Genetic Algorithme. Perbedaan GA
|
|
|
- Verawati Sudirman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari solusi terbaik dari persoalan yang ada. Pertahanan yang tinggi dari individu memberikan kesempatan untuk melakukan reproduksi melalui perkawinan silang dengan individu yang lain dalam populasi tersebut. Individu baru yang dihasilkan dalam hal ini dinamakan keturunan (offspring), yang membawa beberapa sifat dari induknya. Sedangkan individu dalam populasi yang tidak terseleksi dalam reproduksi akan mati dengan sendirinya. Perbedaan GA Perbedaan mendasar yang dimiliki GA s dibandingkan dengan metode dan algoritma pencarian lainnya adalah : GA memanipulasi kode-kode set parameter, bukan manipulasi nilai parameter tersebut. GA melakukan pencarian pada waktu tertentu di beberapa titik sekaligus (populasi), tidak pada satu titik GA menggunakan fungsi obyektif sebagai referensi pencarian, tidak berdasarkan suatu nilai turunan atau informasi lain GA menggunakan aturan transisi probabilistik, bukan aturan deterministik. 1
2 Istilah GA Istilah Kromosom Gen Loci Allele Phenotype Genotype Bagian dari string Posisi dari gen Keterangan Individu berupa segmen string yang sudah ditentukan Nilai yang dimasukkan dalam gen String yang merupakan solusi terakhir Sejumlah string hasil perkawinan yang berpotensi sebagai solusi Contoh Struktur GA untuk Identifikasi Parameter Fuzzy Logic Populasi 2
3 Istilah GA Jumlah Generasi (MAXGEN) : Merupakan jumlah perulangan (iterasi) dilakukannya rekombinasi dan seleksi. Jumlah generasi ini mempengaruhi kestabilan output dan lama iterasi (waktu proses Genetic Algorithms). Jumlah generasi yang besar dapat mengarahkan ke arah solusi yang optimal, namun akan membutuhkan waktu yang lama. Sedangkan jika jumlah generasinya terlalu sedikit maka solusi akan terjebak pada lokal optimum. Ukuran Populasi (POPSIZE) : Ukuran populasi mempengaruhi kinerja dan efektifitas dari Genetic Algorithms. Ukuran populasi kecil maka populasi tidak menyediakan cukup materi untuk mencakup ruang permasalahan, sehingga pada umumnya kinerja GA s menjadi buruk. Selain itu penggunaan populasi yang besar dapat mencegah terjadinya konvergensi pada wilayah lokal, banyak aplikasi GA s menggunakan populasi pada range Istilah GA Probabilitas Crossover (P c ) : Probabilitas crossover ini digunakan untuk mengendalikan frekuensi operator crossover. Dalam populasi terdapat P c x POPSIZE struktur (individu) akan melakukan pindah silang. Semakin besar nilai probabilitas crossover maka semakin cepat struktur baru diperkenalkan dalam populasi. Namun jika probabilitas crossover terlalu besar maka struktur dengan nilai fungsi obyektif yang baik dapat hilang dengan lebih cepat dari seleksi. Sebaliknya probabilitas crossover kecil akan menghalangi proses pencarian dalam GA s. banyak aplikasi GA s menggunakan angka probabilitas crossover pada range 0,65-1. Probabilitas Mutasi (P m ) : Mutasi digunakan untuk meningkatkan variasi populasi. Probabilitas mutasi ini digunakan untuk menentukan tingkat mutasi yang terjadi, karena frekuensi terjadinya mutasi tersebut menjadi P m x POPSIZE x N, dimanan adalah panjang struktur/gen dalam satu individu. Probabilitas mutasi yang rendah akan menyebabkan gen-gen yang berpotensi tidak dicoba. Dan sebaliknya, tingkat mutasi yang tinggi akan menyebabkan keturunan kehilangan kemiripan dengan induknya sehingga akan menghancurkan daerah solusi. 3
