BAB I PENDAHULUAN. 1.1 Latar Belakang
|
|
|
- Surya Widjaja
- 9 tahun lalu
- Tontonan:
Transkripsi
1 BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan. Lebih dari itu, komputer diharapkan dapat digunakan untuk mengerjakan segala sesuatu yang bisa dikerjakan oleh manusia baik dalam bidang pendidikan, kesehatan, industri, dan kehidupan sehari-hari sehingga peran komputer dan manusia akan saling melengkapi. Beberapa hal yang menjadi kekurangan manusia diharapkan dapat digantikan oleh komputer. Begitu juga dengan komputer yang tak akan berguna tanpa sentuhan manusia. Dalam dunia komputer dan informatika adanya suatu ilmu dengan ide-ide untuk dapat membuat komputer menjadi lebih cerdas, ilmu tersebut dinamakan kecerdasan buatan (Artificial Intelligence). Pengertian dari Artificial Intelligence ini sendiri adalah bagian dari ilmu komputer yang mempelajari bagaimana membuat mesin (komputer) dapat melakukan pekerjaan seperti dan sebaik yang dilakukan oleh manusia bahkan bisa lebih baik daripada yang dilakukan manusia, dengan mengimplementasikannya dalam sebuah program. Dalam Artificial Intelligence adanya istilah soft computing yaitu inovasi baru dalam membangun sistem cerdas dimana sistem ini memiliki keahlian seperti manusia pada domain tertentu, mampu beradaptasi dan belajar agar dapat bekerja lebih baik jika terjadi perubahan lingkungan. Untuk mengoperasikan soft computing perlu diketahui metodologi-metodologinya dimana salah satunya adalah Evolutionary Computing (optimasi) yang menggunakan Algoritma Genetika. Jadi dengan kata lain dapat dikatakan bahwa Algoritma Genetika merupakan evolusi/perkembangan dunia komputer dalam bidang kecerdasan buatan (Artificial Intelligence).
2 Algoritma Genetika terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi aturan bahwa yang kuat adalah yang menang. Algoritma Genetika merupakan algoritma pencarian hasil terbaik yang berdasarkan atas perkawinan dan seleksi gen secara alami. Untuk lebih memahami tentang Algoritma Genetika, terlebih dahulu harus memahami konsep genetika (rekayasa genetika). Pengertian dari rekayasa genetika adalah penerapan genetika untuk kepentingan manusia, kegiatannya melalui seleksi dalam populasi, penerapan mutasi buatan dan perkawinan silang antara individu yang satu dengan yang lainnya untuk menghasilkan individu baru. Algoritma Genetika menggunakan istilah gen dalam menyimpan informasi, dimana gen merupakan struktur paling sederhana pada Algoritma Genetika. Solusi optimal direpresentasikan sebagai untaian gen yang disimpan dalam stukutur data yaitu kromosom. Kromosom merupakan material yang membawa bahan terwariskan dari gen. Proses pencarian solusi dilakukan dengan cara melakukan operasi terhadap kromosom yaitu rekombinasi kromosom yang dilakukan dengan persilangan dan mutasi dengan tujuan untuk memperoleh kromosom anak. Hal ini juga telah menjelaskan tentang konsep genetika. Algoritma Genetika pertama kali dikembagkan oleh John Holland dari Michigan University pada tahun 1975 dengan tujuan untuk meneliti proses adaptasi dari sistem alam serta mendesain perangkat lunak yang memiliki kecerdasan buatan dengan mencontoh mekanisme sistem alam. Algoritma Genetika banyak digunakan untuk proses optimasi. Salah satu masalah optimasi yang dapat diselesaikan dengan Algoritma Genetika adalah Travelling Salesman Problem atau lebih dikenal dengan TSP. Travelling Salesman Problem (TSP) adalah suatu kondisi dimana seorang salesman keliling yang harus mengunjungi n kota dengan aturan bahwa ia harus mengunjungi setiap kota hanya sebanyak satu kali, meminimalisasi total jarak perjalanannya dan pada akhirnya ia harus kembali ke kota asalnya. Salah satu masalah yang berhubungan dengan TSP adalah menentukan jalur yang terpendek dari rute beberapa kota. (sirkular : kota tujuan sama dengan kota asal). Problema Travelling Salesman Problem (TSP) berkembang terus secara nyata, dengan pencarian hasilnya diselesaikan dengan menggunakan Algoritma Genetika. Dari
