Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PID, Gain Scheduling, dan PID Sinyal Kontrol Termodifikasi

Ukuran: px
Mulai penontonan dengan halaman:

Download "Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PID, Gain Scheduling, dan PID Sinyal Kontrol Termodifikasi"

Transkripsi

1 Perbandingan Kontrol Manuver dan Pendaratan Quadrotor dengan PD, Gain Scheduling, dan PD Sinyal Kontrol Termodifikasi mmanuel N. Ricardo, Katjuk Astrowulan, Eka skandar Jurusan Teknik Elektro, Fakultas Teknologi ndustri, nsitut Teknologi Sepuluh Nopember, Surabaya Abstrak Quadrotor diharapkan dapat bergerak dengan lincah dan akurat. Secara fisis, pergerakan maju atau menyamping dari quadrotor membutuhkan sudut dan gaya angkat sebagai gaya dorong horizontal. Secara sederhana, perubahan posisi sudut roll dan pitch quadrotor akan menyebabkan gaya linier yang bekerja terbagi menjadi gaya angkat (vertikal) dan gaya translasi. Dampak perubahan sudut terhadap perubahan gaya angkat akan menyebabkan perubahan akselerasi ketinggian. Secara fisik, dapat terlihat pada penurunan ketinggian yang terjadi saat melakukan manuver dari quadrotor. Gerak manuver quadrotor dikendalikan dengan kontroler PD. Namun pada kontrol ketinggian quadrotor akan dianalisa dengan tiga metode yang berbeda yaitu PD, PD gain scheduling, dan modifikasi sinyal kontrol pada PD. Didapatkan dengan memodifikasi sinyal kontrol PD diperoleh performansi quadrotor penurunan ketinggian 0%, waktu konstan manuver maju.76 sekon dan waktu konstan pendaratan.69 sekon. Kata kunci: Quadrotor, Manuver, Gain Scheduling.. PENDALAN Pesawat rotorcraft yang paling konvensional adalah helikopter. ntuk bergerak maju atau menyamping maka propeler helikopter harus memiliki kemiringan momen putar dengan sudut tertentu. Posisi propeler yang tidak bersifat kaku/konstan tersebut, menyebabkan helikopter sulit untuk dikendalikan. Dengan membuat rotor pada pesawat rotorcraft menjadi empat buah, diharapkan dapat menggantikan kondisi yang memaksa untuk mengendalikan posisi sudut propeler. Pengaturan perubahan sudut posisi propeler yang digunakan oleh helikopter untuk bergerak maju atau menyamping dapat digantikan dengan hanya mengatur kecepatan dari keempat rotor pada propeler. Pesawat rotorcraft dengan empat buah propeler ini disebut juga quadrohelicopter, quadcopter, atau quadrotor. Perkembangan rotorcraft bermula pada abad awal ke 0, ketika Charles Richet, seorang peneliti dan akademisi membuat sebuah helikopter kecil tanpa awak []. Perkembangan quadrotor sebagai robot terbang dimulai oleh Bouabdallah dan berhasil membuat quadrotor yang dinamakan OS. Gerak translasi pada quadrotor di tentukan oleh gaya angkat dan sudutsudut pada quadrotor. Perubahan sudut pada quadrotor akan mengurangi gaya angkat dari quadrotor, karena akan terbagi menjadi gaya translasi. Dapat diasumsikan bahwa secara matematis terjadi perubahan parameter pada plant. Terdapat beberapa metode untuk keadaan tersebut, antara lain dengan mengubah parameter kontroler yang digunakan karena perubahan parameter plant, seperti teknik gain scheduling. Selain melakukan perubahan pada parameter kontroler, dapat dilakukan manipulasi sinyal kontrol dengan menambahkan variabel sinyal kontrol nominal yang bergantung dengan variabel sudut. Pemodelan secara matamatis dan konsep dasar dari quadrotor akan dijelaskan pada Bagian. Perancangan kontroler akan didiskusikan pada Bagian. Dari model matematis dan kontroler yang telah dirancang, maka dapat dilakukan simulasi dan pembahasan yang akan dijelaskan pada Bagian. Kesimpulan dan saran untuk penelitian berikutnya disampaikan pada Bagian 5.. PERMASALAAN DAN PEMODELAN Quadrotor yang digunakan sebagai robot terbang kecil memiliki model mekanik yang terdiri dari empat rotor yang dipasang pada sumbu silang simetris. Bentuk ini diharapkan tipis dan kaku, sehingga didapatkan friksi udara yang kecil. Gambar. Kerangka Quadrotor Dari Gambar dapat di lihat bahwa dua pasang balingbaling (,) dan (,) berputar dengan arah yang saling berlawanan. Dengan memvariasikan kecepatan rotor dapat mengubah gaya angkat dan menciptakan gerak. Dengan demikian, meningkatkan atau menurunkan kecepatan keempat balingbaling bersamasama menghasilkan gerakan vertikal. Mengubah kecepatan balingbaling (kiri) dan (kanan) akan menghasilkan gerakan rotasi roll ditambah dengan gerakan translasi terhadap sumbu y sedangkan

2 mengubah kecepatan balingbaling (depan) dan (belakang) akan menghasilkan gerakan rotasi pitch ditambah dengan gerakan translasi terhadap sumbu x... Kinematika dan Dinamika Quadrotor [][] Quadrotor memiliki 6 defree of freedom (DOF). Pendeskripsian gerakan dari 6 DOF rigidbody digunakan dua buah frame referensi yaitu earth inertial reference (Eframe atau bingkai E) dan body fixed reference (Bframe atau bingkai B). Gambar. lustrasi Bingkai E dan Bingkai B Eframe (o E, x E, y E, z E) adalah sumbu referensi frame bumi. Didefinisikan titik x E merupakan titik yang menuju arah tara, titik y E menuju ke arah Barat, titik z E menuju ke arah atas dengan memperhatikan bumi, dan o E adalah sumbu origin. Frame ini digunakan untuk menentukan posisi linear Γ E [m] dan posisi sudut Θ E [rad] quadrotor. Bframe (o B, x B, y B, z B) melekat pada bodi quadrotor. Frame atau bingkai ini dibutuhkan untuk menentukan posisi quadrotor yang tidak hanya posisi liniernya saja, namun juga posisi sudutnya. Titik x B didefinisikan menuju ke arah depan, titik y B menuju ke arah kiri, titik z B menuju ke atas, dan o B merupakan sumbu origin. o B dipilih tepat pada titik tengah quadrotor. Kecepatan linear V B, [m/s], kecepatan sudut ω B [rad/s], gaya F B, [N], dan torsi τ B [Nm] telah ditentukan pada frame ini. Posisi sudut bodi dapat diketahui dengan menganalisa terhadap bingkai bumi. al ini menuntut transformasi matematis dari bingkai bodi menuju bingkai bumi seperti pada matriks persamaan () untuk transformasi gerak linier dan persamaan () untuk transformasi gerak melingkar. uruf c, s dan t menunjukkan fungsi trigonometri cosinus, sinus dan tangen. Persamaan dinamik sistem mencakup sistem hybrid yang disusun oleh persamaan linear dari E frame dan persamaan angular dari Bframe. al ini dilakukan untuk menyesuaikan komponenkomponen sistem real yang mungkin diaplikasikan. Dinamika sistem pada frame dapat dituliskan dalam bentuk persamaan (). cc sc c s s s s c s c R sc cc s s s cc s s c s c s c c () t s t c T 0 c s () 0 s c c c Tabel. Parameter Quadrotor Konstanta Nilai Satuan Massa.0 Kg nersia rotasi x 0.500x0 Kgm nersia rotasi y 0.500x0 Kgm nersia rotasi z 8.66x0 Kgm nersia motorpropeler 7.9 x 0 5 Kgm Konstanta Thrust.78x0 6 N.sec Konstanta Drag.567x0 7 Nm.sec Panjang pusat lengan ke pusat propeler (l) 0.5 m Mζ C ζ G O Ω E Ω () Persamaan inersia sistem terhadap frame sama dengan bentuk persamaan inersia sistem terhadap Bframe, dan ditentukan dalam bentuk matriks seperti pada persamaan (). m m () 0 0 m M M B zz Matriks sentripetal Coriolis terhadap frame C (ζ) tidak sama dengan matriks sentripetal Coriolis terhadap Bframe dan ditentukan seperti pada persamaan (5). 0 0 C (5) 0 S( ω B ) Vektor gravitasi terhadap frame G dituliskan pada persamaan (6). Dapat dilihat bahwa gravitasi mempengaruhi ketiga persamaan linear, namun lebih berpengaruh terhadap ketinggian quadrotor. G F 0 GE 0 0 mg (6)

