Jumlah gen dalam populasi yang mengalami mutasi ditentukan oleh parameter Pmutasi. Setelah beberapa generasi akan dihasilkan kromosom kromosom yang nilai gennya konvergen ke suatu nilai tertentu yang merupakan solusi terbaik yang dihasilkan oleh Algoritma Genetika terhadap permasalahan yang ingin diselesaikan. Algoritma Genetika sangat cocok untuk menyelesaikan masalah optimasi dengan ruang lingkup yang besar, karena Algoritma Genetika selalu bergerak dengan mencari sejumlah solusi sekaligus, selama solusi tersebut masih bersifat feasible (tidak melanggar constraint). Dengan seting parameter yang tepat, diharapkan salah satu dari sekian banyak solusi yang dibangkitkan oleh Algoritma Genetika merupakan solusi optimum global. Akan tetapi, Algoritma Genetika ini juga masih memiliki kelemahan yaitu ketidakpastian untuk menghasilkan solusi optimum global, karena sebagian besar dari algoritma ini berhubungan dengan bilangan random yang bersifat probabilistik. Peranan programer disini adalah memaksimalkan probabilitas dalam menghasilkan solusi optimum global dengan cara membuat suatu skema pengolahan input argumen (fungsi fitness) dan setting parameter yang tepat. 3. PENERAPAN ALGORITMA GENETIKA DALAM KNAPSACK PROBLEM Berikut adalah pengolahan fitness dan setting parameter yang kami terapkan : Representasi Barang Kami merepresentasikan barang dalam dua array, dimana array pertama berisi weight (berat) barang, dan array kedua berisi profit (keuntungan) barang. Weight : Profit : Constraint Adapun constraint yang kami gunakan dalam aplikasi ini adalah weight. Jadi,total berat dari sekumpulan barang yang dipilih tidak boleh melebihi kapasitas Knapsack.
4 Encoding Kromosom Untuk merepresentasikan kromosom, kami menggunakan array 1 dimensi yang berisi 1 atau 0. Misal : Kromosom : Arti : Barang 1, 4, 8, 9, 10, 12, 14, 16, 18 diambil Barang 2, 3, 5, 6, 7, 11, 13, 15, 17, 19, 20 tidak diambil Termination Conditions Pencarian solusi berhenti jika terdapat > 60% kromosom yang mempunyai nilai fitnes maksimum ATAU jumlah evolusi lebih besar limit evolusi yang telah ditentukan (jika jumlah evolusi > 1000). Fitness Function Pada evolusi di dunia nyata, individu bernilai fitness tinggi akan bertahan hidup. Sedangkan individu bernilai fitnesss rendah akan mati. Pada AG, suatu individu dievaluasi berdasarkan suatu fungsi tertentu sebagai ukuran niali fitness nya. Pada aplikasi ini, fitness dihitung dengan menjumlahkan profit tiap barang yang masuk ke dalam knapsack. Jika berat total dalam satu kromosom lebih besar daripada kapasitas maksimum knapsack, maka nilai fitnessnya diassign 0. Selain dihitung nilai fitnessnya, dihitung pula berat total dari tiap kromosom untuk kemudian dilakukan pengecekan, dimana apabila ada kromosom yang berat totalnya melebihi kapasitas dari knapsack, maka akan dilakukan pencarian gen dalam kromosom tersebut yang bernilai 1 untuk diganti dengan nilai 0. Hal ini dilakukan terus menerus sampai dipastikan bahwa semua kromosom tidak ada yang melanggar constraint. Untuk mencegah adanya individu yang dominan dalam suatu populasi (dalam pemilihan parent untuk dicrossover), maka diperlukan suatu fungsi Linier Fitness Ranking. Fungsi ini akan menurunkan perbedaan nilai fitness antar individu, sehingga perbedaan antara nilai fitness terbaik dengan nilai fitness terendah dapat diperkecil. Dengan begitu setiap kromosom memiliki kemungkinan untuk terpilih menjadi parent secara lebih merata (lebih adil). Selection Function Aplikasi ini menggunakan metode seleksi Roulette Wheel yang dikombinasikan dengan Elitism. Roulette Wheel merupakan suatu metode pemilihan kromosom untuk dijadikan parent, dimana komosom dengan fitness tinggi mempunyai peluang lebih besar untuk dijadikan parent. Sedangkan Elitism adalah suatu metode yang berguna untuk mempertahankan nilai best fitness suatu generasi agar tidak turun di generasi berikutnya. Dalam AG caranya adalah dengan mengcopykan individu terbaik (maxfitness) sebanyak yang dibutuhkan.