3 latar belakang inilah penulis memilih judul Implementasi Algoritma Genetika untuk Travelling Salesman Problem ( TSP ). 1.2 Perumusan Masalah Permasalahan yang dibahas dalam tugas akhir ini adalah penerapan Algoritma Genetika untuk menyelesaikan masalah Travelling Salesman Problem yaitu mencari jalur terpendek dari beberapa kota dengan hasil yang akurat dan menghasilkan rute terbaik yang optimal. 1.3 Batasan Masalah Agar permasalahan tidak menyimpang dari masalah yang dibahas, maka dalam pembahasan masalah terdapat batasan-batasan sebagai berikut : 1. Diasumsikan bahwa setiap kota yang terhubung selalu ada jalur yang menghubungkan antara satu kota dengan kota yang lainnya. 2. Kasus yang diambil adalah kota di Provinsi Jawa Barat dengan jumlah titik yang digunakan sebanyak 15 buah, dimana masing-masing titik mewakili kota yaitu Bekasi, Karawang, Indramayu, Purwakarta, Subang, Bogor, Cirebon, Cianjur, Sumedang, Sukabumi, Bandung, Kuningan, Garut, Tasikmalaya, Ciamis. 3. Jarak antar kota dihitung dengan bentuk euclidean 4. Parameter yang digunakan adalah ukuran populasi, peluang crossover, peluang mutasi, maksimum generasi dan panjang kromosom (jumlah gen). 1.4 Tujuan Penelitian Tujuan dari tugas akhir ini adalah mengimplementasikan Algoritma Genetika dalam masalah Travelling Salesman Problem dimana dalam hal ini masalah yang behubungan dengan TSP adalah mencari jalur terpendek dari beberapa jalur yang ada terhadap 15
4 titik kota pada peta Jawa Barat yang diketahui koordinatnya dengan menggunakan Matlab Tinjauan Pustaka Dalam melakukan penelitian ini, penulis menggunakan beberapa pustaka sebagai referensi pendukung teori. Beberapa sumber pustaka yang diperkenalkan akan digunakan untuk membantu penulis menyelesaikan permasalahan dalam penelitian ini. Sumber pustaka yang digunakan adalah : Rachmayadi (2008) dalam jurnalnya yang berjudul Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetika, menguraikan mengenai struktur umum dari algoritma genetika adalah sebagai berikut : 1. Memilih populasi awal 2. Menghitung nilai fitness dari setiap individu 3. Repeat 3.1. Memilih indvidu-individu yang terbaik berdasarkan fungsi fitness untuk dilakukan reproduksi Menghasilkan generasi baru melalui reproduksi disertai operasi genetik berupa persilangan dan mutasi Menghitung nilai fitness generasi baru Mengganti individu-individu yang memiliki nilai fitness yang paling rendah dengan generasi baru yang nilai fitnessnya lebih baik. 4. Until terminasi. (terminasi dilakukan jika ditemukan solusi optimal, tidak ditemukan solusi yang lebih baik, atau waktu yang dialokasikan telah digunakan sepenuhnya). Dalam Algorima Genetika adanya istilah populasi, individu, gen, kromosom, allela, locus, fitness, perkawinan silang, mutasi, generasi, seleksi, dan offspring (anak). Menurut Hendarto (2007) pengertian Populasi adalah sejumlah solusi yang mungkin. Populasi awal dibangun secara acak, sedangkan populasi berikutnya merupakan hasil
5 evolusi kromosom-kromosom melalui iterasi yang disebut dengan generasi. Individu adalah kumpulan gen dalam sistem Algoritma Genetika bisa dikatakan sama dengan kromosom. Gen adalah substansi hereditas yang terletak di dalam kromosom. Generasi adalah iterasi yang dilakukan untuk menentukan populasi berikutnya. Kromosom adalah individu yang terdapat dalam satu populasi. Kromosom ini merupakan solusi yang masih berbentuk simbol. Allela merupakan nilai yang berada dalam gen. sedangkan Locus adalah letak suatu gen berada dalam suatu kromosom. Offsprings adalah anak (generasi berikutnya) yang terbentuk dari gabungan 