ESTIMASI INTERVAL SPLINE DALAM REGRESI NONPARAMETRIK

Ukuran: px
Mulai penontonan dengan halaman:

Download "ESTIMASI INTERVAL SPLINE DALAM REGRESI NONPARAMETRIK"

Transkripsi

1 ESTIASI INTERVAL SPLINE DALA REGRESI NONPARAETRIK uhd N, I Nyo Budtr hssw S Jurus Sttstk FIPA ITS Sury El: [email protected] Dose Jurus Sttstk FIPA ITS Sury Astrks Derk odel regres opretrk y ( ε, [],,,,. Kurv regres dsusk [ ] sooth, dl rt terut d dl rug Soolev. Uuy ests ttk dperoleh dr euk Pelzed Lkelhood (PL. Utuk eyeles opts PL, pr peelt egguk pedekt Reproducg Kerel Hlert Spce (RKHS tu Gteu. Sedgk utuk persol eres sepert ests tervl (tervl kodes utuk, egguk pedekt Byes. Tetp pedekt eerluk pegethu tetk yg relt tgg d sult dph oleh yk peggu Sttstk. Dl tuls, peuls egests ttk W p deg egguk opts Lkelhood d egkostruks selg kepercy utuk kurv regres deg pedekt Sple egguk Pvotl Qutty, yg erupk geerlss regres pretrk. Ieres sttstk yg dhslk secr tetk leh udh d sederh sert udh dph oleh peggu Sttstk. Seluty derk sutu lustrs uerk odel Sple utuk edug pol huug tr uur lt deg ert d lt d Kot Sury esert tervl kodesy. Kt kuc : Regres Nopretrk, Pelzed Lkelhood, Sple, Pvotl Qutty. Pedhulu Dl Sttstk utuk egethu odel pol huug tr vrel predktor d vrel respo y dpt dguk lss regres. Asusk dt erpsg (, y egkut odel regres y ( ε,,,,. Fugs ( erupk kurv regres d ε error rdo yg dsusk erdstrus orl depede deg e ol d vrs. Apl dl lss regres etuk kurv regres dkethu secr els, k odel regres terseut dk odel regres pretrk (Hrdle,99. Seg lustrs, k pol dt cederug egkut odel ler/kudrtk/kuk, k pedekt regres yg sesu utuk dt terseut dlh regres pretrk ler/kudrtk/kuk (Budtr. Dl kehdup yt sesugguhy tdk seu dt (, y dkethu pol huugy secr els. Apl pd ksus sepert, odel pretrk tetp dpksk seg odel pol dt k k dperoleh kespul yg eyestk. Regres opretrk erupk pedekt regres yg sesu utuk pol dt yg tdk dkethu etuky tu tdk terdpt ors s llu tetg pol dt (Budtr. odel regres opretrk yg serg edpt perht dr pr peelt dlh Kerel (Hrdle,99, Sple (Wh99; Crve d Wh979; Budtr et. l.,997, Deret Fourer d Wvelets (Atods, et. l.,994. Dl pedekt regres opretrk, dt dhrpk ecr sedr etuk pedugy tp dpegruh oleh ktor suyektts peelt. Dtr odel-odel regres opretrk d ts, Sple erupk odel regres yg epuy terprets Sttstk d Vsul sgt khusus d sgt k. odel Sple dperoleh dr sutu opts Pelzed Lest Squre (PLS d elk lekselts yg tgg (Budtr4. Dspg tu Sple pu eg krkter dt/ugs yg ulus (sooth. Sple ug elk kepu yg sgt k utuk eg dt yg perlkuy eruh-uh pd su-su tervl tertetu (Co d O Sullv996; Euk,988; Budtr6. Dl regres opretrk Sple, pedug kurv regres dperoleh dr opts PLS tu Pelzed Lkelhood (PL(Crve d Wh979; Budtr et. l.,997. Peyeles opts dperoleh deg egguk etode RKHS tu Gteu. etode secr tetk relt sult,

2 kre eerluk pegethu tetg Alss Rel d Alss Fugsol yg tgg, sehgg sult dph d dselesk oleh pr peggu regres opretrk Sple. Nu utuk edug kurv regres yg dperoleh dr opts Lkelhood dpt ed plh yg cukup k kre secr tetk udh d sederh. Sedgk utuk egkostruks selg kepercy pd kurv regres, eerp peelt sepert Wh (983 d Budtr ( egguk pedekt Byes deg egguk pror proper sehgg secr tets cukup sult. Ak tetp k selg kepercy dperoleh deg pedekt Pvotl Qutty tdk k eltk dstrus pror, sehgg dperoleh odel yg sederh d eres Sttstk yg relt udh (Euk, 988. Berdsrk hl dts, peuls tertrk utuk epelr pedekt sple egguk opts Lkelhood d euruk tervl kodes utuk kurv regres opretrk deg pedekt Pvotl Qutty. Peerp regres sple d tervl kodes k dguk utuk egethu pol rtrt ert d d uur lt khususy d kot Sury pd thu 7.. Ests Ttk Utuk Kurv Regres Derk odel regres opretrk y ( ε, [],,,,. Betuk kurv regres dsusk tdk dkethu, terut d dl rug Soolev W p [ ], deg : W p ( p [ ] { g ; ( d < } Seluty ests ttk utuk kurv dperoleh deg egguk Opts Lkelhood. Derk sutu Bss utuk rug Sple (Budtr( eretuk : deg : λ λ {,,,,..., }, (,, λ < λ d λ, λ, λ 3 erupk ttk-ttk kots. Ttk kots erupk ttk perpdu ers yg eperlhtk terdy peruh pol prlku dr ugs Sple pd tervl-tervl yg ered. Utuk setp ugs dl rug Sple dpt dytk ed : ( k λk, ( k deg erupk kostt yg erl rel. odel regres Sple dpt dtuls ed : y ( ε. k λk ε. k Apl dsusk sest rdo ε erdstrus orl depede deg e ol d vrs, k y ug erdstrus orl deg e ( d vrs L ( y, (π. Akty dperoleh ugs Lkelhood: / Ep( ( y Ep( ( y ( / ( π Ests ttk utuk dperoleh deg eyelesk Opts Lkelhood { L( y, } R π / { ( Ep( ( y k λk } k Apl dl trsors Logrt d eggt pers ( k dperoleh ugs : Log L ( y, λ, log(π ( y k λk. k Deg pey trks, dperoleh : Log L ( y, λ, log( π ( y T, ( y T,, ( deg,,,,,, y,..., ( y, d, y (3, derk oleh : T, ( λ ( , T trks erukur λ λ λ L L O L λ λ λ Apl pers ( ddervtk prsl terhdp keud hsly dsk deg ol, ddpt :.