5 Crossover Crossover merupakan proses mengkombinasikan bit bit dalam satu kromosom dengan kromosom lain yang terpilih sebagai parent. Jumlah kromosom yang mengalami crossover ditentukan oleh parameter Pcrossover. Dimana Pcrossover ini kami assign sebesar 80%, karena kami mengharapkan 80% dari populasi mengalami crossover agar populasi individu menjadi lebih variatif. Mutation Mutation diperlukan untuk mengembalikan informasi bit yang hilang akibat crossover. Mutasi ini dilakukan pada tingkat gen, dan jumlah gen yang dimutasi kami batasi dalam suatu variabel Pmutasi sebesar 5%. Nilai ini kami rasa cukup karena semakin banyak gen yang dimutasi maka kualitas dari suatu individu bisa mengalami penurunan. Setelah dilakukan mutasi, kembali dicek untuk tiap kromosomnya apakah melanggar constraint atau tidak. Jika ada kromosom yang total beratnya melebihi kapasitas Knapsack, maka secara random, gen yang bernilai 1 akan diganti dengan 0 sampai kromosom tersebut tidak melanggar constraint. Jadi dapat disimpulkan, aplikasi kami akan selalu menemukan solusi.
6 FLOWCHART Start Inisialisasi populasi pertama secara random Hitung nilai fitness dan volume dari tiap kromosom, cari juga nilai fitness maks Secara random, pilih 2 kromosom untuk dijadikan parent Crossover 2 kromosom terpilih tadi No Lakukan mutasi Pengecekan coinstraint (kapasitas knapsack) Apakah terdapat > 60% kromosom yang mempunyai nilai fitnes maksimum Jumlah evolusi lebih besar limit evolusi yang telah ditentukan?? STOP Yes 4. KESIMPULAN Adapun kesimpulan yang dapat kami ambil adalah : Penerapan Algoritma Genetika dalam penyelesaian Knapsack Problem ini memiliki kelemahan yaitu ketidakpastian untuk menghasilkan solusi optimum global. Hal ini berlaku untuk semua kasus karena sebagian besar dari Algoritma Genetika ini berhubungan dengan bilangan random yang bersifat probabilistik.
7 Aplikasi ini akan selalu menemukan solusi, karena pengecekan apakah kromosom dalam suatu populasi dilakukan dua kali, yakni ketika inisialisasi populasi awal dan ketika kromosomkromosom telah dimutasi. 5. DAFTAR PUSTAKA [1] Suyanto Algoritma Genetika Dalam Matlab. Yogyakarta : Penerbit Andi. [2] Suyanto Artificial Intellegence. Bandung : Penerbit Informatika. [3] Shrestha, Dipti dan Maya Hristakeva. Solving the 0 1 Knapsack Problem with Genetic Algorithms. USA : Computer Science Department, Simpson College. [4] Permata, Anggi Shena. Pemecahan Masalah Knapsack dengan Algoritma Branch And Bound. Bandung : Institut Teknologi Bandung.