3 Efek giroskopis yang dihasilkan oleh putaran propeler tidak berubah karena hanya mempengaruhi persamaan angular yang mengacu kepada Bframe. Maka matriks giroskopis terhadap frame dibuat sama dengan persamaan (7). O O v (7) B ζ O Matriks gaya frame berbeda dengan matriks gaya terhadap Bframe karena jika diamati bahwa gaya linier input diinginkan terhadap referensi bumi maka gaya angkat yang dihasilkan propeler perlu ditransformasi. Gaya input pada quadrotor ditentukan pada persamaan (8). E R 0 ζ E B E 0 (8) Dari persamaan (), maka dapat ditentukan nilai dengan melakukan proses matematika seperti pada persamaan ( 9). ζ ζ M ( C ζ G O Ω E Ω ) (9) Persamaan (0) menunjukkan uraian persamaan (9) bukan dalam bentuk matriks, melainkan dalam bentuk persamaan sistem. X cos sin cos sin sin m Y sin sin cos cos sin m Z g cos cos m zz r p qr q r zz q zz pr r pq zz p (0) Dan masukan kecepatan propeler diberikan oleh persamaan (). b lb d lb () Dengan mengasumsikan sudut pada quadrotor adalah 0 0 maka dapat disimpulkan bahwa Persamaan (0) merupakan fungsi double integrator. al ini menyebabkan jika sistem mendapat masukan gaya yang konstan (unit step), maka respon akan tidak stabil. Perubahan sudut roll dan pitch menyebabkan adanya pengurangan gaya angkat akibat terbagi dengan gaya translasi. Jika pada saat manuver quadrotor mengalami kekurangan gaya angkat dapat berdampak penurunan ketinggian atau bahkan quadrotor akan jatuh. Dibuktikan pada Persamaan (0), bahwa perubahan sudut roll dan pitch dapat merubah model matematik gerak vertikal plant.. PERANCANGAN KONTROLER akan dibutuhkan untuk mengendalikan ketinggian, perpindahan maju (X), perpindahan menyamping (Y), sudut roll, pitch, dan yaw. Metode yang digunakan adalah kontroler PD, sedangkan untuk ketinggian dilakukan analisis dengan tiga metode yang berbeda yaitu PD, Gain Scheduling, dan modifikasi sinyal kontrol, dimana kedua metode yang lain tetap berbasis PD... PD [] PD controller merupakan algoritma metode kendali yang terdiri dari tiga konsep matematika yaitu proporsional, integral, dan derivative. PD merupakan algoritma kontrol yang paling sering digunakan dan kadang menjadi algoritma percobaan awal. PD adalah kontroler yang berbasis negative feedback control. PD diungkapkan pada Persamaan (). t d u ( K p( Ki dt Kd ) () dt 0 Analisis root locus terhadap fungsi double integrator, diperoleh bahwa plant bisa berada pada daerah stabil jika menggunakan kontroler PD atau PD []. Dengan mengkategorikan persamaan percepatan X, Y dan Z adalah persamaan translasi serta persamaan Ø, Ө, dan ψ adalah rotasi, maka dapat dilihat bahwa untuk mengendalikan ketinggian dari quadrotor, didapatkan parameter yang akan dikendalikan adalah gaya thrust pada persamaan translasi. Sinyal kontrol yang diberikan merupakan penjumlahan sinyal kontrol dari kontroler dan bias sebesar massa dikali gravitasi atau gaya gravitasi. Perancangan diagram blok sistem ditampilkan pada Gambar. Set Z mg Gambar. Diagram Blok Ketinggian Pengendalian sudut roll, pitch dan yaw dapat dilakukan dengan mengendalikan torsi,,. Dari diagram blok yang disajikan pada Gambar, sudut adalah roll, pitch, yaw dan berturutturut n=,,. Set Sudut n Gambar. Diagram Blok Sudut Rotasi Sudut Z

4 Dari persamaan X dan Y, gerak translasional pada sumbu X dan sumbu Y quadrotor dipengaruhi oleh gaya thrust dan dapat dikendalikan dengan mengatur sudut pitch dan roll dari quadrotor seperti pada Gambar 5 dan 6. Set X X pitch Rotasi X Set Z Roll Pitch Gain Schedule Kp Ki Kd mg Z Gambar 5. Diagram Blok Cascade X asil tunning kontroler PD dengan ekspetasi output mendekati orde satu didapatkan parameter seperti pada Tabel. Set Y Y Roll Gambar 5. Diagram Blok Cascade Y Tabel. Parameter Rotasi X Y Z Roll Pitch Yaw Kp Ki Kd RMSE Gain Scheduling [5] Pada model matematis Persamaan, diperoleh bahwa gerak vertikal bergantung terhadap sudut quadrotor. Dengan kata lain, sudut quadrotor akan merubah model matematik plant karena menjadi parameter pada saat pengaturan ketinggian. PD tidak mampu beradaptasi terhadap parameter plant yang berubah atau model matematik plant yang berubah. PD memiliki parameter kontroler tertentu untuk model matematik yang terbatas atau tetap. Dari teori ini, diasumsikan perubahan model matematik mengharuskan untuk merubah parameter kontroler. Metode yang diterapkan adalah gain scheduling. Gain scheduling akan memberikan nilai parameter kontroler yang bergantung terhadap variabel lain secara matematis atau algoritmik seperti pada contoh Persamaan (). Desain sistem kontrol ketinggian disajikan dengan blok diagram yang pada Gambar 6. t d u ( K p ( z( )( Ki ( z( ) dt Kd ( z( ) ) () dt 0 Y Gambar 6. Diagram Blok Gain Scheduling Ketinggian Bila variabel f adalah nilai yang menyebabkan adanya perubahan model matematis pada quadrotor, maka Persamaan () menunjukan nilai f berdasarkan sudut roll dan pitch. f cos cos () Parameter kontroler diestimasi dengan menggunakan metode interpolasi linier. Didapatkan persamaan gain scheduling seperti yang disajikan pada Persamaan (5), (6), (7), (8), (9), (0). Saat 0.85 f, 8 Kp ( f ) (5) Ki ( f ) (6) Kd ( f ) (7) 0.5 Saat 0.70 f 0.85, 8 Kp 0 (0.85 f ) (8) Ki 0. (0.85 f ) (9) Kd 9 (0.85 f ) (0) PD Sinyal Kontrol Termodifikasi Kontrol ketinggian dengan menggunakan PD gain scheduling memiliki kelemahan, yaitu membutuhkan lebih banyak tunning. Maka, diharapkan dengan parameter kontroler yang tetap bisa diperoleh performa respon yang sama. Ketinggian pada quadrotor dipengaruhi oleh gaya berat dan gaya angkat dari quadrotor. Dengan teori ini, dapat dilakukan rekayasa bahwa penurunan ketinggian yang mungkin terjadi karena kekurangan gaya angkat dapat diatasi dengan menambah variabel bias terhadap sinyal kontrol ketinggian bergantung dengan variabel tertentu. Gaya angkat akan terbagi dengan gaya translasi saat posisi sudut roll dan pitch quadrotor tidak berada