3 Log L(y, λ, [ ( y T, ( y T, ]. Deg sedkt per d eggt erupk trks deg rk peuh, k T, dperoleh ests Lkelhood utuk dlh : ˆ, [ T,, ( T ], Esttor kurv regres derk oleh :, deg : W, ( λ Terlht hw T, [ T,, W, y, T T, [ T,,, T T ( λ y. ], T ( λ y. ], T ( λ. erupk esttor ler dl oservs y d sgt tergtug pd ttk kots λ { λ, λ,..., λ }. Dl odel Sple ttk kots hrus dplh deg erg etode sepert Geerlzed Cross Vldto (GCV (Budtr d Wh983, Cross Vldto (CV (Crve d Wh979, Geerlzed u Lkelhood (GL (Wg,998, tu etode-etode yg ly. Esttor ler sgt etu dl egu eres Sttstk, sepert tervl kodes utuk kurv regres. 3. Itervl Kodes Utuk Kurv Regres Persol eres yg sgt petg dl regres Sple, dlh tervl kodes utuk kurv regres,,,...,. Utuk eperoleh ( tervl kodes, uuy dguk pedekt Byes (Wh983 ; 99 d Wg,998. Dl tuls dguk pedekt l ytu Pvotl Qutty. Kre ε ( ε,..., ε erdstrus I N(, k : y erdstrus N(,. Seluty vrel rdo N( (,[ T,, Ekspekts d Vrs dr derk oleh : E( ( I ˆ, λ erdstrus ] T.,, T, [ T,, T, T,, erturut-turut T ], Vr(,, T ( λ (, d T [ T,,, T ], T ( λ W. Kre st lerts dr dstrus orl k vrel rdo :, ( erdstrus N(, Jk dl Trsors : tu : U U (,,, λ, λ,..., λ, λ, λ,..., λ, W., ( W ( -, ω, λ, λ,..., λ ˆ ˆ k λk k ω, λ, λ,..., λ,,,...,. deg ω, λ, λ,..., λ elee dgol ke- dr trks W,. Vrel rdo U, λ, λ,..., λ erdstrus N(,. Deg U,, λ,..., λ dek λ erupk Pvotl Qutty utuk Kurv regres. Itervl Kodes pers: deg ( α dperoleh dr eyelesk P( U, λ, λ,..., λ α, R, R, d <,,...,. Pers d ts dpt dytk ed : P( ˆ α K k ˆ k λ ω, λ, λ,..., λ k

4 Deg sedkt per dperoleh tervl kodes α utuk, utuk,,..., P K ˆ k ˆ ˆ ( λ ω, λ, λ,..., λ K ˆ k k k λ ω, λ, λ,..., λ k k α Deg egguk kosep Itervl kodes terpedek, hrus dtetuk l (3 R d R, l( sehgg pg dr tervl pd Pers (3 terpedek. Utuk tuu, dcr peyeles opts ersyrt erkut. { l( } R, R R, R {( ω, λ, λ,..., λ } Deg syrt : ϕ( u du α, tu, (4 Φ( Φ( ( α (5 Fugs ϕ erupk dstrus prolts N(, d Φ erupk dstrus prolts Kuult N(,. Opts (4 d (5 dpt dselesk deg egguk etode Lgrge ultple. Detuk ugs Lgrge : Ω ( c ( ω, λ, λ,..., λ c [ ϕ( u du ( α ]. Seluty deg edervtk ugs terhdp d c dperoleh: Ω( c Ω( c ω, λ, λ,..., λ cϕ( Ω( c. (6 ω, λ, λ,..., λ cϕ( Ω( c Φ( Φ( ( α c. (7 (8 Pers (6 d (7 eghslk peyeles : ϕ ( ϕ(. (9 eggt pers (8 d U ~ N (, peyeles Pers (9 dlh ert y uur y k, tu. Tetp pers tdk eeuh. Jd gr dperoleh tervl kodes terpedek hrus dl l d yg eeuh pers : α ϕ ( u du ϕ( u du ( Jk tgkt kodes α derk k l d dpt dlht dl tel dstrus N(,. Itervl kodes α utuk kurv regres,,,..., derk oleh Pers (3, deg d eeuh Pers (. 4. Aplks odel d Itervl Kodes Sple Pd uuy pol pertuuh lt tdklh kost tetp terd peruh pol pertuuh pd uur-uur tertetu. Sek kelhr sp uur 6 ul pertuuh lt uuy sgt pest, tetp setelh uur 6 ul pertuuhy gk perlh. Hl dpt dlht deg eodelk pol huug tr uur d ert d lt d Kot Sury deg odel sple polol tructed : p p k p λk k (, utuk erg l p yg euuk orde sple d erg yg euuk yk ttk kot. Utuk elh ttk kot optl dl odel sple dguk etode GCV. Deg egguk Progr S-Plus ddptk l GCV terkecl,5694 terd pd odel sple kudrtk deg tg ttk kot pd uur 4 ul uur 8 ul d uur 4 ul. Gr. Plot dt d sple kudrtk deg ttk kot 4, 8 d 4, GCV:.5694

5 Setelh dperoleh ttk ttk kot optu seluty dlkuk pedug pd odel: 3( λ λ λ Secr legkp odel regres sple setelh dperoleh l l ests dr yg sgk dlh seg erkut : Dr hsl pelh ttk ttk kot optl 4, 8, 4, dperoleh R.99687, tu R 99,68% Tel. Rgks sttstk ests preter odel sple kudrtk. ert y Koese Ests Stdev t-ht Jd erdsrk Tel, dpt dspulk pul hw odel sple kudrtk deg ttk-ttk kot 4, 8 d 4 deg l GCV.5694 dlh ed seg odel pedekt utuk dt. Setelh edptk odel sple terk deg odel kudrtk tg ttk kot 4, 8 d 4 ul k dgu tervl kodes 95%. Kurv erwr ht dlh kurv sple deg ttk kot optl d kurv l erturut-turut erupk tervl kodes sple wh d ts. Gr. Itervl Kodes Sple uur y 5. Kespul. Utuk eperoleh ests ttk kurv regres dl regres opretrk sple, uuy dguk opts Pelzed Lkelhood. Dspg tu dpt pul egguk opts Lkelhood yg eerk hsl relt udh.. Utuk egu tervl kodes dl regres opretrk sple, uuy dguk pedekt Byes. Pedekt Pvotl Qutty ug dpt dguk d eerk hsl yg relt sederh. 3. odel Sple kudrt sgt ed utuk dguk edug pol huug tr uur lt d ert d lt d Kot Sury. 6. Reeres Atods, A., Gregorre, G. d ckegu, W., 994, Wvelets ethods or Curve Estto, Jourl o the Aerc Sttstcl Assocto., 89, Budtr I.N, Sur, d Soeoet, Z., 997, Weghted Sple Esttor, Bullet o the Itertol Sttstcl Istute, 5, Budtr I.N, etode U, GL, CV d GCV Dl Regres Nopretrk Sple, lh Ilh Hpu tetk Idoes (IHI, 6, Budtr I. N., Opts d Proyeks Dl Regres Nopretrk Sple, lh Berkl tetk d Ilu Pegethu Al (BIPA, Uversts Gdh d, Budtr I.N, ( Regres Nopretrk d Sepretrk Sert Perke-gy klh Pecr Ut pd Ser Nsol Alu Psc Sr tetk Uversts Gdh d Yogykrt. Budtr I.N, ( Ests Pretrk d Nopretrk utuk Pedekt Kurv Regres, klh Pecr Ut pd Ser sol Sttstk V, Jurus Sttstk Fkults tetk d Ilu Pegethu Al Isttut Tekolog Sepuluh Nopeer (ITS, Sury. Budtr I.N, 4, Sple : Hstors, otvs, d Pery Dl Regres Nopretrk, klh Pecr Ut pd Koeres Nsol tetk XII, Jurus tetk Fkults tetk d Ilu Pegethu Al Uversts Udy (UNUD, Depsr. Budtr I.N, 6, Regres Nopretrk Dl Sttstk klh Pecr Ut pd Ser Nsol tetk Jurus tetk Fkults tetk d Ilu Pegethu Al Uversts Neger ksr (UN, ksr. Co, D. D. d O Sullv F.,996, Pelzed Type Esttor or Geerlzed Nopretrc Regresso, 983, Jourl o ultvrte Alyss, 56, Crve, P. d Wh G.,979, Soothg Nose Dt wth Sple Fuctos, Nuersche thetcs, 3,