4 Istilah GA Dalam GA s, mutasi menjalankan peranan yang penting yaitu : 1. Penempatan gen-gen yang hilang dari populasi selama proses seleksi. 2. Pemberian gen-gen yang tidak muncul pada saat inisialisasi populasi awal. Banyak aplikasi GA s menggunakan angka probabilitas mutasi pada range 0,001-0,01. Panjang Kromosom (NVAR) : Panjang kromosom berbeda-beda sesuai dengan model permasalahan. Titik solusi dalam ruang permasalahan dikodekan dalam bentuk kromosom/string yang terdiri atas komponen genetik terkecil yaitu gen. Pengkodean dapat memakai bilangan seperti string biner, integer, floating point, dan abjad. Algorithma GA Inisialisasi populasi awal (kumpulan nilai random) Mengevaluasi setiap kromosom dalam populasi dengan menggunakan ukuran fitness melalui fungsi tujuan Mendapatkan kromosom baru melalui kromosom sebelumnya dengan menggunakan operator mutasi dan operator crossover Menggantikan beberapa kromosom dengan kromosom yang baru Mengevaluasi kromosom baru dan memasukkan ke dalam populasi 4
5 GENETIC ALGORITHMS GA Encode SOLUSI Seleksi Populasi baru Roulette wheel Algorithma GA 1. Pengkodean Mengubah Parameter ke bentuk Gen Gen-gen tersebut membentuk kesatuan Kromosom Kromosom-kromosom tsb membentuk Populasi Populasi 5
6 Algorithma GA : Crossover 2. Crossover (Pindah Silang) menghasilkan kromosom anak dari kombinasi materi-materi gen dua kromosom induk Operator ini bekerja dengan membangkitkan sebuah nilai random r k dimana k = 1,2,, POPSIZE P P2 titik pindah silang parent crossover O1 O titik pindah silang offspring Probabilitas crossover (p c ) ditentukan dan digunakan untuk mengendalikan frekuensi operator crossover. Apabila nilai r k < p c maka kromosom ke-k terpilih untuk mengalami crossover Posisi titik pindah silang (split point) ditentukan secara random pada range satu sampai panjang kromosom P titik pindah silang 1 titik pindah silang 2 P parent crossover O titik pindah silang offspring titik pindah silang 2 O
7 Algorithma GA : Crossover Crossover untuk variabel real Crossover Arithmatika : sebagai kombinasi linear dua vektor : bila s vt dan s wt akan disilangkan (crossed) maka keturunan yang akan dihasilkan adalah s v t+1 = a.s wt + (1-a)s vt dan s w t+1 = a.s vt + (1- a)s w t, dimana 0 a 1 7
ERWIEN TJIPTA WIJAYA, ST.,M.KOM
ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk
Lingkup Metode Optimasi
Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic
Bab II Konsep Algoritma Genetik
Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI ABSTRAK
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI Eddy Triswanto Setyoadi, ST., M.Kom. ABSTRAK Melakukan optimasi dalam pola penyusunan barang di dalam ruang tiga
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.
Algoritma Evolusi Real-Coded GA (RCGA)
Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin [email protected] Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.
Algoritma Evolusi Dasar-Dasar Algoritma Genetika
Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin [email protected] Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi
Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika
Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya
Optimasi Routing Berbasis Algoritma Genetika Pada Sistem Komunikasi Bergerak
18 Optimasi Routing Berbasis Algoritma Genetika Pada Sistem Komunikasi Bergerak Devi Rahmayanti Abstrak -Komunikasi bergerak selular adalah suatu komunikasi antara dua terminal di mana salah satu atau
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy ([email protected]) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.