5 pada 0 0. Dapat diasumsikan bahwa, variabel biasa hanya bergantung dari sudut roll dan pitch. Blok diagram PD sinyal kontrol termodifikasi dari kontroler PD dengan bias variabel didapatkan seperti pada Gambar 7. Roll Pitch Bias Set Z Z (a) Gambar 7. Diagram Blok Sinyal Kontrol Termodifikasi Dari diagram blok, gaya input yang diberikan ke quadrotor dihasilkan dari Persamaan (). Penurunan persamaan bias adalah demikian, pertama diharapkan nilai resultan gaya yang bekerja saat hover sama dengan 0 disajikan pada Persamaan (), maka akan dijabarkan seperti Persamaan (). Dengan mengasumsikan =0, maka akan didapatkan persamaan bias seperti pada Persamaan (). (b) ' () 0 () cos cos mg () ' mg cos cos () (c) Gambar 8. (a) Respon Manuver Maju, (b) Respon Gerak Menyamping, (c) Respon Ketinggian. SMLAS DAN PEMBAASAN Dilakukan simulasi metode kontrol terhadap model matematik dari quadrotor, sehingga dapat dilakukan analisa sebelum melakukan implementasi metode secara langsung. Dari simulasi akan diperoleh metode yang paling efektif untuk mempertahankan ketinggian selama manuver, dari ketiga metode yang diuji. Algoritma gerak quadrotor yang disimulasikan adalah sebagai berikut:. Quadrotor melakukan hovering di titik m selama 8 detik sebelum manuver dengan koordinat awal (0, 0.,.8) dan posisi awal sudut yaw 0. radian.. Quadrotor melakukan manuver linier maju hingga pada posisi X= m atau detik ke 5.. Quadrotor melakukan pendaratan di detik ke 5... PD Dengan menggunakan parameter kontroler pada Tabel, didapatkan respon posisi linier X, Y, Z, seperti pada Gambar 8, respon sudut pada Gambar 9. Gambar 9. Respon Sudut Pada manuver maju, terlihat dengan mekanisme kontroler PD konvensional dengan nilai parameter konstan tidak dapat mempertahankan ketinggian yang ditetapkan atau mengalami drop ketinggian. Spesifikasi performansi yang dihasilkan dari respon dengan kontroler PD didekati dengan kriteria orde, yaitu saat manuver maju memiliki time konstan,76 sekon, dan saat mendarat memiliki time konstan,69 sekon. Namun saat manuver terdapat drop ketinggian 9,7%... Gain Scheduling Metode gain scheduling digunakan untuk mengoreksi penurunan ketinggian yang tidak dapat dilakukan oleh kontroler PD. Didapatkan respon seperti pada Gambar 0, dengan perubahan parameter yang terlihat pada Gambar. 5

6 Dari hasil simulasi ketiga metode kontrol tersebut, dapat diambil kesimpulan bahwa metoda terbaik untuk gerak manuver dan pendaratan adalah metode PD dengan nilai bias atau nominal yang variabel. Secara keseluruhan, spesifikasi performansi dalam simulasi adalah sama dengan kontroler metode PD namun drop ketinggian menjadi 0%. Gambar 0. Respon Ketinggian Gambar. Parameter 5. KESMPLAN Spesifikasi performansi yang dihasilkan dari respon dengan kontroler yang telah diuji didekati dengan kriteria orde, yaitu saat manuver maju memiliki time konstan,76 sekon, dan saat mendarat memiliki time konstan,69 sekon. Namun saat manuver terdapat penurunan ketinggian 9,7% untuk PD, 0.8% pada Gain Scheduling, dan 0% dengan modifikasi sinyal kontrol pada PD. Namun penelitian ini masih membutuhkan banyak perbaikan, karena hasil yang didapatkan masih dalam batas simulasi dan dilakukan pembatasanpembatasan yang mungkin akan tetap terjadi pada saat implementasi. DAFTAR PSTAKA Gambar. Sinyal Kontrol Ketinggian Dari Gambar, dapat dilihat bahwa sinyal kontrol atau gaya angkat dari kontroler gain scheduling merespon lebih cepat dan lebih besar dari sinyal kontrol PD. Dari hasil simulasi dengan gain scheduling metoda interpolasi linier didapatkan spesifikasi performansi sama dengan PD namun drop ketinggian menjadi lebih kecil atau bernilai 0.8%... PD Sinyal Kontrol Termodifikasi Metode terakhir yang digunakan adalah metode modifikasi sinyal kontrol pada PD. Metode ini mengadaptasi sifat gaya angkat yang merespon lebih cepat, dan dengan besar yang sesuai unuk mempertahankan ketinggian. asil yang didapatkan ditampilkan pada Gambar. [] Tommaso Bresciani, Modelling, dentification and Control of a Quadrotor elicopter. Department of Automatic Control Lund niversity, Thesis, 008. [] Spong, Mark W., Vidyasagar, M., Robot Dynamics and Control, John Wiley and Sons, 989. [] mmanuel Natanael Ricardo, Kontrol Manuver dan Pendaratan Quadrotor dengan PD Gain Scheduling dan Sinyal Kontrol Termodifikasi, Tugas Akhir, nstitut Teknologi Sepuluh Nopember, Surabaya, 0. [] Astrom, K., agglund, T., "PD Controllers: Theory, Design, and Tunning", nstrument Society of America, 995. [5] Rugh, Wilson J., Shamma, Jeff S., "Research on Gain Scheduling", Automatica 6 05, 000. Gambar. Sinyal Kontrol Ketinggian 6

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter

Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Prin B-234 Perancangan dan Implementasi Kontroler PID Gain Scheduling untuk Gerakan Lateral Way-to-Way Point pada UAVQuadcopter Tri

Lebih terperinci

Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point UAV Quadcopter

Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point UAV Quadcopter JRNAL TEKNIK POMITS Vol. 2, No. 2, (203) ISSN: 2337-3539 (230-927 Print) B-23 Perancangan dan Implementasi Kontroler PID dengan Nonlinear Decoupling pada Sistem Kendali Way-to-Way Point AV Quadcopter Muhammad

Lebih terperinci

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL

PERANCANGAN KONTROL NON-LINIER UNTUK KESTABILAN HOVER PADA UAV TRICOPTER DENGAN SLIDING MODE CONTROL Presentasi Tesis PERANCANGAN KONTROL NON-LNER UNTUK KESTABLAN HOVER PADA UAV TRCOPTER DENGAN SLDNG MODE CONTROL RUDY KURNAWAN 2211202009 Dosen Pembimbing: DR. r. Mochammad Rameli r. Rusdhianto Effendie

Lebih terperinci

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter

Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada UAV Quadcopter JRNAL TEKNIK POMITS Vol., No., (22) -5 Perancangan dan Implementasi Sistem Kendali PID untuk Pengendalian Gerakan Hover pada AV Quadcopter Ardy Seto Priambodo, Katjuk Astrowulan, Joko Susila Teknik Elektro,

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN BAB 1. 1.1 Latar Belakang Gerak terbang pada pesawat tanpa awak atau yang sering disebut Unmanned Aerial Vehicle (UAV) ada berbagais macam, seperti melayang (hovering), gerak terbang

Lebih terperinci

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben

Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Prosiding ANNUAL RESEARCH SEMINAR Desember, Vol No. ISBN : 979-587-- UNSRI Pengaturan Gerakan Hover dan Roll pada Quadcopter dengan Menggunakan Metode PI Ziegler-Nichols dan PID Tyreus-Luyben Huda Ubaya,

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-62

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) F-62 JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) F-62 Desain Linear Quadratic Tracking Untuk PendaratanVertikal Pada Pesawat Tanpa Awak Quadrotor Luthfi Andria, Ir. Katjuk Astrowulan,MSEE.