2 kromosom. Generasi sekarang yang bertindak sebagai induk (parent) dengan menggunakan operator penyilangan (crossover) maupun operator mutasi. Suyanto (2005) dalam bukunya yang berjudul Algoritma Genetika dalam MATLAB menjelaskan tentang fungsi fitness. Suatu individu dievaluasi berdasarkan suatu fungsi tertentu sebagai ukuran performasinya. Di dalam evolusi alam, individu yang bernilai fitness tinggi yang akan bertahan hidup. Sedangkan individu yang bernilai fitness rendah akan mati. Kusumadewi (2003) dalam bukunya yang berjudul Artificial Intelligence (Teknik dan Aplikasinya) menjelaskan tentang perkawinan silang (crossover) yang dilakukan atas 2 kromosom untuk menghasilkan kromosom anak (offspring). Kromosom anak yang terbentuk akan mewarisi sebagian sifat kromosom induknya. Proses perkawinan silang ini bertujuan untuk menambah keanekaragaman kromosom digenerasi berikutnya berdasarkan kromosom dari generasi saat ini. Kusumadewi dan Purnomo (2005) dalam bukunya yang berjudul Penyelesaian Masalah Optimasi dengan Teknik-teknik Heuristik menjelaskan tentang mutasi menciptakan individu baru dengan melakukan modifikasi satu atau lebih gen dalam individu yang sama. Mutasi berfungsi untuk menggantikan gen yang hilang dari populasi selama proses seleksi serta menyediakan gen yang tidak ada dalam populasi awal. Mutasi dapat dilakukan dari semua gen yang ada dengan probabilitas mutasi tertentu. Jika bilangan random yang dibangkitkan kurang dari probabilitas mutasi yang ditentukan maka ubah gen tersebut menjadi nilai kebalikannya. Penjelasan tentang seleksi akan menentukan individu-individu mana saja yang akan dipilih untuk dilakukan rekombinasi dan bagaimana offspring terbentuk dari individu-
6 individu terpilih tersebut. Langkah yang dilakukan adalah pencarian nilai fitness. Masing-masing individu dalam suatu wadah seleksi akan menerima probabilitas reproduksi yang tergantung pada nilai objektif dirinya sendiri terhadap nilai objektif dari semua individu dalam wadah seleksi tersebut. Nilai fitness inilah yang nantinya akan digunakan pada tahap-tahap berikutnya. Menurut Fitrah, Zaky dan Fitrasani (2006), Persoalan pedagang keliling (Travelling Salesman Problem/TSP) merupakan salah satu persoalan optimasi kombinatorial, jika diberikan sejumlah kota (atau tempat) dan biaya perjalanan dari satu kota ke kota lain. Deskripsi persoalannya adalah bagaimana menemukan rute perjalanan paling murah dari suatu kota dan mengunjungi semua kota lainnya, masing masing kota hanya dikunjungi satu kali, dan harus kembali ke kota asal keberangkatan. Kombinasi dari semua rute perjalanan yang ada adalah faktorial dari jumlah kota. Biaya perjalanan bisa berupa jarak, waktu, bahan bakar, kenyamanan, dan sebagainya. Travelling Salesman Problem (TSP) dapat direpresentasikan dalam bentuk graph, dengan memisalkan kota sebagai verteks dan jalur penghubung antar kota dengan edge. Siang (2002) dalam bukunya yang berjudul Matematika Diskrit dan Aplikasinya dalam ilmu komputer menyatakan tentang sirkuit hamilton. Suatu graph terhubung G disebut sirkuit hamilton bila ada sirkuit yang mengunjungi setiap titiknya tepat 1 kali (kecuali titik awal yang sama denga titik akhirnya). Pencarian sirkuit hamilton dapat memecahkan problema kasus Travelling Salesman Problem. 1.6 Kontribusi Penelitian Selain menambah pemahaman dan pengetahuan penulis mengenai Algoritma Genetika dalam menyelesaikan Travelling Salesman Problem, dengan mengadakan penulisan ini penulis juga dapat menjadikannya sebagai sarana untuk mengaplikasikan materi-materi yang telah didapat dibangku kuliah. Penulis juga berharap dapat menambah referensi dan wawasan bagi pembaca maupun programmer untuk menggunakan Algoritma Genetika sebagai algoritma yang tepat untuk menyelesaikan problema TSP.
7 1.7 Metodologi Penelitian Metode yang digunakan pada penelitian ini merupakan metode pengumpulan data dan bersifat literatur pada teori-teori dari Algoritma Genetika dan Travelling Salesman Problem sebagai studi kasusnya. Langkah pertama yang dilakukan yaitu menjelaskan tentang Travelling Salesman Problem, Algoritma Genetika dan Sirkuit Hamilton. Langkah selanjutnya adalah menjelaskan penggunaan dan pengembangan Algoritma Genetika dalam menentukan jalur terpendek pada masalah Travelling Salesman Problem dengan terlebih dahulu menentukan parameternya. Mengerjakannya secara bertahap dengan Algoritma Genetika dimulai dari pengkodean kromosom, menginisialisasi populasinya, menentukan nilai fitness, melakukan proses seleksi, crossover dan mutasi. Selanjutnya mengimplementasikannya dengan menggunakan Matlab 6.1.
BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika
6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi
BAB I PENDAHULUAN. Universitas Sumatera Utara
BAB I PENDAHULUAN 1.1 Latar Belakang Setelah berkembangnya AI (Artifical Intelligence), banyak sekali ditemukan sejumlah algoritma yang terinspirasi dari alam. Banyak persoalan yang dapat diselesaikan
BAB I PENDAHULUAN. wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat
BAB I PENDAHULUAN A. Latar Belakang Masalah Objek pariwisata di Yogyakarta sudah semakin beragam mulai dari wisata budaya, wisata belanja, hingga wisata Alam. Untuk menarik minat wisatawan dapat dibuat
BAB 2 LANDASAN TEORI
18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun
Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)
JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar [email protected] Abstrak
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi
BAB III. Metode Penelitian
BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan
PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)
Abstrak PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Aulia Fitrah 1, Achmad Zaky 2, Fitrasani 3 Program Studi Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy ([email protected]) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 [email protected],
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga
BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi
BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika
BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM
BAB III IMPLEMENTASIALGORITMA GENETIK DAN ACS PADA PERMASALAHAN TRAVELLING SALESMAN PROBLEM 3.1 TRAVELLING SALESMAN PROBLEM Sebelum membahas pencarian solusi Travelling Salesman Problem menggunakan algoritma
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetik
Pencarian Solusi TSP (Travelling Salesman Problem) Menggunakan Algoritma Genetik Teddy Rachmayadi Teknik Informatika Institut Teknologi Bandung Ganeca 10 Bandung [email protected] ABSTRAK Algoritma
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan
BAB 3 ANALISIS DAN PERANCANGAN APLIKASI
27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma
PEMANFAATAN ALGORITMA FUZZY EVOLUSI UNTUK PENYELESAIAN KASUS TRAVELLING SALESMAN PROBLEM
PEMANFAATAN ALGORITMA FUZZY EVOLUSI UNTUK PENYELESAIAN KASUS TRAVELLING SALESMAN PROBLEM Syafiul Muzid Jurusan Teknik Informatika, Fakultas Teknologi Industri, Universitas Islam Indonesia, Yogyakarta E-mail:
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP)
PENERAPAN ALGORITMA GENETIKA PADA PENYELESAIAN TRAVELLING SALESMAN PROBLEM (TSP) Mohamad Subchan STMIK Muhammadiyah Banten e-mail: [email protected] ABSTRAK: Permasalahan pencarian rute terpendek dapat
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS Hafid Hazaki 1, Joko Lianto Buliali 2, Anny Yuniarti 2
BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang
BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah
Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika
Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan
PRESENTASI TUGAS AKHIR
PRESENTASI TUGAS AKHIR Travelling Salesman Problem menggunakan Algoritma Genetika Via GPS berbasis Android (kata kunci : android,gps,google Maps, Algoritma Genetika, TSP) Penyusun Tugas Akhir : Azmi Baharudin
Lingkup Metode Optimasi
Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi
Jl. Ahmad Yani, Pontianak Telp./Fax.: (0561)
APLIKASI PENCARIAN RUTE TERPENDEK MENGGUNAKANALGORITMA GENETIKA (Studi Kasus: Pencarian Rute Terpendek untuk Pemadam Kebakaran di Wilayah Kota Pontianak) [1] Putri Yuli Utami, [2] Cucu Suhery, [3] Ilhamsyah
PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek
PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK Fajar Saptono 1, Taufiq Hidayat 2 Laboratorium Pemrograman dan Informatika Teori Jurusan Teknik Informatika, Fakultas Teknologi Industri,
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer
DAFTAR ISI. Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii
DAFTAR ISI Tim Redaksi... i Kata Pengantar... ii Daftar Isi... iii Faiz Rafdh Ch SISTEM INFORMASI ZAKAT BERBASIS WEB MENGGUNAKAN PHP DAN MYSQL PADA RUMAH ZAKATINDONESIA 1-7 Abdul Jamil Syamsul Bachtiar
BAB 1 PENDAHULUAN. disebut Univesitas Timetabling Problems (UTP). Permasalahan ini dilihat dari sisi
1 BAB 1 PENDAHULUAN 1.1 Latar Belakang Penjadwalan perkuliahan merupakan suatu masalah yang sangat kompleks yang sering disebut Univesitas Timetabling Problems (UTP). Permasalahan ini dilihat dari sisi
PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR
PENGGUNAAN ALGORITMA GENETIKA UNTUK MENENTUKAN LINTASAN TERPENDEK STUDI KASUS : LINTASAN BRT (BUS RAPID TRANSIT) MAKASSAR Karels, Rheeza Effrains 1), Jusmawati 2), Nurdin 3) [email protected]
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover
STUDI KOMPARATIF ALGORITMA ANT DAN ALGORITMA GENETIK PADA TRAVELLING SALESMAN PROBLEM
Jurnal Computech & Bisnis, Vol. 3, No. 1, Juni 2009, 30-36 ISSN Studi 1978-9629 Komparatif Algoritma Ant...(Bambang Siswoyo & Andrianto) STUDI KOMPARATIF ALGORITMA ANT DAN ALGORITMA GENETIK PADA TRAVELLING
Bab II Konsep Algoritma Genetik
Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya
BAB I PENDAHULUAN. sejumlah aktivitas kuliah dan batasan mata kuliah ke dalam slot ruang dan waktu
18 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penjadwalan merupakan kegiatan administrasi utama di berbagai institusi. Masalah penjadwalan merupakan masalah penugasan sejumlah kegiatan dalam periode
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail
BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta
BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan
BAB II LANDASAN TEORI
27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA Mike Susmikanti Pusat Pengembangan Informatika Nuklir, Badan Tenaga Nuklir Nasional Kawasan
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK
OPTIMASI PENJADWALAN KEGIATAN BELAJAR MENGAJAR DENGAN ALGORITMA GENETIK Usulan Skripsi S-1 Jurusan Matematika Diajukan oleh 1. Novandry Widyastuti M0105013 2. Astika Ratnawati M0105025 3. Rahma Nur Cahyani
BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :
BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut
Penjadwalan kegiatan merupakan pekerjaan yang tidak mudah, karena dalam. penyusunannya memerlukan perencanaan yang matang agar kegiatan tersebut
BAB I PENDAHULUAN A. Latar Belakang Penjadwalan kegiatan merupakan pekerjaan yang tidak mudah, karena dalam penyusunannya memerlukan perencanaan yang matang agar kegiatan tersebut terlaksana dengan optimal.