BAB 3 ANALISIS DAN PERANCANGAN APLIKASI
27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma
BAB III. Metode Penelitian
BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma
BAB II LANDASAN TEORI
27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut
BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika
6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi
BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang
BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA Kartina Diah KW1), Mardhiah Fadhli2), Charly Sutanto3) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1 Rumbai-Pekanbaru-Riau
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN Eva Haryanty, S.Kom. ABSTRAK Komputer adalah salah satu peralatan yang pada saat ini banyak pula digunakan
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi Rahman Aulia Universitas Sumatera Utara Pasca sarjana Fakultas Ilmu Komputer Medan, Indonesia [email protected] Abstract
ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi
2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks
4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad
BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :
BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut
BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:
BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari
PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 98 106 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL YOSI PUTRI, NARWEN
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah
BAB III PENERAPAN ALGORITMA MEMETIKA DAN GRASP DALAM MENYELESAIKAN PFSP
BAB III PENERAPAN ALGORITMA MEMETIKA DAN GRASP DALAM MENYELESAIKAN PFSP Prosedur AM dan GRASP dalam menyelesaikan PFSP dapat digambarkan oleh flowchart berikut: NEH GRASP SOLUSI NEH SOLUSI ELIT MEMETIKA
Analisis Operator Crossover pada Permasalahan Permainan Puzzle
Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi
BAB III MODEL DAN TEKNIK PEMECAHAN
BAB III MODEL DAN TEKNIK PEMECAHAN III.1. Diskripsi Sistem Sistem pendistribusian produk dalam penelitian ini adalah berkaitan dengan permasalahan vehicle routing problem (VRP). Berikut ini adalah gambar
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover
BAB 2 LANDASAN TEORI. 2.1 Clustering
BAB 2 LANDASAN TEORI Dalam bab ini akan dibahas mengenai teori-teori penting yang dapat menunjang dan menjadi acuan dalam pembuatan proyek akhir. Bagian tersebut meliputi metode yang digunakan dalam melakukan
IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG
IMPLEMENTASI ALGORITMA GENETIKA DALAM OPTIMASI JALUR PENDISTRIBUSIAN KERAMIK PADA PT. CHANG JUI FANG Adnan Buyung Nasution 1 1,2 Sistem Infomasi, Tehnik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas
Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN
Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma
ALGORITMA GENETIK UNTUK MENYELESAIKAN MASALAH OPTIMASI FUNGSI BERKENDALA DENGAN PENGKODEAN BILANGAN BULAT
ALGORITMA GENETIK UNTUK MENYELESAIKAN MASALAH OPTIMASI FUNGSI BERKENDALA DENGAN PENGKODEAN BILANGAN BULAT Oleh : Yuliani Indrianingsih Jurusan Teknik Informatika Sekolah Tinggi Teknologi Adisutjipto (STTA)
STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA
STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA (Agustinus N., et al. STUDI ANALISA PELATIHAN JARINGAN SYARAF TIRUAN DENGAN DAN TANPA ALGORITMA GENETIKA Agustinus Noertjahyana
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 [email protected],
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag.
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag. 12/11/2009 1 Ditemukan oleh Holland pada tahun 1975. Didasari oleh fenomena evolusi darwin. 4 kondisi yg mempengaruhi
OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM
OPTIMALISASI SOLUSI TERBAIK DENGAN PENERAPAN NON-DOMINATED SORTING II ALGORITHM Poetri Lestari Lokapitasari Belluano [email protected] Universitas Muslim Indonesia Abstrak Non Dominated Sorting pada
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail
PENDAHULUAN. Latar Belakang
Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Hemofilia Hemofilia adalah gangguan produksi faktor pembekuan yang diturunkan, hemofilia berasal dari bahasa Yunani yaitu haima yang artinya darah dan philein yang artinya mencintai
Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)
JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar [email protected] Abstrak
BAB II KAJIAN TEORI. berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic
BAB II KAJIAN TEORI Kajian teori pada bab ini membahas tentang pengertian dan penjelasan yang berkaitan dengan optimasi, pemrograman linear, pemrograman nonlinear, quadratic programming dan algoritma genetika.
OPTIMASI PENEMPATAN KAPASITOR PADA SALURAN DISTRIBUSI 20 kv DENGAN MENGGUNAKAN METODE KOMBINASI FUZZY DAN ALGORITMA GENETIKA
OPTIMASI PENEMPATAN KAPASITOR PADA SALURAN DISTRIBUSI 20 kv DENGAN MENGGUNAKAN METODE KOMBINASI FUZZY DAN ALGORITMA GENETIKA I Made Wartana, Mimien Mustikawati Program Studi Teknik Elektro, Fakultas Teknologi
Serealia, umbi, dan hasil olahannya Kacang-kacangan, bijibijian,
4 generasi, kromosom akan melalui proses evaluasi dengan menggunakan alat ukur yang disebut dengan fungsi fitness. Nilai fitness dari suatu kromosom akan menunjukkan kualitas kromosom dalam populasi tersebut.