8 LAMPIRAN Beberapa print screen aplikasi yang kami buat:
BAB 2 LANDASAN TEORI
5 BAB 2 LANDASAN TEORI Pada bab ini akan dibicarakan beberapa model penyelesaian problema Knapsack dengan memakai beberapa metode yang telah ada yang akan digunakan pada bab pembahasan. 2. Problema Knapsack
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA Kartina Diah KW1), Mardhiah Fadhli2), Charly Sutanto3) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1 Rumbai-Pekanbaru-Riau
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar
BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika
BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilaksanakan
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 [email protected],
IMPLEMENTASI ALGORITMA GENETIKA PADA KNAPSACK PROBLEM UNTUK OPTIMASI PEMILIHAN BUAH KEMASAN KOTAK
IMPLEMENTASI ALGORITMA GENETIKA PADA KNAPSACK PROBLEM UNTUK OPTIMASI PEMILIHAN BUAH KEMASAN KOTAK Komang Setemen Jurusan Manajemen Informatika, Fakultas Teknik Kejuruan, Universitas Pendidikan Ganesha
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma
Denny Hermawanto
Algoritma Genetika dan Contoh Aplikasinya Denny Hermawanto [email protected] http://dennyhermawanto.webhop.org Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
Tugas Mata Kuliah E-Bisnis REVIEW TESIS
Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang
ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma
BAB III. Metode Penelitian
BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan
BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika
6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi
PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)
Abstrak PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Aulia Fitrah 1, Achmad Zaky 2, Fitrasani 3 Program Studi Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN
Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]
BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:
BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari
OPTIMASI PENATAAN SILINDER DALAM KONTAINER DENGAN ALGORITMA GENETIKA
OPTIMASI PENATAAN SILINDER DALAM KONTAINER DENGAN ALGORITMA GENETIKA Novita Wulan Sari 1, Yuliana Setyowati 2, S.Kom, M.Kom, Ira Prasetyaningrum 2, S. Si, M.T 1 Mahasiswa, 2 Dosen Pembimbing Politeknik
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani
Lingkup Metode Optimasi
Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah
BAB 3 ANALISIS DAN PERANCANGAN APLIKASI
27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma
PERMASALAHAN OPTIMASI 0-1 KNAPSACK DAN PERBANDINGAN BEBERAPA ALGORITMA PEMECAHANNYA
PERMASALAHAN OPTIMASI 0-1 KNAPSACK DAN PERBANDINGAN BEBERAPA ALGORITMA PEMECAHANNYA Fitriana Passa (13508036) Program Studi Teknik Informatika Institut Teknologi Bandungg Jl. Ganesha 10 Bandung Email:
BAB II LANDASAN TEORI
27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: [email protected] ABSTRAK: Permasalahan pencarian rute terpendek dapat
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.
Jl. Ahmad Yani, Pontianak Telp./Fax.: (0561)
APLIKASI PENCARIAN RUTE TERPENDEK MENGGUNAKANALGORITMA GENETIKA (Studi Kasus: Pencarian Rute Terpendek untuk Pemadam Kebakaran di Wilayah Kota Pontianak) [1] Putri Yuli Utami, [2] Cucu Suhery, [3] Ilhamsyah
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI ABSTRAK
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI Eddy Triswanto Setyoadi, ST., M.Kom. ABSTRAK Melakukan optimasi dalam pola penyusunan barang di dalam ruang tiga
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut
ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi
ERWIEN TJIPTA WIJAYA, ST.,M.KOM
ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA Bagus Priambodo Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana e- mail : [email protected]
BAB 2 LANDASAN TEORI
18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun
Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)
JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar [email protected] Abstrak
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya
8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data
Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria
APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI SKRIPSI
Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi
Genetic Algorithme. Perbedaan GA
Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN Eva Haryanty, S.Kom. ABSTRAK Komputer adalah salah satu peralatan yang pada saat ini banyak pula digunakan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi
BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :
BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,
Algoritma Evolusi Dasar-Dasar Algoritma Genetika
Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin [email protected] Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover
Bab II Konsep Algoritma Genetik
Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,
BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta
BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan
BAB III PEMBAHASAN. Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan
BAB III PEMBAHASAN Berikut akan diberikan pembahasan mengenai penyelesaikan CVRP dengan Algoritma Genetika dan Metode Nearest Neighbour pada pendistribusian roti di CV. Jogja Transport. 3.1 Model Matetematika
PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA)
Penjadwalan Ujian Akhir Semester dengan Algoritma Genetika PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA) Anita Qoiriah Jurusan Teknik Informatika,
PENDAHULUAN. Latar Belakang
Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut
Generator Jadwal Perkuliahan Menggunakan Algoritma Genetika
Generator Jadwal Perkuliahan Menggunakan Algoritma Genetika Zainal Akbar 1), Muh. Fajri Raharjo 2), Eddy Tungadi 3) CAIR, Politeknik Negeri Ujung Pandang Jl. Perintis Kemerdekaan km. 10, Tamalanrea Makassar,
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga
Analisis Operator Crossover pada Permasalahan Permainan Puzzle
Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang
Optimalisasi Penyelesaian Knapsack Problem Dengan Algoritma Genetika
Optimalisasi Penyelesaian Knapsack Problem Dengan Algoritma Genetika I Wayan Supriana a1 a Jurusan Ilmu Komputer, Fakultas MIPA, Universitas Udayana, Indonesia Jalan Kampus Bukit Jimbaran, Bali, Indonesia
BAB 2 LANDASAN TEORI. 2.1 Algoritma
13 BAB 2 LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap
ALGORITMA GENETIKA PADA PENYELESAIAN AKAR PERSAMAAN SEBUAH FUNGSI
ALGORITMA GENETIKA PADA PENYELESAIAN AKAR PERSAMAAN SEBUAH FUNGSI Akhmad Yusuf dan Oni Soesanto Program Studi Matematika Universitas Lambung Mangkurat Jl. Jend. A. Yani km 35, 8 Banjarbaru ABSTRAK Algoritma
BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang
BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah
IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG
IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG Adnan Buyung Nasution 1 1,2 Sistem Infomasi, Tehnik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas
Optimasi Kendali Distribusi Tegangan pada Sistem Tenaga Listrik dengan Pembangkit Tersebar
Optimasi Kendali Distribusi Tegangan pada Sistem Tenaga Listrik dengan Pembangkit Tersebar Soni Irawan Jatmika 2210 105 052 Pembimbing : 1. Prof. Dr. Ir. Adi Soeprijanto, MT. 2. Heri Suryoatmojo, ST. MT.
RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA
ABSTRAKSI RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA Tedy Rismawan, Sri Kusumadewi Jurusan Teknik Informatika, Fakultas Teknologi Industri Universitas
A. ADHA. Program Studi Teknik Sipil, Fakultas Teknik,Universitas Islam Riau, Pekanbaru, Indonesia Corresponding author:
Institut Teknologi Padang, 27 Juli 217 ISBN: 978-62-757-6-7 http://eproceeding.itp.ac.id/index.php/spi217 Optimasi Bentuk Struktur dan Penampang pada Struktur Rangka Baja Terhadap Kendala Kehandalan Material
dan c C sehingga c=e K dan d K D sedemikian sehingga d K
2. Landasan Teori Kriptografi Kriptografi berasal dari kata Yunani kripto (tersembunyi) dan grafia (tulisan). Secara harfiah, kriptografi dapat diartikan sebagai tulisan yang tersembunyi atau tulisan yang
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM
2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks
4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad
GENETIKA UNTUK MENENTUKAN RUTE LOPER KORAN DI AGEN SURAT KABAR
MULTI TRAVELING SALESMAN PROBLEM (MTSP) DENGAN ALGORITMA Abstrak GENETIKA UNTUK MENENTUKAN RUTE LOPER KORAN DI AGEN SURAT KABAR Oleh : Fitriana Yuli Saptaningtyas,M.Si. Jurusan Pendidikan Matematika FMIPA
PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES
JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 65-72 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag.