6 Euk, R.L.,988, Sple Soothg d Nopretrc Regresso, rcel Deker, New York. Hrdle, W.,99, Appled Nopretrc Regresso, Crdge Uversty Press, New York. Soetgsh, (995, Tuuh Keg Ak, Lortoru Ilu Keseht Ak Uversts Arlgg Sury. Suprs I.N.,Bkr, B., d Fr, I., (, Pel Sttus Gz, Peert Buku Kedokter EGC, Jkrt. Wh G.,983, Byes Codece Itervl or the Cross Vldted Soothg Preter the Geerlzed Sple Soothg Proles, The Als o Sttstcs, 3, Wh G.,99, Sple odels or Oservsol Dt SIA Pesylv. Wg, Y., 998, Sple Soothg odels Wth Correlted Errors, Jourl o the Aerc Sttstcl Assocto., 93,

1 yang akan menghasilkan

1 yang akan menghasilkan Rset Opers Probblstk Teor Per (Ge Theor) Nughthoh Arfw Kurdh, M.Sc Deprteet of Mthetcs FMIPA UNS Lecture 6: Med Strteg: Ler Progrg Method A. Metode Cpur deg Progr Ler Terdpt hubug g ert tr teor per d progr

Lebih terperinci

BAB VI ANALISIS REGRESI

BAB VI ANALISIS REGRESI BAB VI ANALISIS REGRESI A. Pedhulu Alss regres merupk slh stu lss yg ertuju utuk megethu pegruh sutu vrel terhdp vrel l. Vrel yg mempegruh dseut depedet vrle/vrel es () d vrel yg dpegruh dseut depedet

Lebih terperinci

x 1 M = x 1 m 1 + x 2 m x n m n = x i

x 1 M = x 1 m 1 + x 2 m x n m n = x i Iterl Tertetu..6 oe d ust ss Ttk Bert slk d du ed s-s elk ss sesr d y dletkk pd pp er de jrk erturut-turut d d d dr ttk pey pd - y ered. Ked terseut k se jk dpeuh d d. d d Sutu odel tets y k dperoleh pl

Lebih terperinci

Bab 4 ANALISIS REGRESI dan INTERPOLASI

Bab 4 ANALISIS REGRESI dan INTERPOLASI Als Numerk Bh Mtrkuls B 4 ANALISIS RGRSI d INTRPOLASI 4 Pedhulu Pd kulh k dpeljr eerp metde utuk mempredks d megestms dt dskret Dr sutu peelt serg dlkuk peglh dt utuk megethu pl dt tu etuk kurv g dggp

Lebih terperinci

( X ) 2 ANALISIS REGRESI

( X ) 2 ANALISIS REGRESI ANALII REGREI A. PENGERTIAN REGREI ecr umum d du mcm huug tr du vrel tu leh, tu etuk huug d keert huug. Utuk megethu etuk huug dguk lss regres. Utuk keert huug dpt dkethu deg lss korels. Alss regres dperguk

Lebih terperinci

Pemilihan Model Terbaik pada Mars Respon Kontinu

Pemilihan Model Terbaik pada Mars Respon Kontinu Sttstk, Vol. 8 No., 9 9 e 008 Pelh odel erk pd rs Respo Kotu Bg Wdjrko Otok eg Pegjr d Jurus Sttstk, IS, Sury e-l: [email protected]; [email protected] Astrk ultvrte dptve regresso sple (ARS) dlh slh stu

Lebih terperinci

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI

PENCOCOKAN KURVA (CURVE FITTING) INTERPOLASI PENCOCOKAN KURVA (CURVE FITTING) Iterpols : Iterpols er Iterpols Kudrtk Iterpols Poloml Iterpols grge Regres : Regres er Regres Ekspoesl Regres Poloml INTERPOASI Iterpols dguk utuk meksr l tr (termedte

Lebih terperinci

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA

HUBUNGAN DERET BERTINGKAT BERDASAR BILANGAN EULERIAN DENGAN OPERATOR BEDA HUBUNAN DERET BERTINKAT BERDAAR BILANAN EULERIAN DENAN OPERATOR BEDA Aleder A uw Jurus Mtetk, Fkults s d Tekolog, Uversts B Nustr Jl. K.H. yhd No. 9, Plerh, Jkrt Brt 48 [email protected] ABTRACT Cscde seres

Lebih terperinci

A. Pusat Massa Suatu Batang

A. Pusat Massa Suatu Batang Perteu 7 Pust ss sutu Kepg, Setrod, d Teore Pppus A. Pust ss Sutu Btg Dskusk!. slk ss,,..., terletk pd tg pdt sgsg d ttk,...,,, d = jrk errh tr ss ke sutu ttk tetp 0 pd tg,,,...,. ss prtkel, oe prtkel

Lebih terperinci

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER

ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER ANALISIS KINERJA METODE ZERO SUFFIX DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER Tof Adtyw, Spt Whyugsh 2 Uversts Neger Mlg E l : [email protected] ABSTRAK: Slh stu slh dl kehdup sehr hr yg

Lebih terperinci

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS

PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS PENYELESAIAN MASALAH PL DENGAN METODE SIMPLEKS Metode ple erup utu te tdr g dgu utu eech lh Progr Ler e thu 9. Pd prp etode ple ecr peele optl deg eetu tt-tt udut dr derh fele proe dlu erulg-ulg dr utu

Lebih terperinci

CNH2B4 / KOMPUTASI NUMERIK

CNH2B4 / KOMPUTASI NUMERIK CNHB4 / KOMPUTASI NUMERIK TIM DOSEN KK MODELING AND COMPUTATIONAL EXPERIMENT PENCOCOKAN KURVA Pedhulu Dt g bersl dr hsl pegmt lpg pegukur tu tbel g dmbl dr buku-buku cu. Nl tr turu tegrl mudh dcr utuk

Lebih terperinci

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1)

CATATAN KULIAH Pertemuan XIII: Analisis Dinamik dan Integral (1) CATATAN KULIAH Pertemu XIII: Alss Dmk d Itegrl () A. Dmk d Itegrs Model Stts : mecr l vrel edoge yg memeuh kods ekulrum tertetu. Model Optms : mecr l vrel plh yg megoptms fugs tuju tertetu. Model Dmk :