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,
BAB 2 LANDASAN TEORI
18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun
Denny Hermawanto
Algoritma Genetika dan Contoh Aplikasinya Denny Hermawanto [email protected] http://dennyhermawanto.webhop.org Lisensi Dokumen: Seluruh dokumen di IlmuKomputer.Com dapat digunakan, dimodifikasi dan disebarkan
PERANCANGAN TATA LETAK FASILITAS BAGIAN PRODUKSI MENGGUNAKAN METODE ALGORITMA GENETIK DI PT. PUTRA SEJAHTERA MANDIRI
PERANCANGAN TATA LETAK FASILITAS BAGIAN PRODUKSI MENGGUNAKAN METODE ALGORITMA GENETIK DI PT. PUTRA SEJAHTERA MANDIRI TUGAS SARJANA Diajukan Untuk Memenuhi Sebagian Dari Syarat-Syarat Memperoleh Gelar Sarjana
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan
BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan
BAB II LANDASAN TEORI 2.1 Sejarah Perusahaan Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan pengadaan suku cadang computer. Dalam bidang tersebut diharuskan berbadan hukum PD,
ABSTRAK. Job shop scheduling problem merupakan salah satu masalah. penjadwalan yang memiliki kendala urutan pemrosesan tugas.
ABSTRAK Job shop scheduling problem merupakan salah satu masalah penjadwalan yang memiliki kendala urutan pemrosesan tugas. Pada skripsi ini, metode yang akan digunakan untuk menyelesaikan job shop scheduling
Algoritma Genetika. Mata Kuliah : Kecerdasan Buatan. Dosen Pembimbing : Victor Amrizal, MKom. Disusun oleh : Eka Risky Firmansyah ( )
Algoritma Genetika Mata Kuliah : Kecerdasan Buatan Dosen Pembimbing : Victor Amrizal, MKom Disusun oleh : Eka Risky Firmansyah (1110091000043) Syukri Sayyid Ahmad (1110091000060) Nurul Hikmah Agustin (1110091000061)
OPTIMISASI PENEMPATAN TURBIN ANGIN DI AREA LAHAN ANGIN
OPTIMISASI PENEMPATAN TURBIN ANGIN DI AREA LAHAN ANGIN MENGGUNAKAN ALGORITMA GENETIKA Azimatul Khulaifah 2209 105 040 Bidang Studi Sistem Tenaga Jurusan Teknik Elektro FTI ITS Dosen Pembimbing : Dosen
8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data
Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA 2.1. Algoritma Genetika Pada tahun 1975, John Holland, di dalam bukunya yang berjudul Adaption in Natural and Artificial Systems, mengemukakan komputasi berbasis evolusi. Tujuannya
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA Mike Susmikanti Pusat Pengembangan Informatika Nuklir, Badan Tenaga Nuklir Nasional Kawasan
BAB III ALGORITMA MEMETIKA DALAM MEMPREDIKSI KURS VALUTA ASING. Untuk memberikan penjelasan mengenai prediksi valuta asing
BAB III ALGORITMA MEMETIKA DALAM MEMPREDIKSI KURS VALUTA ASING Untuk memberikan penjelasan mengenai prediksi valuta asing menggunakan algoritma memetika, akan diberikan contoh sebagai berikut. Contoh Misalkan
OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI MENGGUNAKAN METODE GENETIC ALGORITHMS
OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI MENGGUNAKAN METODE GENETIC ALGORITHMS Kartika Gunadi, Irwan Kristanto Julistiono Fakultas Teknologi Industri, Jurusan Teknik Informatika, Universitas
Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner
Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,
BAB III. Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi
BAB III Solusi Optimal Permasalahan Penjadwalan Perkuliahan Menggunakan Algoritma Fuzzy Evolusi Pada bab ini dijelaskan mengenai penerapan dari algoritma fuzzy evolusi pada permasalahan penjadwalan perkuliahan.