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag. 12/11/2009 1 Ditemukan oleh Holland pada tahun 1975. Didasari oleh fenomena evolusi darwin. 4 kondisi yg mempengaruhi
PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 98 106 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL YOSI PUTRI, NARWEN
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS Hafid Hazaki 1, Joko Lianto Buliali 2, Anny Yuniarti 2
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang
BAB II LANDASAN TEORI
17 BAB II LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap
Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem
Penerapan Algoritma Genetika dalam Job Shop Scheduling Problem Haris Sriwindono Program Studi Ilmu Komputer Universitas Sanata Dharma Paingan, Maguwoharjo, Depok Sleman Yogyakarta, Telp. 0274-883037 [email protected]
TEKNIK PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA. Oleh Dian Sari Reski 1, Asrul Sani 2, Norma Muhtar 3 ABSTRACT
TEKNIK PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA Oleh Dian Sari Reski, Asrul Sani 2, Norma Muhtar 3 ABSTRACT Scheduling problem is one type of allocating resources problem that exist to
BAB III PEMBAHASAN. menggunakan model Fuzzy Mean Absolute Deviation (FMAD) dan penyelesaian
BAB III PEMBAHASAN Dalam bab ini akan dibahas mengenai pembentukan portofolio optimum menggunakan model Fuzzy Mean Absolute Deviation (FMAD) dan penyelesaian model Fuzzy Mean Absolute Deviation (FMAD)
PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG
PERANCANGAN ALGORITMA GENETIKA DALAM PENYUSUNAN TEKA-TEKI SILANG Afen Prana Utama 1, Edison Sinaga 1 D-3 Manajemen Informatika - STMIK Mikroskil Medan [email protected] Abstrak Teka-teki silang merupakan
Pemaksimalan Papan Sirkuit Di Pandang Sebagai Masalah Planarisasi Graf 2-Layer Menggunakan Algoritma Genetika
Vol. 14, No. 1, 19-27, Juli 2017 Pemaksimalan Papan Sirkuit Di Pandang Sebagai Masalah Planarisasi Graf 2-Layer Menggunakan Algoritma Genetika Jusmawati Massalesse dan Muh. Ali Imran Abstrak Tulisan ini
BAB II KAJIAN TEORI. memindahkan barang dari pihak supplier kepada pihak pelanggan dalam suatu supply
BAB II KAJIAN TEORI Berikut diberikan beberapa teori pendukung untuk pembahasan selanjutnya. 2.1. Distribusi Menurut Chopra dan Meindl (2010:86), distribusi adalah suatu kegiatan untuk memindahkan barang
Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika
Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan
PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES
J~ICON, Vol. 2 No. 2, Oktober 2014, pp. 84 ~ 91 84 PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES Emsi M. Y. Monifani 1, Adriana
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY Arief Kelik Nugroho Fakultas Teknik, Universitas PGR Yogyakarta e-mail : [email protected] Abstrak
BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi
BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika
PENCOCOKAN KATA SECARA ACAK DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 1 9 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCOCOKAN KATA SECARA ACAK DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL MULIA AFRIANI KARTIKA
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA Mike Susmikanti Pusat Pengembangan Informatika Nuklir, Badan Tenaga Nuklir Nasional Kawasan
Analisis Komparasi Genetic Algorithm dan Firefly Algorithm pada Permasalahan Bin Packing Problem
Analisis Komparasi Genetic Algorithm dan Firefly Algorithm pada Permasalahan Bin Packing Problem Adidtya Perdana Sekolah Tinggi Teknik Harapan Medan Jl. H.M. Jhoni No. 70 C Medan [email protected] Abstrak
Algoritma Evolusi Real-Coded GA (RCGA)
Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin [email protected] Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan optimasi kombinatorial (kombinasi permasalahan). Banyak permasalahan yang dapat direpresentasikan
BAB 2 LANDASAN TEORI
36 BAB 2 LANDASAN TEORI 2.1 Pengurutan Pekerjaan (Job Sequencing) 2.1.1 Deskripsi Umum Dalam industri manufaktur, tujuan penjadwalan ialah untuk meminimasikan waktu dan biaya produksi, dengan cara mengatur
SISTEM PENJADWALAN PERKULIAHAN MENGGUNAKAN ALGORITMA GENETIKA (STUDI KASUS PADA JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO)
JIMT Vol. 14 No. 2 Desember 2017 (Hal 242-255) ISSN : 2450 766X SISTEM PENJADWALAN PERKULIAHAN MENGGUNAKAN ALGORITMA GENETIKA (STUDI KASUS PADA JURUSAN TEKNOLOGI INFORMASI FAKULTAS TEKNIK UNIVERSITAS TADULAKO)
MEMBANGUN TOOLBOX ALGORITMA EVOLUSI FUZZY UNTUK MATLAB
MEMBANGUN TOOLBOX ALGORITMA EVOLUSI FUZZY UNTUK MATLAB Syafiul Muzid 1, Sri Kusumadewi 2 1 Sekolah Pascasarjana Magister Ilmu Komputer, Universitas Gadjah Mada, Yogyakarta e-mail: [email protected] 2 Jurusan
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE
PENERAPAN ALGORTMA GENETK UNTUK OPTMAS DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE Samuel Lukas, M.Tech." Abstract The purpose of this paper is to introducing genetic algorithm. This algorithm is one
Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner
Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan
BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic
BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai