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE
PENERAPAN ALGORTMA GENETK UNTUK OPTMAS DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE Samuel Lukas, M.Tech." Abstract The purpose of this paper is to introducing genetic algorithm. This algorithm is one
Analisis Operator Crossover pada Permasalahan Permainan Puzzle
Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang
PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 98 106 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL YOSI PUTRI, NARWEN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN Hari Purnomo, Sri Kusumadewi Teknik Industri, Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta [email protected],
BAB II KAJIAN TEORI. berbeda di, melambangkan rusuk di G dan jika adalah. a. dan berikatan (adjacent) di. b. rusuk hadir (joining) simpul dan di
1. Teori graf BAB II KAJIAN TEORI 1. Definisi Graf G membentuk suatu graf jika terdapat pasangan himpunan ) )), dimana ) (simpul pada graf G) tidak kosong dan ) (rusuk pada graf G). Jika dan adalah sepasang
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Penjadwalan Kampanye Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian aktivitas kerja (Jiupe, 2008). Penjadwalan juga merupakan
OPTIMASI JALUR TRANSPORTASI PRODUK HOUSING CLUTCH DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA PADA PT. SUZUKI INDOMOBIL MOTOR PLANT CAKUNG
OPTIMASI JALUR TRANSPORTASI PRODUK HOUSING CLUTCH DENGAN MENGGUNAKAN METODE ALGORITMA GENETIKA PADA PT. SUZUKI INDOMOBIL MOTOR PLANT CAKUNG Disusun Oleh : Nama : Mochammad Brananta Arya Lasmono NPM : 34412653
PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING
Buletin Ilmiah Math. Stat. dan Terapannya (Bimaster) Volume 0, No. (2015), hal 17 180. PENYELESAIAN TRAVELLING SALESMAN PROBLEM MENGGUNAKAN METODE SIMPLE HILL CLIMBING Kristina Karunianti Nana, Bayu Prihandono,
ERWIEN TJIPTA WIJAYA, ST.,M.KOM
ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk
ABSTRAK. Universitas Kristen Maranatha
ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA
PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA Kartina Diah KW1), Mardhiah Fadhli2), Charly Sutanto3) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1 Rumbai-Pekanbaru-Riau
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma
KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA
LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu
BAB 2 TINJAUAN PUSTAKA
5 BAB 2 TINJAUAN PUSTAKA 2.1. Algoritma Genetika Pada tahun 1975, John Holland, di dalam bukunya yang berjudul Adaption in Natural and Artificial Systems, mengemukakan komputasi berbasis evolusi. Tujuannya
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN Tedy Rismawan 1, Sri Kusumadewi 2 Jurusan Teknik Informatika, Fakultas Teknologi Industri Universitas Islam Indonesia e-mail: 1
APLIKASI HASIL PENCARIAN DAN RUTE PENGIRIMAN BARANG DARI SOLUSI MASALAH TRANSPORTASI BIKRITERIA DENGAN METODE LOGIKA FUZZY
APLIKASI HASIL PENCARIAN DAN RUTE PENGIRIMAN BARANG DARI SOLUSI MASALAH TRANSPORTASI BIKRITERIA DENGAN METODE LOGIKA FUZZY Faisal Dosen Jurusan Teknik Informatika Fakultas Sains & Teknologi UIN Alauddin
BAB I PENDAHULUAN. telah diadopsi untuk mengurangi getaran pada gedung-gedung tinggi dan struktur