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB PENDAHULUAN. Ltr Belkg Smp st, model Regres d model Alss Vrs telh dpdg sebg du hl g tdk berkt. Meskpu merupk pedekt g umum dlm meergk kedu cr pd trf permul, model Alss Vrs dpt dpdg sebg hl khusus model

Lebih terperinci

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1

REGRESI. Curve Fitting. Regresi Eksponensial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt t tersebut

Lebih terperinci

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1

REGRESI. Curve Fitting Regresi Linier Regresi Eksponensial Regresi Polynomial. Regresi 1 REGRESI Curve Fttg Regres Ler Regres Ekspoesl Regres Poloml Regres Curve Fttg: Ksus Dberk dt berup kumpul ttk-ttk dskrt. Dperluk estms / perkr utuk medptk l dr ttk-ttk g berd d tr ttk-ttk dskrt tersebut

Lebih terperinci

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor

BAB 2 ANAVA 2 JALAN. Merupakan pengembangan dari ANAVA 1 Jalan Jika pada ANAVA 1 jalan 1 Faktor Jika pada ANAVA 2 jalan 2 Faktor BAB ANAVA JALAN Merupk pegembg dr ANAVA 1 Jl Jk pd ANAVA 1 l 1 Fktor Jk pd ANAVA l Fktor Model Ler Asums: Model efek Tetp! 1,..., 1,..., Stu fktor g dtelt Av 1 l k k 1,,..., 1,,..., b k 1,,..., Du fktor

Lebih terperinci

ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER

ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER ANALISIS KINERJA METODE ASM DALAM MENYELESAIKAN MASALAH TRANSPORTASI FUZZY DAN LINIER D Arvto 1, Spt Whyugsh 2 Uversts Neger Mlg E l : [email protected] ABSTRAK: Mslh trsports fuzzy d ler erupk slh stu

Lebih terperinci

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA)

Analisis Variansi satu faktor Single Factor Analysis Of Variance (ANOVA) BAB 1 Alss Vrs stu fktor Sgle Fctor Alss Of Vrce (ANOVA) ANALISIS VARIANSI SATU FAKTOR D MetStt 1 sudh dkel uj hpotess rt-rt du populs A d B g berdstrbus Norml Bgm jk terdpt lebh dr du populs? Alss vrs

Lebih terperinci

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA)

Analisis Variansi satu faktor (Analysis Of Variance / ANOVA) Alss Vrs stu fktor (Alss Of Vrce / ANOVA) 1. Megethu rcg d eses. Megethu model ler 3. Meuruk Jumlh Kudrt (JK) 4. Melkuk uj lss vrs 5. Melkuk uj perbdg gd Apkh ber kot dlm rokok dpt megkbtk Kker? Sel kker

Lebih terperinci

1. Aturan Pangkat 3. Logartima

1. Aturan Pangkat 3. Logartima KL UN Mtetk MA IPA 9/ No. KL Ruus. Meetuk egs pert g dperoleh dr perk kespul.. p q. p q. p q ~ (p q) = ~p ~q ~ (eu/etp p) = Ad/Beerp ~p p. ~q q r ~ (p q) = ~p ~q ~ (Ad/Beerp p) = eu/etp ~p q ~p p r p q

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. a 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser

Lebih terperinci

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange

PRAKTIKUM 22 Interpolasi Linier, Kuadratik, Polinomial, dan Lagrange Prktkum. Iterpols Ler, Kudrtk, Poloml d Lgrge PRAKTIKUM Iterpols Ler, Kudrtk, Poloml, d Lgrge Tuju : Mempeljr berbg metode Iterpols g d utuk meetuk ttkttk tr dr buh ttk deg megguk sutu fugs pedekt tertetu.

Lebih terperinci

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal :

INTEGRASI NUMERIK C 1. n ax. ax e. cos( 1 1. n 1. x x. 0 Fungsi yang dapat dihitung integralnya : 0 Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

Kajian Metode Estimasi Parameter dalam Regresi Semiparametrik Spline

Kajian Metode Estimasi Parameter dalam Regresi Semiparametrik Spline W. Wowo, S. Hrytm, I N. Budtr, Kj Metode Estms Prmeter... Kj Metode Estms Prmeter dlm egres Semrmetrk Sle Whyu Wowo, Sr Hrytm, I Nyom Budtr [email protected] Jurus Mtemtk, Uversts Gdjh Md Yogykrt Jurus

Lebih terperinci

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel

PRAKTIKUM 10 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Seidel Prktkum 0 Peyeles Persm Ler Smult - Metode Elms Guss Sedel PRAKTIKUM 0 Peyeles Persm Ler Smult Metode Elms Guss Sedel Tuu : ler smult Mempelr metode Elms Guss Sedel utuk peyeles persm Dsr Teor : Metode

Lebih terperinci

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif

Batas Nilai Eigen Maksimal Dari Matriks Tak Negatif Vol. 3 No. 80-85 Ju 007 Bts Nl Ege Mksl D Mtks Tk Negtf A. Kes Jy Abstk Ide ut skps dlh utuk edptk etode dl eetuk bts d l ege ksl d tks tk egtf deg bedsk bts Fobeus. Ytu R d dlh ulh bs tu kolo u d R dlh

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. x x. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. INTEGRASI

Lebih terperinci

Model Tak Penuh. Definisi dapat di-uji (testable): nxp

Model Tak Penuh. Definisi dapat di-uji (testable): nxp Model T Peuh Defs dpt d-u (testle): Sutu c c 'c 'c H 'c 'c dpt du l d stu set fugs g dpt - ddug m m ' sehgg H er c ' ' slg es ler tu C c ' c m ' Perht : Kre r X p r p m m r c' (X' X) c X' X c' C(X' X)

Lebih terperinci

TEOREMA DERET PANGKAT

TEOREMA DERET PANGKAT TEOEMA DEET PANGKAT Kosep Dsr Deret pgkt erupk sutu etuk deret tk higg 3 + ( + + 3( +... ( disusik,, d koefisie i erupk ilg rel. Julh prsil utuk suku pert etuk di ts dlh s yg dpt ditulisk segi s ( + (

Lebih terperinci

BAB IV INTEGRAL RIEMANN

BAB IV INTEGRAL RIEMANN Itegrl Rie BAB IV INTEGRAL RIEMANN Utuk epeljri leih ljut tetg kosep itegrl Rie, k leih ik jik pec ehi eerp hl erikut. A. Prtisi Defiisi 4.1 Dierik itervl tertutup [, ], hipu terurut d erhigg P = { = x

Lebih terperinci

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA.