Lebih terperinci

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian.

BAB II DASAR TEORI. Gambar 2.1. Letak CoM dan poros putar robot pada sumbu kartesian. BAB II DASAR TEORI Pada bab ini akan dibahas beberapa teori pendukung yang digunakan sebagai acuan dalam merealisasikan sistem yang dirancang. Teori-teori yang digunakan dalam realisasi skripsi ini antara

Lebih terperinci

Analisis Kestabilan Terbang Quadrotor Dengan Pengendali PD Terhadap Gangguan

Analisis Kestabilan Terbang Quadrotor Dengan Pengendali PD Terhadap Gangguan ISSN: 85-635 Yogyakarta, 7 Juli 7 CITEE 7 Analisis Kestabilan Terbang Quadrotor Dengan Pengendali PD Terhadap Gangguan Ardy Seto Priambodo, Adha Imam Cahyadi, Samiadji Herdjunanto Departemen Teknik Elektro

Lebih terperinci

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm

Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm A512 Perancangan Sistem Kontrol PID Untuk Pengendali Sumbu Azimuth Turret Pada Turret-gun Kaliber 20mm Danu Wisnu, Arif Wahjudi, dan Hendro Nurhadi Jurusan Teknik Mesin, Fakultas Teknik Industri, Institut

Lebih terperinci

Perancangan Sistem Kendali PD untuk Kestabilan Terbang Melayang UAV Quadcopter

Perancangan Sistem Kendali PD untuk Kestabilan Terbang Melayang UAV Quadcopter CITEE 17 Yogyakarta, 7 Juli 17 ISSN: 85-635 Perancangan Sistem Kendali PD untuk Kestabilan Terbang Melayang UAV Quadcopter Ardy Seto Priambodo, Adha Imam Cahyadi, Samiadji Herdjunanto Departemen Teknik

Lebih terperinci

Simulasi Control System Design dengan Scilab dan Scicos

Simulasi Control System Design dengan Scilab dan Scicos Simulasi Control System Design dengan Scilab dan Scicos 1. TUJUAN PERCOBAAN Praktikan dapat menguasai pemodelan sistem, analisa sistem dan desain kontrol sistem dengan software simulasi Scilab dan Scicos.

Lebih terperinci

Bab 6 Momentum Sudut dan Rotasi Benda Tegar

Bab 6 Momentum Sudut dan Rotasi Benda Tegar Bab 6 Momentum Sudut dan Rotasi Benda Tegar A. Torsi 1. Pengertian Torsi Torsi atau momen gaya, hasil perkalian antara gaya dengan lengan gaya. r F Keterangan: = torsi (Nm) r = lengan gaya (m) F = gaya

Lebih terperinci

BAB I PENDAHULUAN. 1 Universitas Internasional Batam

BAB I PENDAHULUAN. 1 Universitas Internasional Batam BAB I PENDAHULUAN 1.1 Latar Belakang Pesawat terbang model UAV (Unmanned Aerial Vehicle) telah berkembang dengan sangat pesat dan menjadi salah satu area penelitian yang diprioritaskan. Beberapa jenis

Lebih terperinci

Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid

Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid Stabilisasi Robot Pendulum Terbalik Beroda Dua Menggunakan Kontrol Fuzzy Hybrid Made Rahmawaty, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS)

Lebih terperinci

Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor

Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor Studi Perancangan Sistem Kontrol Kinematik Dan Dinamik Non Linier Watanabe Pada Wahana Nirawak Quadrotor Abstrak Steven Aurecianus, Estiyanti Ekawati dan Endra Joelianto Program Studi Teknik Fisika Institut

Lebih terperinci

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA

Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dinamika Rotasi, Statika dan Titik Berat 1 MOMEN GAYA DAN MOMEN INERSIA Dalam gerak translasi gaya dikaitkan dengan percepatan linier benda, dalam gerak rotasi besaran yang dikaitkan dengan percepatan

Lebih terperinci

Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID

Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID Desain dan Implementasi Automatic Flare Maneuver pada Proses Landing Pesawat Terbang Menggunakan Kontroler PID Mokhamad Khozin-2207100092 Bidang Studi Teknik Sistem Pengaturan, Jurusan Teknik Elektro,

Lebih terperinci

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR Oka Danil Saputra *), Aris Triwiyatno dan Budi Setiyono Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus

Lebih terperinci

Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR)

Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR) JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: 2337-3539 (2301-9271 Print) A-128 Perancangan dan Simulasi MRAC PID Control untuk Proses Pengendalian Temperatur pada Continuous Stirred Tank Reactor (CSTR)

Lebih terperinci

Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange

Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange IJEIS, Vol.4, No.1, April 2014, pp. 13~24 ISSN: 2088-3714 13 Pemodelan Sistem Kendali PID pada Quadcopter dengan Metode Euler Lagrange Andi Dharmawan 1, Yohana Yulya Simanungkalit* 2, Noorma Yulia Megawati

Lebih terperinci

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID)

IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) IMPLEMENTASI SISTEM KENDALI LEPAS LANDAS QUADROTOR MENGGUNAKAN PENGENDALI PROPORSIONAL-INTEGRAL-DERIVATIF (PID) Adnan Rafi Al Tahtawi Program Studi Teknik Komputer, Politeknik Sukabumi adnanrafi@polteksmi.ac.id

Lebih terperinci

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam

SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam SISTEM KENDALI POSISI MOTOR DC Oleh: Ahmad Riyad Firdaus Politeknik Batam I. Tujuan 1. Mampu melakukan analisis kinerja sistem pengaturan posisi motor arus searah.. Mampu menerangkan pengaruh kecepatan

Lebih terperinci

Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter

Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter JURNAL TEKNIK ITS Vol, No Sept ISSN: -97 A-78 Disain dan Implementasi Kontrol PID Model Reference Adaptive Control untuk Automatic Safe Landing Pada Pesawat UAV Quadcopter Teddy Sudewo, Eka Iskandar, dan

Lebih terperinci

Proceeding Tugas Akhir-Januari

Proceeding Tugas Akhir-Januari Proceeding Tugas Akhir-Januari 214 1 Swing-up dan Stabilisasi pada Sistem Pendulum Kereta menggunakan Metode Fuzzy dan Linear Quadratic Regulator Renditia Rachman, Trihastuti Agustinah Jurusan Teknik Elektro,

Lebih terperinci

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER

PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER PERANCANGAN DAN IMPLEMENTASI KONTROLER PID UNTUK AUTONOMOUS MOVING FORWARD MANUEVER PADA QUADCOPTER By : Zam Yusuf / 10105063 Dosen Pembimbing : Ir. Ali Fatoni,MT. AGENDA PRESENTASI 1. Pendahuluan. Perancangan

Lebih terperinci

Abdul Halim Dosen Pembimbing Dr. Trihastuti Agustinah, ST., MT

Abdul Halim Dosen Pembimbing Dr. Trihastuti Agustinah, ST., MT Abdul Halim 22 05 053 Dosen Pembimbing Dr. Trihastuti Agustinah, ST., T JURUSAN TEKNIK ELEKTRO Fakultas Teknologi Industri Institut Teknologi Sepuluh Nopember Surabaya 203 PENDAHULUAN PERANCANGAN HASIL