BAB I PENDAHULUAN 1.1 Latar Belakang Tuned mass damper (TMD) telah banyak digunakan untuk mengendalikan getaran dalam sistem teknik mesin. Dalam beberapa tahun terakhir teori TMD telah diadopsi untuk mengurangi
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi Rahman Aulia Universitas Sumatera Utara Pasca sarjana Fakultas Ilmu Komputer Medan, Indonesia [email protected] Abstract
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Tinjauan Pustaka. Penelitian serupa mengenai penjadwalan matakuliah pernah dilakukan oleh penelliti yang sebelumnya dengan metode yang berbeda-neda. Berikut
GENETIKA UNTUK MENENTUKAN RUTE LOPER KORAN DI AGEN SURAT KABAR
MULTI TRAVELING SALESMAN PROBLEM (MTSP) DENGAN ALGORITMA Abstrak GENETIKA UNTUK MENENTUKAN RUTE LOPER KORAN DI AGEN SURAT KABAR Oleh : Fitriana Yuli Saptaningtyas,M.Si. Jurusan Pendidikan Matematika FMIPA
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM
PERBANDINGAN KINERJA ALGORITMA GENETIK DAN ALGORITMA BRANCH AND BOUND PADA TRAVELLING SALESMAN PROBLEM Nico Saputro dan Suryandi Wijaya Jurusan Ilmu Komputer Universitas Katolik Parahyangan [email protected]
KONSEP ALGORITMA GENETIK BINER UNTUK OPTIMASI PERENCANAAN JADWAL KEGIATAN PERKULIAHAN
Jurnal Teknik dan Ilmu Komputer KONSEP ALGORITMA GENETIK BINER UNTUK OPTIMASI PERENCANAAN JADWAL KEGIATAN PERKULIAHAN (Binary Genetic Algorithm Concept to Optimize Course Timetabling) Iwan Aang Soenandi
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY
PENERAPAN ALGORITMA GENETIKA UNTUK MENYELESAIKAN PERMASALAHAN PENJADWALAN DOSEN DENGAN FUZZY Arief Kelik Nugroho Fakultas Teknik, Universitas PGR Yogyakarta e-mail : [email protected] Abstrak
PENDAHULUAN. Latar Belakang
Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut
Genetic Algorithme. Perbedaan GA
Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI ABSTRAK
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI Eddy Triswanto Setyoadi, ST., M.Kom. ABSTRAK Melakukan optimasi dalam pola penyusunan barang di dalam ruang tiga
ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi
BAB I PENDAHULUAN. adalah dengan menyatakan objek dinyatakan dengan sebuah titik (vertex),
BAB I PENDAHULUAN 1. 1 Latar Belakang Masalah Teori graf merupakan salah satu bidang matematika, yang diperkenalkan pertama kali oleh ahli matematika asal Swiss, Leonardo Euler pada tahun 1736. Teori graf
T I N J A U A N P U S T A K A Algoritma Genetika [5]
Algoritma Genetika [5] Fitness adalah nilai yang menyatakan baik-tidaknya suatu jalur penyelesaian dalam permasalahan TSP,sehingga dijadikan nilai acuan dalam mencari jalur penyelesaian optimal dalam algoritma
BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya
5 BAB II KAJIAN TEORI 2.1 Kajian Penelitian Sebelumnya Traveling salesman problem (TSP) merupakan salah satu permasalahan yang telah sering diangkat dalam berbagai studi kasus dengan penerapan berbagai
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Persoalan TSP merupakan salah satu persoalan optimasi kombinatorial (kombinasi permasalahan). Banyak permasalahan yang dapat direpresentasikan
ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma
PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC)
PENERAPAN ALGORITMA GENETIKA DALAM PENYELESAIAN TRAVELLING SALESMAN PROBLEM WITH PRECEDENCE CONSTRAINTS (TSPPC) Yayun Hardianti 1, Purwanto 2 Universitas Negeri Malang E-mail: [email protected] ABSTRAK:
BAB I PENDAHULUAN an berkembang algoritma genetika (genetic algorithm) ketika I. Rochenberg dalam bukunya yang berjudul Evolution Strategies
BAB I PENDAHULUAN A. Latar Belakang Perkembangan teori graf sangat pesat dari tahun ke tahun, pada tahun 1960-an berkembang algoritma genetika (genetic algorithm) ketika I. Rochenberg dalam bukunya yang
Penentuan Optimalisasi TSP (Travelling Salesman Problem) Distribusi Barang Menggunakan Algoritma Genetika Di Buka Mata Adv
Penentuan Optimalisasi TSP (Travelling Salesman Problem) Distribusi Barang Menggunakan Algoritma Genetika Di Buka Mata Adv Teguh Nurhadi Suharsono 1, Muhamad Reza Saddat 2 1 Program Studi Teknik Informatika
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA,, Universitas Negeri Malang E-mail: [email protected] ABSTRAK: Matching berguna untuk menyelesaikan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan skripsi ini. Teori-teori yang dibahas mengenai optimisasi, pengertian penjadwalan,
Tugas Mata Kuliah E-Bisnis REVIEW TESIS
Tugas Mata Kuliah E-Bisnis REVIEW TESIS Desain Algoritma Genetika Untuk Optimasi Penjadwalan Produksi Meuble Kayu Studi Kasus Pada PT. Sinar Bakti Utama (oleh Fransiska Sidharta dibawah bimbingan Prof.Kudang
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA Bagus Priambodo Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana e- mail : [email protected]
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN Eva Haryanty, S.Kom. ABSTRAK Komputer adalah salah satu peralatan yang pada saat ini banyak pula digunakan
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN
PERFORMANCE ALGORITMA GENETIKA (GA) PADA PENJADWALAN MATA PELAJARAN Eva Desiana, M.Kom Pascasarjana Teknik Informatika Universitas Sumatera Utara, SMP Negeri 5 Pematangsianta Jl. Universitas Medan, Jl.
Vukovich dinamis yang digabungkan dengan model PRoFIGA didalamnya.
BAB I PENDAHULUAN 1.1. Latar Belakang Fuzzy Evolutionary Algorithm (FEA) merupakan salah satu model hybrid yang menggabungkan dua buah model soft computing yaitu algoritma genetika dan logika fuzzy. FEA
2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks
4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad
RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA
ABSTRAKSI RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA Tedy Rismawan, Sri Kusumadewi Jurusan Teknik Informatika, Fakultas Teknologi Industri Universitas
BAB 1 PENDAHULUAN. 1.1 Latar Belakang
BAB 1 PENDAHULUAN 1.1 Latar Belakang Traveling Salesman Problem (TSP) adalah permasalahan dimana seorang salesman harus mengunjungi semua kota yang ada dan kota tersebut hanya boleh dikunjungi tepat satu
PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK (SHORTEST PATH) SKRIPSI RION SIBORO
PENERAPAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK (SHORTEST PATH) SKRIPSI RION SIBORO 060803025 DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SUMATERA UTARA
OTOMASI PENJADWALAN KEGIATAN PRKULIAHAN DI PERGURUAN TINGGI MENGGUNAKAN METODE ALGORITMA GENETIKA ( STUDI KASUS STIKI )
OTOMASI PENJADWALAN KEGIATAN PRKULIAHAN DI PERGURUAN TINGGI MENGGUNAKAN METODE ALGORITMA GENETIKA ( STUDI KASUS STIKI ) Siska Diatinari Andarawarih 1) 1) Program Studi Teknik Informatika, Sekolah Tinggi