PENAKSIR RASIO YANG EFISIEN UNTUK RATA-RATA POPULASI MENGGUNAKAN KOEFISIEN REGRESI ROBUST PADA SAMPING ACAK SEDERHANA. PENAKI AIO ANG EFIIEN UNTUK ATA-ATA POPULAI MENGGUNAKAN KOEFIIEN EGEI OUT PADA AMPING ACAK EDEHANA M Okto Mork Arsm Ad Hpos rt [email protected] Mhssw Progrm Mtemtk Dose Jurus Mtemtk Fkults Mtemtk d Ilmu

Lebih terperinci

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang

Metode Fuzzy ASM pada Masalah Transportasi Fuzzy Seimbang EMINAR MATEMATIKA AN PENIIKAN MATEMATIKA UNY 7 T - 6 Metode Fuzzy AM pd Mslh Trsports Fuzzy eg olkh eprtee Mtetk Fkults s d Mtetk Uversts poegoro ol_erf@yhooo Astrk Mslh trsports fuzzy erupk geerlss dr

Lebih terperinci

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial

PRAKTIKUM 12 Regresi Linier, Regresi Eksponensial dan Regresi Polinomial Prktkum. Regres Regres Ler, Regres Ekspoesl, d Regres Poloml Poltekk Elektrok eger Surb ITS 47 PRAKTIKUM Regres Ler, Regres Ekspoesl d Regres Poloml. Tuju : Mempeljr metode peeles regres ler, ekspoesl

Lebih terperinci

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral

INTEGRAL DELTA DAN SIFAT-SIFATNYA. Delta Integral and Properties of Delta Integral Jurl Brekeg Vol. 7 No. Hl. 3 8 (03) INTEGRAL DELTA DAN SIFAT-SIFATNYA Delt Itegrl d Propertes of Delt Itegrl MOZART WINSTON TALAKUA, MARLON STIVO NOYA VAN DELSEN Stf Jurus Mtemtk, FMIPA, Uptt Alum Jurus

Lebih terperinci

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0.

1. Kepekatan bakteria pencemar p(t), di dalam secawan teh tarik yang dibiarkan selama beberapa jam diberikan oleh: p(t) = 50e -1.5t + 15e -0. KKKF BAHAGAN A 6 MARKAH Arh : Jw SEMUA sol. Kepekt kter pecemr pt, d dlm secw teh trk yg drk selm eerp jm derk oleh: pt = 5e -.5t + 5e -.75t Crk ms, t, dlm ut jm yg dperluk utuk kter jk kepekt yg dkehedk

Lebih terperinci

Dr.Eng. Agus S. Muntohar Department of Civil Engineering

Dr.Eng. Agus S. Muntohar Department of Civil Engineering Pertemu ke-7 Persm Ler Smult Oktober 0 Metode Iters Guss-Sedel Dr.Eg. Agus S. Mutohr Deprtmet of Cvl Egeerg Metode Guss-Sedel Merupk metode ters. Prosedur umum: - Selesk ser lbr vrbel tdk dkethu msg-msg

Lebih terperinci

Bentuk Umum Perluasan Teorema Pythagoras

Bentuk Umum Perluasan Teorema Pythagoras Jrl Grde Vol No Jr 6 : 9-4 Betk Umm Perls Teorem Pythors Ml stt By Kerm Ulsr les Jrs Mtemtk Fklts Mtemtk d Ilm Peeth lm Uversts Bekl Idoes Dterm Septemer 5; dset Desemer 5 strk - Peelt memhs perls teorem

Lebih terperinci

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT

MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT MENENTUKAN KOEFISIEN REGRESI EKSPONENSIAL DENGAN METODE KUADRAT TERKECIL SEDERHANA DAN METODE KUADRAT TERKECIL BERBOBOT Rz Phlev, Arsm Ad, Sgt Sugrto Mhssw Progrm Stud S Mtemtk Dose Jurus Mtemtk Fkults

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

DUALITAS DAN ANALISIS SENSITIVITAS

DUALITAS DAN ANALISIS SENSITIVITAS /5/008 DUALITAS DAN ANALISIS SENSITIVITAS Dr. Mohd Adul Mukhy, SE., MM. Prl Prole P ze z cx suject to Ax x 0 optu vlue s z* Dul Prole xze suject to D v π πa c optu vlue s v* Theore. (Strog Dulty) If oth

Lebih terperinci

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275

DIGRAF EKSENTRIS PADA DIGRAF SIKEL, DIGRAF KOMPLIT DAN DIGRAF KOMPLIT MULTIPARTIT. Jl. Prof. H. Soedarto SH Semarang 50275 DIGRAF ESENTRIS PADA DIGRAF SIEL DIGRAF OMPLIT DAN DIGRAF OMPLIT MULTIPARTIT Reto tur umlsr d Luc Rtsr Jurus Mtemtk FMIPA UNDIP Jl Prof H Soedrto SH Semrg 5075 Abstrct The eccetrc dgrph of dgrph ED ( D)

Lebih terperinci

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor

Bab 1. Anava satu. Analisis Variansi (Analysis Of Variance / ANOVA) satu faktor Bb 1 Av stu Alss Vrs (Alss Of Vrce / ANOVA) stu fktor Lerg Objectves 1. Desg d coduct expermets volvg sgle d two fctors. Uderstd how the ov s used to lze the dt from these expermets 3. Assess model dequc

Lebih terperinci

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY)

INVERS MATRIKS MOORE PENROSE ATAS RING KOMUTATIF DENGAN ELEMEN SATUAN (THE MOORE PENROSE INVERSE OF MATRICES OVER COMMUTATIVE RING WITH UNITY) JURNL MTEMTIK DN KOMPUTER Vol. 7. No., -, prl, ISSN : -858 INVERS MTRIKS MOORE PENROSE TS RING KOMUTTIF DENGN ELEMEN STUN THE MOORE PENROSE INVERSE OF MTRICES OVER COMMUTTIVE RING WITH UNITY Tt Ud SRRM

Lebih terperinci

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS

Metode Numerik. Integrasi Numerik. Umi Sa adah Politeknik Elektronika Negeri Surabaya 2012 PENS-ITS Itegrs Numerk Um S d Poltekk Elektrok Neger Sury Topk Itegrl Rem Trpezod Smpso / Smpso /8 Kudrtur Guss ttk Kudrtur Guss ttk INTEGRASI NUMERIK D dlm klkulus, terdpt du l petg ytu tegrl d turudervtve Pegtegrl

Lebih terperinci

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada

BAB 1 PENDAHULUAN. perkebunan karet. Karet merupakan Polimer hidrokarbon yang terkandung pada BAB PENDAHULUAN. Ltr Belkg Sektor perkebu merupk sub sektor pert yg mejd slh stu fktor yg dpt medukug kegt perekoom d Idoes. Slh stu sub sektor perkebu yg cukup besr potesy dlm perekoom Idoes dlh perkebu

Lebih terperinci

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang

PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY. Oleh : Yusup Fakultas Ilmu Komputer, Universitas AKI Semarang PEMECAHAN SISTEM PERSAMAAN LINIER NON HOMOGEN DENGAN METODE SAPUAN GANDA CHOLESKY Oleh : Yusup Fkults Ilmu Komputer, Uversts AKI Semrg Astrt The frto of No Homoge Lerty Ajustmet System towr Cholesky Doule