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-58 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-58 Swing-up dan Stabilisasi pada Sistem Pendulum Kereta menggunakan Metode Fuzzy dan Linear Quadratic Regulator Renditia Rachman,

Lebih terperinci

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR

PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR PEMODELAN DAN SIMULASI ROLL, PITCH DAN YAW PADA QUADROTOR Oka Danil Saputra [1], Dr. Aris Triwiyatno, S.T., M.T. [2], Budi Setiyono, S.T., M.T. [2] Laboratorium Teknik Kontrol Otomatik, Jurusan Teknik

Lebih terperinci

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring

Mengukur Kebenaran Konsep Momen Inersia dengan Penggelindingan Silinder pada Bidang Miring POSDNG SKF 16 Mengukur Kebenaran Konsep Momen nersia dengan Penggelindingan Silinder pada Bidang Miring aja Muda 1,a), Triati Dewi Kencana Wungu,b) Lilik Hendrajaya 3,c) 1 Magister Pengajaran Fisika Fakultas

Lebih terperinci

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM

IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM IMPLEMENTASI MODEL REFERENCE ADAPTIVE SYSTEMS (MRAS) UNTUK KESTABILAN PADA ROTARY INVERTED PENDULUM Aretasiwi Anyakrawati, Pembimbing : Goegoes D.N, Pembimbing 2: Purwanto. Abstrak- Pendulum terbalik mempunyai

Lebih terperinci

Desain Sistem Kontrol LQIT-Gain Scheduling PID untuk Way Point Tracking Control Quadrotor UAV

Desain Sistem Kontrol LQIT-Gain Scheduling PID untuk Way Point Tracking Control Quadrotor UAV JNTETI, Vol. 3, No. 2, Mei 2014 129 Desain Sistem Kontrol LQIT-Gain Scheduling PID untuk Way Point Tracking Control Quadrotor UAV Aditya Eka Mulyono 1, Aris Triwiyatno 2, dan Sumardi 3 Abstract Quadrotor

Lebih terperinci

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya

Diferensial Vektor. (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya TKS 4007 Matematika III Diferensial Vektor (Pertemuan III) Dr. AZ Jurusan Teknik Sipil Fakultas Teknik Universitas Brawijaya Perkalian Titik Perkalian titik dari dua buah vektor A dan B pada bidang dinyatakan

Lebih terperinci

Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan Metode PID

Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan Metode PID The 14 th ndustrial Electronics Seminar 2012 (ES 2012) Electronic Engineering Polytechnic nstitute of Surabaya (EEPS), ndonesia, October 24, 2012 Sistem Kontrol Altitude Pada UAV Model Quadcopter Dengan

Lebih terperinci

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC)

DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) PROSEDING DESAIN SISTEM KENDALI GERAK SURGE DAN ROLL PADA SISTEM AUTONOMOUS UNDERWATER VEHICLE DENGAN METODE SLIDING MODE CONTROL (SMC) Teguh Herlambang, Hendro Nurhadi Program Studi Sistem Informasi Universitas

Lebih terperinci

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR

Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR Dosen Pembimbing : Hendro Nurhadi, Dipl. Ing. Ph.D. Oleh : Bagus AR 2105100166 PENDAHULUAN LATAR BELAKANG Control system : keluaran (output) dari sistem sesuai dengan referensi yang diinginkan Non linear

Lebih terperinci

4. BAB IV PENGUJIAN DAN ANALISIS. pengujian simulasi open loop juga digunakan untuk mengamati respon motor DC

4. BAB IV PENGUJIAN DAN ANALISIS. pengujian simulasi open loop juga digunakan untuk mengamati respon motor DC 4. BAB IV PENGUJIAN DAN ANALISIS 4.1 Pengujian Open Loop Motor DC Pengujian simulasi open loop berfungsi untuk mengamati model motor DC apakah memiliki dinamik sama dengan motor DC yang sesungguhnya. Selain

Lebih terperinci

RANCANG BANGUN SISTEM KENDALI KECEPATAN KURSI RODA LISTRIK BERBASIS DISTURBANCE OBSERVER

RANCANG BANGUN SISTEM KENDALI KECEPATAN KURSI RODA LISTRIK BERBASIS DISTURBANCE OBSERVER RANCANG BANGUN SISTEM KENDALI KECEPATAN KURSI RODA LISTRIK BERBASIS DISTURBANCE OBSERVER Firdaus NRP 2208 204 009 PROGRAM MAGISTER BIDANG KEAHLIAN TEKNIK ELEKTRONIKA TEKNIK ELEKTRO Fakultas Teknologi Industri

Lebih terperinci

Desain Kontroler Fuzzy untuk Sistem Gantry Crane

Desain Kontroler Fuzzy untuk Sistem Gantry Crane JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) A-75 Desain Kontroler Fuzzy untuk Sistem Gantry Crane Rosita Melindawati, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi

Lebih terperinci

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR

R = matriks pembobot pada fungsi kriteria. dalam perancangan kontrol LQR DAFTAR NOTASI η = vektor orientasi arah x = posisi surge (m) y = posisi sway (m) z = posisi heave (m) φ = sudut roll (rad) θ = sudut pitch (rad) ψ = sudut yaw (rad) ψ = sudut yaw frekuensi rendah (rad)

Lebih terperinci

Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter

Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter JRNAL TEKNIK ITS Vol., No., (Sept. ) ISSN: 3-97 A-9 Perancangan dan Implementasi Autonomous Landing Menggunakan Behavior-Based dan Fuzzy Controller pada Quadcopter Fadjri Andika Permadi, Rusdhianto Effendi

Lebih terperinci

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING

BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING 8 BAB 3 PERANCANGAN KONTROL DENGAN PID TUNING 3. Algoritma Kontrol Pada Pesawat Tanpa Awak Pada makalah seminar dari penulis dengan judul Pemodelan dan Simulasi Gerak Sirip Pada Pesawat Tanpa Awak telah

Lebih terperinci

Lampiran. Defenisi dan persamaan untuk penurunan kestabilan longitudinal. Simbol Defenisi Origin Persamaan Harga Khas C. Variasi dari hambatan (drag)

Lampiran. Defenisi dan persamaan untuk penurunan kestabilan longitudinal. Simbol Defenisi Origin Persamaan Harga Khas C. Variasi dari hambatan (drag) Lampiran Tabel 1 Defenisi dan persamaan untuk penurunan kestabilan longitudinal Simbol Defenisi Origin Persamaan Harga Khas C x u U F Variasi dari hambatan (drag) x C -0.05 D Sq u dan dorongan terhadap

Lebih terperinci

TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER

TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER TUGAS AKHIR TE91399 TUNING PARAMETER LINEAR QUADRATIC TRACKING MENGGUNAKAN ALGORITMA GENETIKA UNTUK PENGENDALIAN GERAK LATERAL QUADCOPTER Farid Choirul Akbar NRP 2212 1 8 Dosen Pembimbing Ir. Rusdhianto

Lebih terperinci

PERANCANGAN SISTEM KENDALI SLIDING-PID UNTUK PENDULUM GANDA PADA KERETA BERGERAK

PERANCANGAN SISTEM KENDALI SLIDING-PID UNTUK PENDULUM GANDA PADA KERETA BERGERAK PERANCANGAN SISTEM KENDALI SLIDING-PID UNTUK PENDULUM GANDA PADA KERETA BERGERAK Oleh : AHMAD ADHIM 2107100703 Dosen Pembimbing : Hendro Nurhadi, Dipl.-Ing., Ph.D. PENDAHULUAN LATAR BELAKANG Kebanyakan