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1. Pendahuluan Pada bab ini akan dibahas tentang travelling salesman problem (TSP), metodemetode yang digunakan dalam penyelesaian TSP. Khusus penggunaan metode algoritma genetika
BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika
BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilaksanakan
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik Afriyudi 1,Anggoro Suryo Pramudyo 2, M.Akbar 3 1,2 Program Studi Sistem Informasi Fakultas Ilmu Komputer. Universitas Bina Darma Palembang. email
Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika
Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika M. Syafrizal, Luh Kesuma Wardhani, M. Irsyad Jurusan Teknik Informatika - Universitas Islam Negeri Sultan Syarif Kasim Riau
ABSTRAK. Universitas Kristen Maranatha
ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN Hari Purnomo, Sri Kusumadewi Teknik Industri, Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta [email protected],
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Fuzzy Local Binary Pattern (FLBP) Fuzzifikasi pada pendekatan LBP meliputi transformasi variabel input menjadi variabel fuzzy, berdasarkan pada sekumpulan fuzzy rule. Dalam
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan optimasi kombinatorial (kombinasi permasalahan). Banyak permasalahan yang dapat direpresentasikan
PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA)
Penjadwalan Ujian Akhir Semester dengan Algoritma Genetika PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA) Anita Qoiriah Jurusan Teknik Informatika,
Tugas Mata Kuliah E-Bisnis REVIEW TESIS
Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA,, Universitas Negeri Malang E-mail: [email protected] ABSTRAK: Matching berguna untuk menyelesaikan
PERBANDINGAN ALGORITMA EXHAUSTIVE, ALGORITMA GENETIKA DAN ALGORITMA JARINGAN SYARAF TIRUAN HOPFIELD UNTUK PENCARIAN RUTE TERPENDEK
PERBANDINGAN ALGORITMA EXHAUSTIVE, ALGORITMA GENETIKA DAN ALGORITMA JARINGAN SYARAF TIRUAN HOPFIELD UNTUK PENCARIAN RUTE TERPENDEK Rudy Adipranata 1) Felicia Soedjianto 2) Wahyudi Tjondro Teknik Informatika,
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.
Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek
Perbandingan Algoritma Exhaustive, Algoritma Genetika Dan Algoritma Jaringan Syaraf Tiruan Hopfield Untuk Pencarian Rute Terpendek Rudy Adipranata 1, Felicia Soedjianto 2, Wahyudi Tjondro Teknik Informatika,
BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta
BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan
BAB II LANDASAN TEORI
17 BAB II LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap
KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA
LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu
T I N J A U A N P U S T A K A Algoritma Genetika [5]
Algoritma Genetika [5] Fitness adalah nilai yang menyatakan baik-tidaknya suatu jalur penyelesaian dalam permasalahan TSP,sehingga dijadikan nilai acuan dalam mencari jalur penyelesaian optimal dalam algoritma
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi
PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES
J~ICON, Vol. 2 No. 2, Oktober 2014, pp. 84 ~ 91 84 PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES Emsi M. Y. Monifani 1, Adriana
OPTIMASI QUERY DATABASE MENGGUNAKAN ALGORITMA GENETIK
Seminar Nasional Aplikasi Teknologi Informasi 2008 (SNATI 2008) ISSN 1907-5022 OPTIMASI QUERY DATABASE MENGGUNAKAN ALGORITMA GENETIK Manahan Siallagan, Mira Kania Sabariah, Malanita Sontya Jurusan Teknik
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Penjadwalan Kampanye Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian aktivitas kerja (Jiupe, 2008). Penjadwalan juga merupakan
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM
BAB 2 LANDASAN TEORI. 2.1 Algoritma
13 BAB 2 LANDASAN TEORI 2.1 Algoritma Dalam matematika dan komputasi, algoritma merupakan kumpulan perintah untuk menyelesaikan suatu masalah. Perintah-perintah ini dapat diterjemahkan secara bertahap
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Gizi 2.1.1 Jenis-Jenis Zat Gizi Zat gizi dapat dibedakan menjadi dua kelompok sesuai kebutuhan, yaitu makronutrien dan mikronutrien. Makronutrien adalah zata-zat makanan yang