Lebih terperinci

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6

a home base to excellence Mata Kuliah : Kalkulus Kode : TSP 102 Integral Pertemuan - 6 home se to ecellece Mt Kulh : Klkulus Kode : TSP 0 SKS : SKS Itegrl Pertemu - 6 home se to ecellece TIU : Mhssw dpt memhm tegrl fugs d plksy TIK : Mhssw mmpu mecr tegrl fugs Mhssw mmpu megguk tegrl utuk

Lebih terperinci

Pertemuan 7 Persamaan Linier

Pertemuan 7 Persamaan Linier Perteu 7 Pers Liier Ojektif:. Prktik ehi teori dsr Pers Liier. Prktik dpt eyelesik Pers Liier. Prktik dpt eut progr erkisr tetg Pers Liier Pers Liier P7. Teori Pers lier dlh seuh pers ljr, yg tip sukuy

Lebih terperinci

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai

BAB 6 FITTING DATA ˆ (6.1) (6.2) (6.3) =. Nilai akan. akan minimum jika. minimum. Misal. 0. Jika ini dikerjakan maka akan diperoleh nilai BAB 6 FITTIG DATA Atu dseut dengn penookn dt tu menentukn kurv terk ng mellu set dt (sekumpuln dt) dengn keslhn mnmum. Ukurn keslhn dlh E (root men squre, kr kudrt rt-rt). Ad eerp mm pol fttng dt: menurut

Lebih terperinci

Didownload dari ririez.blog.uns.ac.id

Didownload dari ririez.blog.uns.ac.id A. METODE PROGRAM LINIER Terdpt hubug g ert tr teor per d progr ler kre setp betuk per berulh ol dr du org (g berhgg) dpt dtk sebg sutu betuk progr ler d seblk, setp perslh progr ler dpt dsk sebg sutu

Lebih terperinci

I PENDAHULUAN II LANDASAN TEORI

I PENDAHULUAN II LANDASAN TEORI I PENDAHULUAN Ltr Belg Istlh Pemrogrm Geometr (PG) dperel oleh Duff, Peterso, d Zeer pd thu 967 Istlh dmbl dr mslh-mslh geometr g dpt dformuls sebg PG Pemrogrm Geometr dlh sutu tpe mslh optmlss mtemt g

Lebih terperinci

3SKS-TEKNIK INFORMATIKA-S1

3SKS-TEKNIK INFORMATIKA-S1 SKS-TEKNIK INFORMATIKA-S Momd Sdq PERTEMUAN : 9- INTEGRASI NUMERIK METODE NUMERIK TEKNIK INFORMATIKA S SKS Momd Sdq MATERI PERKUIAHAN SEBEUM-UTS Pegtr Metode Numerk Sstem Blg d Kesl Peyj Blg Bult & Pe

Lebih terperinci

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x

mengambil semua titik sample berupa titik ujung, yakni jumlah Riemann merupakan hampiran luas dari daerah dibawah kurva y = f (x) x i b x B 4. Peerp Itegrl BAB 4. PENGGUNAAN INTEGRAL 4.. Lus re dtr Perhtik derh di wh kurv y = f () di tr du gris tegk = d = di ts sumu, deg f fugsi kotiu. Seperti pd s medefiisik itegrl tertetu, kit gi itervl

Lebih terperinci

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel

Saintek Vol 5. No 3 Tahun Penyelesaian Analitik dan Pemodelan Fungsi Bessel Sitek Vol 5. No 3 Thu 1 Peyelesi Alitik d Peodel Fugsi Bessel Lily Yhy Jurus Mtetik Fkults MIPA Uiersits Negeri Gorotlo bstrk Dl klh ii k dilkuk peyelesi litik d peodel pers diferesil Bessel sert eujukk

Lebih terperinci

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal :

INTEGRASI NUMERIK. n ax. ax e. n 1. Fungsi yang dapat dihitung integralnya : Fungsi yang rumit misal : INTEGRASI NUMERIK Pegtr Pegtegrl umerk merupk lt tu r yg dguk ole lmuw utuk memperole jw mpr proksms dr pegtegrl yg tdk dpt dselesk ser ltk. Msly dlm termodmk, model Deye utuk megtug kpsts ps dr ed pdt.

Lebih terperinci

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG

GEOMETRI EUCLID EG(2, p n ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG GEOMETRI EUCLID EG(, p ) UNTUK MEMBENTUK RANCANGAN BLOK TIDAK LENGKAP SEIMBANG Bmg Irwto d Yu Hdyt Jurus Mtemtk FMIPA UNDIP Jl. Prof. H. Soedrto, S.H, Semrg 5075 Astrt. A Bled Iomplete Blok (BIB) desg

Lebih terperinci

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient

Menaksir Matriks Teknologi Kota Cimahi Berdasarkan Tabel Input Output Provinsi Jawa Barat Menggunakan Metode Location Quontient Sttstk, Vol. 9 No., 75 8 Nopemer 9 eksr trks Tekolog Kot Cmh Berdsrk Tel Iput utput Provs Jw Brt egguk etode octo Quotet TETI SFIA ANTI Jurus Sttstk Uversts Islm Bdug Eml: [email protected] ABSTRAK Tel Iput

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI BAB LANDASAN TEORI. Alss Regres Alss regres dlh tekk sttstk yg ergu utuk memerks d memodelk huug dtr vrel-vrel. Peerpy dpt djump secr lus d yk dg sepert tekk, ekoom, mjeme, lmu-lmu olog, lmu-lmu sosl,

Lebih terperinci

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI

Pendahuluan Pengantar Metode Simpleks. Fitriani Agustina, Math, UPI Pedhulu Pegtr Metode Sipleks Fitrii Agusti, Mth, METODE SIMPLEKS (PRIMAL) Mslh Progr Lier Mslh Progr Lier dl Betuk Mtriks Ketetu dl Betuk Stdr Mslh PL Betuk Stdr Mslh Progr Lier Betuk Stdr Pets Lier Betuk

Lebih terperinci

Tekun dan Teliti adalah Kunci Keberhasilan Anda PEMROGRAMAN LINEAR

Tekun dan Teliti adalah Kunci Keberhasilan Anda PEMROGRAMAN LINEAR Teku d Telt dlh Kuc Keberhsl Ad PEMROGRAMAN LINEAR Pdg bg Rset Opers berkut: TSP MP Trss Trsp Network PD PL PNL P Progr Ler (PL) erupk bg dr rset opers (RO) g erupk kupul etode peeles slh-slh t secr tets.