Lebih terperinci

UNIVERSITAS DIPONEGORO TUGAS AKHIR DWI BUDI SUYANTO L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

UNIVERSITAS DIPONEGORO TUGAS AKHIR DWI BUDI SUYANTO L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN UNIVERSITAS DIPONEGORO DESAIN KONTROL KESTABILAN QUADROTOR UNMANNED AERIAL VEHICLES PADA KONDISI HOVER TUGAS AKHIR DWI BUDI SUYANTO L2E 006 032 FAKULTAS TEKNIK JURUSAN TEKNIK MESIN SEMARANG JUNI 2011 TUGAS

Lebih terperinci

Kinematika Gerak KINEMATIKA GERAK. Sumber:

Kinematika Gerak KINEMATIKA GERAK. Sumber: Kinematika Gerak B a b B a b 1 KINEMATIKA GERAK Sumber: www.jatim.go.id Jika kalian belajar fisika maka kalian akan sering mempelajari tentang gerak. Fenomena tentang gerak memang sangat menarik. Coba

Lebih terperinci

Desain Kontroler Fuzzy untuk Sistem Gantry Crane

Desain Kontroler Fuzzy untuk Sistem Gantry Crane 1 Desain Kontroler Fuzzy untuk Sistem Gantry Crane Rosita Melindawati, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim,

Lebih terperinci

Jurnal Math Educator Nusantara (JMEN) Sifat-Sifat Sistem Pendulum Terbalik Dengan Lintasan Berbentuk Lingkaran

Jurnal Math Educator Nusantara (JMEN) Sifat-Sifat Sistem Pendulum Terbalik Dengan Lintasan Berbentuk Lingkaran Jurnal Math Educator Nusantara (JMEN) Wahana publikasi karya tulis ilmiah di bidang pendidikan matematika ISSN : 2459-97345 Volume 2 Nomor 2 Halaman 93 86 November 26 26 Sifat-Sifat Sistem Pendulum Terbalik

Lebih terperinci

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1

DEPARTMEN IKA ITB Jurusan Fisika-Unej BENDA TEGAR. MS Bab 6-1 Jurusan Fisika-Unej BENDA TEGAR Kuliah FI-1101 Fisika 004 Dasar Dr. Linus Dr Pasasa Edy Supriyanto MS Bab 6-1 Jurusan Fisika-Unej Bahan Cakupan Gerak Rotasi Vektor Momentum Sudut Sistem Partikel Momen

Lebih terperinci

Rancang Bangun Prototipe Quadrotor Tanpa Awak. 1 Hammada Abbas*, 2 Rafiuddin Syam, 3 Mustari

Rancang Bangun Prototipe Quadrotor Tanpa Awak. 1 Hammada Abbas*, 2 Rafiuddin Syam, 3 Mustari Banjarmasin, 7-8 Oktober 215 Rancang Bangun Prototipe Quadrotor Tanpa Awak 1 Hammada Abbas*, 2 Rafiuddin Syam, 3 Mustari 1 Perum Dosen Unhas Blok A.3 Makassar, Sulawesi Selatan, Indonesia 2 Jln. Perintis

Lebih terperinci

FIsika DINAMIKA ROTASI

FIsika DINAMIKA ROTASI KTS & K- Fsika K e l a s X DNAMKA ROTAS Tujuan embelajaran Setelah mempelajari materi ini, kamu diharapkan memiliki kemampuan berikut.. Memahami konsep momen gaya dan momen inersia.. Memahami teorema sumbu

Lebih terperinci

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47

JURNAL TEKNIK POMITS Vol. 3, No. 1, (2014) ISSN: ( Print) B-47 JURNAL TEKNIK POMITS Vol. 3, No. 1, (214) ISSN: 2337-3539 (231-9271 Print) B-47 Swing-Up menggunakan Energy Control Method dan Stabilisasi Menggunakan Fuzzy-LQR pada Pendulum Cart System Agus Lesmana,

Lebih terperinci

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar

metode pengontrolan konvensional yaitu suatu metode yang dapat melakukan penalaan secara mandiri (Pogram, 2014). 1.2 Rumusan Masalah Dari latar BAB I PENDAHULUAN 1.1 Latar Belakang Quadrotor adalah sebuah pesawat tanpa awak atau UAV (Unmanned Aerial Vehicle) yang memiliki kemampuan lepas landas secara vertikal atau VTOL (Vertical Take off Landing).

Lebih terperinci

UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN QUADRATIC GAUSSIAN (LQG) TESIS

UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN QUADRATIC GAUSSIAN (LQG) TESIS UNIVERSITAS INDONESIA PERANCANGAN DAN SIMULASI PENGENDALIAN SISTEM GERAK ROTASI QUADROTOR MENGGUNAKAN LINEAR QUADRATIC GAUSSIAN (LQG) TESIS SUPRIYONO 8642475 FAKULTAS TEKNIK PROGRAM STUDI TEKNIK ELEKTRO

Lebih terperinci

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda

Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda E97 Pemodelan Gerak Belok Steady State dan Transient pada Kendaraan Empat Roda Yansen Prayitno dan Unggul Wasiwitono Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control

Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control 1 Perancangan Autonomous Landing pada Quadcopter dengan Menggunakan Behavior-Based Intelligent Fuzzy Control Chalidia Nurin Hamdani, Ir. Rusdhianto Effendie A.K., MT. dan Eka Iskandar, ST.,MT. Jurusan

Lebih terperinci

Pemodelan Sistem Dinamik. Desmas A Patriawan.

Pemodelan Sistem Dinamik. Desmas A Patriawan. Pemodelan Sistem Dinamik Desmas A Patriawan. Tujuan Bab ini Mengulang Transformasi Lalpace (TL) Belajar bagaimana menemukan model matematika, yang dinamakan transfer function (TF). Belajar bagaimana menemukan

Lebih terperinci

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom

KINEMATIKA. Fisika. Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom KINEMATIKA Fisika Tim Dosen Fisika 1, ganjil 2016/2017 Program Studi S1 - Teknik Telekomunikasi Fakultas Teknik Elektro - Universitas Telkom Sasaran Pembelajaran Indikator: Mahasiswa mampu mencari besaran

Lebih terperinci

UNIVERSITAS DIPONEGORO TUGAS AKHIR ISWAN PRADIPTYA L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN

UNIVERSITAS DIPONEGORO TUGAS AKHIR ISWAN PRADIPTYA L2E FAKULTAS TEKNIK JURUSAN TEKNIK MESIN UNIVERSITAS DIPONEGORO RANCANG BANGUN WAHANA TERBANG TANPA AWAK QUADROTOR DENGAN SISTEM KENDALI KESTABILAN ORIENTASI ROLL DAN PITCH TUGAS AKHIR ISWAN PRADIPTYA L2E 006 058 FAKULTAS TEKNIK JURUSAN TEKNIK

Lebih terperinci

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada

BAB 2 LANDASAN TEORI. Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada BAB 2 LANDASAN TEORI 2.1 Metode Kendali Umpan Maju Metode ini digunakan untuk menyelesaikan permasalahan yang terjadi pada fenomena berkendara ketika berbelok, dimana dilakukan pemodelan matematika yang

Lebih terperinci

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle)

Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Perancangan dan Implementasi Kontroler PID Optimal Untuk Tracking Lintasan Gerakan Lateral Pada UAV(Unmanned Aerial Vehicle) Rahmat Fauzi 2209106077 Pembimbing : Surabaya, 26 Januari 2012 Ir. Rusdhianto

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang

BAB I PENDAHULUAN 1.1. Latar Belakang 1 BAB I PENDAHULUAN 1.1. Latar Belakang UAV (Unmanned Aireal Vehicle) adalah pesawat tanpa awak yang dapat berotasi secara mandiri atau dikendalikan dari jarak jauh oleh seorang pilot (Bone, 2003). Pada

Lebih terperinci

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi

Fisika Umum (MA101) Kinematika Rotasi. Dinamika Rotasi Fisika Umum (MA101) Topik hari ini: Kinematika Rotasi Hukum Gravitasi Dinamika Rotasi Kinematika Rotasi Perpindahan Sudut Riview gerak linear: Perpindahan, kecepatan, percepatan r r = r f r i, v =, t a

Lebih terperinci

Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control

Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control JURNAL TEKNIK POMITS Vol. 2, No. 2, (2013) ISSN: 2337-3539 (2301-9271 Print) E-63 Perancangan Autonomous Landing pada Quadcopter Menggunakan Behavior-Based Intelligent Fuzzy Control Chalidia Nurin Hamdani,

Lebih terperinci

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s².

dengan g adalah percepatan gravitasi bumi, yang nilainya pada permukaan bumi sekitar 9, 8 m/s². Hukum newton hanya memberikan perumusan tentang bagaimana gaya mempengaruhi keadaan gerak suatu benda, yaitu melalui perubahan momentumnya. Sedangkan bagaimana perumusan gaya dinyatakan dalam variabelvariabel

Lebih terperinci

PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER

PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER PERANCANGAN PENGENDALI PID UNTUK GERAKAN PITCH DAN ROLL PADA QUADCOPTER Rosalia H. Subrata, Raymond Tarumasely & Calvin Dwianto S. Jurusan Teknik Elektro, Fakultas Teknologi Industri, Universitas Trisakti

Lebih terperinci

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci:

ABSTRAK. Inverted Pendulum, Proporsional Integral Derivative, Simulink Matlab. Kata kunci: PROJECT OF AN INTELLIGENT DIFFERENTIALY DRIVEN TWO WHEELS PERSONAL VEHICLE (ID2TWV) SUBTITLE MODELING AND EXPERIMENT OF ID2TWV BASED ON AN INVERTED PENDULUM MODEL USING MATLAB SIMULINK Febry C.N*, EndraPitowarno**

Lebih terperinci

PENGATURAN GERAKAN HOVER PADA QUADCOPTER DENGAN MENGGUNAKAN METODE PI ZIEGLER-NICHOLS

PENGATURAN GERAKAN HOVER PADA QUADCOPTER DENGAN MENGGUNAKAN METODE PI ZIEGLER-NICHOLS A-91 PENGATURAN GERAKAN HOVER PADA QUADCOPTER DENGAN MENGGUNAKAN METODE PI ZIEGLER-NICHOLS Huda Ubaya1, Bambang Tutuko2, Borisman Richardson 3 Jurusan Sistem Komputer Fakultas Ilmu Komputer Universitas

Lebih terperinci

Fisika Dasar 9/1/2016

Fisika Dasar 9/1/2016 1 Sasaran Pembelajaran 2 Mahasiswa mampu mencari besaran posisi, kecepatan, dan percepatan sebuah partikel untuk kasus 1-dimensi dan 2-dimensi. Kinematika 3 Cabang ilmu Fisika yang membahas gerak benda

Lebih terperinci

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER

SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER SISTEM PENGATURAN MOTOR DC MENGGUNAKAN PROPOTIONAL IINTEGRAL DEREVATIVE (PID) KONTROLER Nursalim Jurusan Teknik Elektro, Fakultas Sains dan Teknik, Universitas Nusa Cendana Jl. Adisucipto-Penfui Kupang,

Lebih terperinci

ANALISA DAN SIMULASI MODEL QUATERNION UNTUK KESEIMBANGAN PESAWAT TERBANG

ANALISA DAN SIMULASI MODEL QUATERNION UNTUK KESEIMBANGAN PESAWAT TERBANG ANALISA DAN SIMULASI MODEL QUATERNION UNTUK KESEIMBANGAN PESAWAT TERBANG Dosen Pembimbing: Drs. Kamiran, M.Si RIZKI FAUZIAH 1209100028 JURUSAN MATEMATIKA ITS FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM

Lebih terperinci

SIMULASI DAN ANALISA DINAMIKA REMOTELY OPERATED VEHICLE (ROV)

SIMULASI DAN ANALISA DINAMIKA REMOTELY OPERATED VEHICLE (ROV) Jurnal Teknik Mesin S-1, Vol. 3, No. 1, Tahun 215 SIMULASI DAN ANALISA DINAMIKA REMOTELY OPERATED VEHICLE (ROV) *Hujjatul Anam 1, Joga Dharma Setiawan 2 1 Mahasiswa Jurusan Teknik Mesin, Fakultas Teknik,

Lebih terperinci

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin

BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin BAB I PENDAHULUAN 1.1. Latar Belakang Pesawat tanpa awak atau pesawat nirawak (Unmanned Aerial Vehicle atau disingkat UAV), adalah sebuah mesin terbang yang berfungsi dengan kendali jarak jauh oleh pilot

Lebih terperinci

Institut Teknologi Sepuluh Nopember Surabaya. Model Matematik Sistem Mekanik

Institut Teknologi Sepuluh Nopember Surabaya. Model Matematik Sistem Mekanik Institut Teknologi Sepuluh Nopember Surabaya Model Matematik Sistem Mekanik Gerak Translasi Gerak Rotasi 2 Pada bagian ini akan dibahas mengenai pembuatan model matematika dari sistem mekanika baik dalam

Lebih terperinci

BAB 1 PENDAHULUAN. 1.1 Latar Belakang

BAB 1 PENDAHULUAN. 1.1 Latar Belakang BAB 1 PENDAHULUAN 1.1 Latar Belakang UAV (Unmanned Aerial Vehicle) atau biasa disebut pesawat tanpa awak saat ini sedang mengalami perkembangan yang sangat pesat di dunia. Penggunaan UAV dikategorikan

Lebih terperinci

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L)

momen inersia Energi kinetik dalam gerak rotasi momentum sudut (L) Dinamika Rotasi adalah kajian fisika yang mempelajari tentang gerak rotasi sekaligus mempelajari penyebabnya. Momen gaya adalah besaran yang menyebabkan benda berotasi DINAMIKA ROTASI momen inersia adalah

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada skripsi ini dilakukan beberapa pengujian dan percobaan untuk mendapatkan hasil rancang bangun Quadcopter yang stabil dan mampu bergerak mandiri (autonomous). Pengujian

Lebih terperinci

ANALISIS DAN SIMULASI PENGENDALI ROBOT POLAR DERAJAT KEBEBASAN DUA MENGGUNAKAN SLIDING MODE CONTROL (SMC)

ANALISIS DAN SIMULASI PENGENDALI ROBOT POLAR DERAJAT KEBEBASAN DUA MENGGUNAKAN SLIDING MODE CONTROL (SMC) ANALISIS DAN SIMULASI PENGENDALI ROBOT POLAR DERAJAT KEBEBASAN DUA MENGGUNAKAN SLIDING MODE CONTROL (SMC) Pembimbing : Subchan, M.Sc. Ph.D. Drs. Kamiran, M.Si. NASHRUL MILLAH-0800707 Jurusan Matematika

Lebih terperinci

DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE

DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE DESAIN KONTROLER FUZZY UNTUK SISTEM GANTRY CRANE Rosita Melindawati (2211106002) Pembimbing : Dr. Trihastuti Agustinah, ST., MT. Bidang Studi Teknik Sistem Pengaturan JURUSAN TEKNIK ELEKTRO Fakultas Teknologi