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 A LADASA EORI Pd bb k dbh beberp koep-koep dr yg berhubug d edukug peetu olu optl lh progr ler pretrk Deg dek, k eperudh dl hl pebh pd bb berkuty Progr Ler Progr ler erupk utu etode opt yg dpt dpk utuk

Lebih terperinci

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT

SOLUSI DERET PANGKAT TETAP DENGAN FUNGSI PEMBANGKIT OLUI DERET PANGKAT TETAP DENGAN FUNGI PEMBANGKIT Aleder A Guw Jurus Mtemt d ttst Fults s d Teolog, Uversts B Nustr Jl. K. H. yhd No. 9, Kemggs/Plmerh, Jrt Brt 8 [email protected] ABTRACT Ths rtcle dscusses bout

Lebih terperinci

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31

INTEGRAL TERTENTU. sebagai P = max{x i x i-1 1 = 1, 2, 3,, n}. a = x 0 x 1 x 2 x n = b. Contoh: Pada interval [ 3, 3], suatu partisi P = { 3, 1 2 , 31 INTEGRAL TERTENTU Defs: Prs P pd ervl [,] dlh suu suse erhgg P = {,,,, } dr [,] deg = < < < < = Jk P = {,,,, } prs pd [,] mk Norm P, duls P, ddefsk seg P = m{ - =,,,, } Cooh: = = Pd ervl [, ], suu prs

Lebih terperinci

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT

matematika PEMINATAN Kelas X SIFAT-SIFAT EKSPONEN K13 A. DEFINISI EKSPONEN B. SIFAT-SIFAT BENTUK PANGKAT K1 Kels X tetik PEMINATAN SIFAT-SIFAT EKSPONEN TUJUAN PEMBELAJARAN Setelh epeljri teri ii, ku dihrpk eiliki kepu erikut. 1. Mehi defiisi ekspoe.. Mehi sift-sift etuk pgkt.. Mehi sift-sift etuk kr.. Megguk

Lebih terperinci

1. Bilangan Berpangkat Bulat Positif

1. Bilangan Berpangkat Bulat Positif N : Zui Ek Sri Kels : NPM : 800 BILANGAN BERPANGKAT DAN BENTUK AKAR A. Pgkt Bilg Bult. Bilg Berpgkt Bult Positif Dl kehidup sehri-hri kit serig eeui perkli ilg-ilg deg fktor-fktor yg s. Mislk kit teui

Lebih terperinci

Sifat-sifat Super Matriks dan Super Ruang Vektor

Sifat-sifat Super Matriks dan Super Ruang Vektor Sift-sift Super Mtriks d Super Rug Vektor Cturiyti Jurus Pedidik Mtetik FMIPA UNY [email protected] Abstrk Sutu triks yg elee-eleey erupk bilg disebut deg triks sederh tu lebih dikel deg triks. Sedgk supertriks

Lebih terperinci

Teknik Komputasi Ujian Akhir Semester (UAS)

Teknik Komputasi Ujian Akhir Semester (UAS) Tekk Komputs U Akhr Semester UAS Dose : Dr. Ir. Nzor Az MT. Nm : Yog Prhstomo NIM : 06006 Kels : XB MAGISTER ILMU KOMPUTER UNIVERSITAS BUDI LUHUR 0 Hlm 0 Tekk Komputs: U Akhr Semester UAS A. Sol Dkethu

Lebih terperinci

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT

KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT Prosdg Semr Nsol Mtemtk d Terpy 06 p-issn : 550-084; e-issn : 550-09 KAJIAN BATAS KESALAHAN MINIMUM METODE RUNGE-KUTTA ORDE KEDUA, KETIGA, DAN KEEMPAT St Muhwh Uversts Jederl Soedrm [email protected]

Lebih terperinci

PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF

PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF Jurl Mtetk Mur d Terp Vol.5 No. Deeber 0: - PENERAPAN PROGRAM LINIER PADA PERMAINAN NON-KOOPERATIF Prd Affd Progr Stud Mtetk Uvert Lbug Mgkurt Jl. Jed. A. Y k 5, 8 Brbru El: [email protected] ABSTRAK Peelt

Lebih terperinci

BAB III LIMIT FUNGSI DAN KEKONTINUAN

BAB III LIMIT FUNGSI DAN KEKONTINUAN BAB III LIMIT FUNGSI DAN KEKONTINUAN 3. Pedhulu Seelu hs liit fugsi di sutu titik terleih dhulu kit k egti perilku sutu fugsi f il peuh edekti sutu ilg ril tertetu. Misl terdpt sutu fugsi f() = + 4. Utuk

Lebih terperinci

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA

PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA PENGOPTIMUMAN PADA MASALAH PEMROGRAMAN LINEAR DENGAN KOEFISIEN INTERVAL ANA FARIDA DEPARTEMEN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT PERTANIAN BOGOR BOGOR ABSTRAK ANA FARIDA.

Lebih terperinci

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2

F 2 (c,0) yang berarti F 1 (-c, 0) dan F 2 (c, 0), b 2 =a 2 c 2 atau a 2 = b 2 +c 2 dan p (x,y) terletak ada elips. 4cx = 4a 2 2 2 B III : Ligkr 7 5.. DEFINISI Ellips dlh tept keduduk titik g julh jrk terhdp du titik tertetu tetp hrg. F (titik tetp) erupk erks gris g diseut direkstriks, F (-,) F (,) diseut eksetrisits (e). e = AB

Lebih terperinci

BAB 2 LANDASAN TEORI

BAB 2 LANDASAN TEORI 6 BAB LANDASAN TEORI Dl k duk ege etode-etode lh d teo-teo yg dguk dl peyeles pesol utuk eetuk odel pog le dl poduks Teh pd PT.Pekeu Nust IV Med.. Peget Lus Poduks Pd uuy poduks sutu peush d eg es. Ad

Lebih terperinci

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2)

CATATAN KULIAH Pertemuan IV: Model-model linier dan Aljabar Matriks (2) TTN KULH ertemu V: Moel-moel ler lr Mtrks (). Mer Mtrks vers Sutu mtrks () mempuy vers l terpt sutu mtrks B, seh B B. Mtrks B seut vers mtrks, tuls -, y merupk mtrks uur skr ermes. Syrt keer r Mtrks vers

Lebih terperinci

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d )

m n II. PERSAMAAN LINEAR, PERTIDAKSAMAAN LINIER, FUNGSI LINIER A. Persamaan Linier 3. Persamaan Linear Tiga Variabel ( ax + by + cz = d ) I. OPERSI ILNGN REL. Pgt (Esoe. +. RNGKMN MTEMTIK. (.. ( 5. 6. 7. 8.. etu... ( ± ( + ± 5. ( Mesol Peeut etu Peh. (. + + C. Logt. log. log. log log. log log...( log log... log log... ( log... ( log. log+

Lebih terperinci

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh

TE Dasar Sistem Pengaturan. Kriteria Kestabilan Routh TE946 Dr Sitem Pegtur Kriteri Ketil Routh Ir. Jo Prmudijto, M.Eg. Juru Tekik Elektro FTI ITS Telp. 5947 Fx.597 Emil: [email protected] Dr Sitem Pegtur - 7 Ojektif: Koep Ketil Ketil Routh Proedur Ketil Routh

Lebih terperinci

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya

Dia yang menjadikan matahari dan bulan bercahaya, serta mengaturnya pada beberapa tempat, supaya kamu mengetahui bilangan tahun dan perhitunganya Pemeljr M t e m t i k... Di g mejdik mthri d ul erch, sert megtur pd eerp tempt, sup kmu megethui ilg thu d perhitug (QS Yuus:5 ) Pedhulu us Sift : - us derh rt dlh ilg riil tk egtif - persegipjg=pjg ler

Lebih terperinci

DEFINISI INTEGRAL. ' untuk

DEFINISI INTEGRAL. ' untuk DEINISI INTEGRAL Dlm mtemtk d eerp stl sepert des, teorem, lemm Istl petg kre meujuk keeksstes Des dl peryt yg erl er kre dsepkt, d tdk perlu duktk Teorem dl peryt yg dpt duktk keery Lemm dl teorem kecl,

Lebih terperinci

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen.

EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA. Bilangan a (a 0) disebut basis atau bilangan pokok, sedangkan n disebut pangkat atau eksponen. EKSPONEN/PANGKAT, BENTUK AKAR, DAN LOGARITMA theresivei.wordpress.o A. BENTUK PANGKAT BULAT. Pgkt Bult Positif Igt: 5 5 = (-) = -() = Defiisi Bilg erpgkt ult positif : Mislk ilg ult positif d ilg Rel,

Lebih terperinci

BAB V INTEGRAL DARBOUX

BAB V INTEGRAL DARBOUX Itegrl Droux BAB V INTEGRAL DARBOUX Pd thu 1875, mtemtikw I.G. Droux secr kostruktif memodifiksi defiisi itegrl Riem deg terleih dhulu medefiisik jumlh Droux ts (upper Droux sum) d jumlh Droux wh (lower

Lebih terperinci

Pendahuluan Aljabar Vektor Matrik

Pendahuluan Aljabar Vektor Matrik Pedhulu Aljr Vektor trik Defiisi: trik A erukur x ilh sutu susu gk dl ersegi et ukur x, segi erikut: = A tu A = ( ij ) Utuk eytk elee trik A yg ke (i,j), yitu ij, diguk otsi (A) ij. Ii errti ij = (A) ij.

Lebih terperinci

MATERI LOGARITMA. Oleh : Hartono

MATERI LOGARITMA. Oleh : Hartono MATERI LOGARITMA Oleh : Hrtoo Mteri dispik pd Peltih Mpel Mtetik SMA/ SMK Progr Pscsrj UNY Yogykrt 01 Kopetesi Kopetesi yg dihrpk dicpi oleh pr pesert setelh ebc odul ii d egikuti peltih dlh pu : ehi kosep

Lebih terperinci

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai

Matematika Dasar INTEGRAL TENTU . 2. Partisi yang terbentuk merupakan segiempat dengan ukuran x dan f ( x k ) sebagai Mtemtik Dsr INTEGRAL TENTU Pegerti tu kosep itegrl tetu pertm kli dikelk oleh Newto d Leiiz. Nmu pegerti secr leih moder dikelk oleh Riem. Mteri pemhs terdhulu yki tetg itegrl tk tetu d otsi sigm k kit

Lebih terperinci

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss

PRAKTIKUM 8 Penyelesaian Persamaan Linier Simultan Metode Eliminasi Gauss Prktkum 8 Peyeles Persm Ler Smult Metode Elms Guss PRAKTIKUM 8 Peyeles Persm Ler Smult Metode Elms Guss Tuju : Mempeljr metode Elms Guss utuk peyeles persm ler smult Dsr Teor : Metode Elms Guss merupk

Lebih terperinci

PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA

PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA ISBN : 978-979-65--8 PROSIDING SEMINR NSIONL MTEMTIK DN PENDIDIKN MTEMTIK Pegkt Kults Peelt d Peeljr Mtetk utuk Me World lss Uverst Yogkrt 8 Noveer 008 Peeleggr : Jurus Peddk Mtetk FMIP UNY Kerjs deg Hu

Lebih terperinci

HASIL DAN PEMBAHASAN

HASIL DAN PEMBAHASAN HASIL DAN PEMBAHASAN Perumus Pedug Bgi θ Misl N dlh proses Poisso pd itervl [0 deg rt μ yg otiu mutl d fugsi itesits λ yg teritegrl lol. Utu setip himpu Borel terts B m μ( B Ε N( B λ( s ds

Lebih terperinci

Solusi Sistem Persamaan Linear

Solusi Sistem Persamaan Linear Sos Sstem Persm Ler Sstem persm er: h persm deg h kow j d dketh, j,,, j? So: z 6 z z () () () persm d kow Jw: z 6.5 z.5 z () () () ems : pers. ().5 pers. () pers. ().5 pers. () z 6.5 z 8z 8 () () () ems

Lebih terperinci

PENENTUAN NILAI AWAL PARAMETER RELATIF ORIENTASI FOTO STEREO MENGGUNAKAN METODE SINGULAR VALUE DECOMPOSITION

PENENTUAN NILAI AWAL PARAMETER RELATIF ORIENTASI FOTO STEREO MENGGUNAKAN METODE SINGULAR VALUE DECOMPOSITION Spectr Noor 6 Volue VIII Jul 00: 54-63 PENENTUN NII W PRMETER RETIF ORIENTSI FOTO STEREO MENGGUNKN METODE SINGUR VUE DECOMPOSITION eo Pte Dose Progr Stud Tekk Geodes FTSP ITN Mlg STRKSI Peetu l poss d

Lebih terperinci

Induksi Dan Rekursi. Bab IV Induksi Pada Bilangan Asli (Natural) Bilangan Asli

Induksi Dan Rekursi. Bab IV Induksi Pada Bilangan Asli (Natural) Bilangan Asli Bb IV Iduks D Rekurs 4.. Iduks Pd Blg Asl (Nturl) Bsy, duks tets tu dsebut jug duks legkp (coplete ducto) plg byk dguk dl do blg turl. Khususy, dl duks, dsusk bhw sutu sft tertetu yg egguk blg sl terkecl,

Lebih terperinci

PERENCANAAN POLA TANAM TANAMAN PANGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION

PERENCANAAN POLA TANAM TANAMAN PANGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION PERENCANAAN POLA TANAM TANAMAN PANGAN MENGGUNAKAN JARINGAN SYARAF TIRUAN BACKPROPAGATION Syhrudd ), Mohd Is Irw ) ) Mhssw Mgster Jurus Mtetk FMIPA ITS Sury [email protected] ) Dose Jurus Mtetk FMIPA ITS Sury

Lebih terperinci

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS

MATEMATIKA TEKNIK 2 3 SKS TEKNIK ELEKTRO UDINUS MATEMATIKA TEKNIK SKS TEKNIK ELEKTRO UDINUS Integrl Fungs Kompleks 4 INTEGRAL FUNGSI KOMPLEKS Sepert hlny dlm fungs rl, dlm fungs kompleks jug dkenl stlh ntegrl fungs kompleks sert sft-sftny Sft kenltkn

Lebih terperinci

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon

Pertemuan : 3 Materi : Sistem Persamaan Linear : - Teorema Eksistensi - Reduksi ke Bentuk Echelon Pertemu : 3 Mteri : Sistem Persm Lier : - Teorem Eksistesi - Reduksi ke Betuk Echelo Stdr Kompetesi : Setelh megikuti perkulih ii mhsisw dihrpk dpt. memhmi kemli pegerti mtriks d trsformsi lier. memhmi

Lebih terperinci