Lebih terperinci

PENGENDALIAN PERGERAKAN HOVER QUADCOPTER MENGGUNAKAN METODE PID JARINGAN SYARAF TIRUAN

PENGENDALIAN PERGERAKAN HOVER QUADCOPTER MENGGUNAKAN METODE PID JARINGAN SYARAF TIRUAN TUGAS AKHIR TE141599 PENGENDALIAN PERGERAKAN HOVER QUADCOPTER MENGGUNAKAN METODE PID JARINGAN SYARAF TIRUAN Prihatama Kunto Wicaksono NRP 2213 16 67 Dosen Pembimbing Eka Iskandar, ST. MT. Ir. Rusdhianto

Lebih terperinci

Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu:

Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu: Analisa Kestabilan Sistem dalam Penelitian ini di lakukan dengan dua Metode Yaitu: o Analisa Stabilitas Routh Hurwith 1. Suatu metode menentukan kestabilan sistem dengan melihat pole-pole loop tertutup

Lebih terperinci

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor

Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor JURNAL TEKNIK POMITS Vol, No 1, (1) ISSN: 7-59 (1-971 Print) B-47 Rancang Bangun Prototype Unmanned Aerial Vehicle (UAV) dengan Tiga Rotor Darmawan Rasyid Hadi Saputra dan Bambang Pramujati Jurusan Teknik

Lebih terperinci

GERAK HARMONIK SEDERHANA

GERAK HARMONIK SEDERHANA GERAK HARMONIK SEDERHANA Gerak harmonik sederhana adalah gerak bolak-balik benda melalui suatu titik kesetimbangan tertentu dengan banyaknya getaran benda dalam setiap sekon selalu konstan. Gerak harmonik

Lebih terperinci

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m.

Contoh Soal dan Pembahasan Dinamika Rotasi, Materi Fisika kelas 2 SMA. Pembahasan. a) percepatan gerak turunnya benda m. Contoh Soal dan Dinamika Rotasi, Materi Fisika kelas 2 SMA. a) percepatan gerak turunnya benda m Tinjau katrol : Penekanan pada kasus dengan penggunaan persamaan Σ τ = Iα dan Σ F = ma, momen inersia (silinder

Lebih terperinci

BAB 3 DESAIN HUMANOID ROBOT

BAB 3 DESAIN HUMANOID ROBOT BAB 3 DESAIN HUMANOID ROBOT Dalam bab ini berisi tentang tahapan dalam mendesain humanoid robot, diagaram alir penelitian, pemodelan humanoid robot dengan software SolidWorks serta pemodelan kinematik

Lebih terperinci

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 Untuk Sistem Pendulum Kereta

Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe 1 Untuk Sistem Pendulum Kereta Kontrol Fuzzy Takagi-Sugeno Berbasis Sistem Servo Tipe Untuk Sistem Pendulum Kereta Helvin Indrawati, Trihastuti Agustinah Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB IV PENGUJIAN SISTEM DAN ANALISIS

BAB IV PENGUJIAN SISTEM DAN ANALISIS BAB IV PENGUJIAN SISTEM DAN ANALISIS Pada bab ini akan ditampilkan dan penjelasannya mengenai pengujian sistem dan dokumuentasi data-data percobaan yang telah direalisasikan sesuai dengan spesifikasi yang

Lebih terperinci

Analisis Pengendalian Gerak Model Robot Keseimbangan Beroda Dua Menggunakan Pengendali Linear Quadratic Regulator (LQR)

Analisis Pengendalian Gerak Model Robot Keseimbangan Beroda Dua Menggunakan Pengendali Linear Quadratic Regulator (LQR) Analisis Pengendalian Gerak Model Robot Keseimbangan Beroda Dua Menggunakan Pengendali Linear Quadratic Regulator (LQR) Modestus Oliver Asali, Ferry Hadary, Bomo Wibowo Sanjaya Program Studi Teknik Elektro,

Lebih terperinci

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA

SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA 1022: Ahmad Ashari dkk. TI-59 SISTEM KENDALI DAN MUATAN QUADCOPTER SEBAGAI SISTEM PENDUKUNG EVAKUASI BENCANA Ahmad Ashari, Danang Lelono, Ilona Usuman, Andi Dharmawan, dan Tri Wahyu Supardi Jurusan Ilmu

Lebih terperinci

BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM

BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM BAB II PEMODELAN MATEMATIS SISTEM INVERTED PENDULUM Model matematis diturunkan dari hubungan fisis sistem. Model tersebut harus dapat menggambarkan karakteristik dinamis sistem secara memadai. Tujuannya

Lebih terperinci

Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve

Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve Desain Kendali pada Sistem Steam Drum Boiler dengan Memperhitungkan Control Valve ROFIKA NUR AINI 1206 100 017 JURUSAN MATEMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM INSTITUT TEKNOLOGI SEPULUH

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Pesawat tanpa awak atau Unmanned Aerial Vehicle (UAV) kini menjadi suatu kebutuhan di dalam kehidupan untuk berbagai tujuan dan fungsi. Desain dari

Lebih terperinci

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY

DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY DESAIN KONTROL INVERTED PENDULUM DENGAN METODE KONTROL ROBUST FUZZY Reza Dwi Imami *), Aris Triwiyatno, and Sumardi Jurusan Teknik Elektro, Universitas Diponegoro Semarang Jl. Prof. Sudharto, SH, Kampus

Lebih terperinci

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P

SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P SISTEM KENDALI POSISI DAN KETINGGIAN TERBANG PESAWAT QUADCOPTER A S R U L P2700213428 PROGRAM PASCASARJANA PROGRAM STUDI TEKNIK ELEKTRO UNIVERSITAS HASANUDDIN MAKASSAR 2014 ii DRAFT PROPOSAL JUDUL Sistem

Lebih terperinci

DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV

DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV DESAIN SISTEM KONTROL LQIT-GAIN SCHEDULLING PID UNTUK WAY POINT TRACKING CONTROL QUADROTOR UAV Aditya Eka Mulyono ), Aris Triwiyatno 2), dan Sumardi 2) Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

Perancangan Modul Pembelajaran Sistem Kontrol dengan Menggunakan Matlab dan Simulink

Perancangan Modul Pembelajaran Sistem Kontrol dengan Menggunakan Matlab dan Simulink Perancangan Modul Pembelajaran Sistem Kontrol dengan Menggunakan Matlab dan Simulink Khairul Hadi, Artono Dwijo Sutomo, dan Darmanto Program Studi Fisika, Fakultas MIPA, Universitas Sebelas Maret Surakarta

Lebih terperinci

Perancangan Sistem Kontrol PID untuk Pengendali Sumbu Elevasi Gun pada Turretgun Kaliber 20 Milimeter

Perancangan Sistem Kontrol PID untuk Pengendali Sumbu Elevasi Gun pada Turretgun Kaliber 20 Milimeter Perancangan Sistem Kontrol PID untuk Pengendali Sumbu Elevasi Gun pada Turretgun Kaliber 20 Milimeter Dimas Kunto, Arif Wahjudi,dan Hendro Nurhadi Jurusan Teknik Mesin, Fakultas Teknologi Industri, Institut

Lebih terperinci

Sifat-Sifat Sistem Pendulum Terbalik dengan Lintasan Berbentuk Lingkaran

Sifat-Sifat Sistem Pendulum Terbalik dengan Lintasan Berbentuk Lingkaran Sifat-Sifat Sistem Pendulum Terbalik dengan Lintasan Berbentuk Lingkaran Nalsa Cintya Resti Sistem Informasi Universitas Nusantara PGRI Kediri Kediri, Indonesia E-mail: nalsacintya@ unpkediri.ac.id Abstrak

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah

BAB I PENDAHULUAN. 1.1 Latar Belakang Masalah BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Dalam mendisain sebuah sistem kontrol untuk sebuah plant yang parameterparameternya tidak berubah, metode pendekatan standar dengan sebuah pengontrol yang parameter-parameternya

Lebih terperinci