PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA
|
|
|
- Leony Kusuma
- 9 tahun lalu
- Tontonan:
Transkripsi
1 PENYELESAIAN KNAPSACK PROBLEM MENGGUNAKAN ALGORITMA GENETIKA Kartina Diah KW1), Mardhiah Fadhli2), Charly Sutanto3) 1,2) Jurusan Teknik Komputer Politeknik Caltex Riau Pekanbaru Jl. Umban Sari No.1 Rumbai-Pekanbaru-Riau [email protected]; [email protected]; [email protected] Abstrak Keterbatasan wadah yang digunakan saat memilih barang yang akan dibawa merupakan perhatian utama pada kasus distribusi dari sekian banyak barang yang harus di distribusikan, yang masing-masing memiliki berat dan harga. Permasalahan ini dinamakan Knapsack Problem. Untuk menyelesaikan masalah ini, banyak algoritma yang dapat digunakan. Salah satunya yakni Algoritma Genetika. Algoritma ini bekerja dengan sebuah populasi yang terdiri dari individu-individu, yang masing-masing individu merepesentasikan sebuah solusi yang mungkin bagi persoalan yang ada untuk selanjutnya mengalami proses seleksi, pindah silang dan mutasi sehingga didapatkan populasi baru yang memberikan solusi yang mendekati solusi optimal. Aplikasi ini dibangun dengan menggunakan bahasa C. Kata kunci: Knapsack Problem, Algoritma Genetika, bahasa pemrograman C 1. PENDAHULUAN Latar Belakang Knapsack problem merupakan masalah di mana orang dihadapkan pada persoalan optimasi pada pemilihan benda yang dapat dimasukkan ke dalam sebuah wadah yang memiliki keterbatasan ruang atau daya tampung. Dengan adanya optimasi dalam pemilihan benda yang akan dimasukkan ke dalam wadah tersebut diharapkan dapat menghasilkan keuntungan yang maksimum. [10] Benda-benda yang akan dimasukkan ini masing-masing memiliki berat dan sebuah nilai yang digunakan untuk menentukan prioritasnya dalam pemilihan tersebut. Nilainya dapat berupa tingkat kepentingan, harga barang, nilai sejarah, atau yang lainnya. [8] Wadah yang dimaksud di sini juga memiliki nilai konstanta yang merupakan nilai pembatas untuk benda-benda yang akan dimasukkan ke dalam wadah tersebut sehingga harus diambil sebuah cara memasukkan benda-benda tersebut ke dalam wadah sehingga menghasilkan hasil optimum tetapi tidak melebihi kemampuan wadah untuk menampungnya. 2. TINJAUAN PUSTAKA 2.1 Knapsack Problem Pengertian Knapsack problem [11] Knapsack problem atau rucksack problem adalah masalah optimasi kombinatorial. Namanya berasal dari masalah maksimasi untuk pilihan paling tepat dari barang-barang yang akan dibawa dalam sebuah tas pada sebuah perjalanan. Sejumlah barang yang tersedia ini, masing-masing memiliki berat dan nilai, yang menentukan jumlah barang yang dapat dibawa sehingga total berat tidak melebihi kapasitas tas dan dengan total nilai yang sebesar mungkin Jenis-Jenis Knapsack Problem [6] Terdapat beberapa variasi Knapsack problem: 0/1 Knapsack problem Setiap barang hanya tersedia 1 unit, take it or leave it. Fractional Knapsack problem Barang boleh dibawa sebagian saja (unit dalam pecahan). Versi problem ini menjadi masuk akal apabila barang yang tersedia dapat dibagi-bagi misalnya gula, tepung, dan sebagainya. Bounded Knapsack problem Setiap barang tersedia sebanyak N unit (jumlahnya terbatas). Unbounded Knapsack problem Setiap barang tersedia lebih dari 1 unit, jumlahnya tidak terbatas. 2.2 Algoritma Genetika Pada algoritma ini, teknik pencarian dilakukan sekaligus atas sejumlah solusi yang mungkin dikenal dengan istilah populasi. Individu yang terdapat dalam satu populasi disebut dengan istilah kromosom. Kromosom D-28
2 ini merupakan suatu solusi yang masih berbentuk simbol. Populasi awal dibangun secara acak, sedangkan populasi berikutnya merupakan hasil evolusi kromosom-kromosom melalui iterasi yang disebut dengan istilah generasi. Pada setiap generasi, kromosom akan melalui proses evaluasi dengan menggunakan alat ukur yang disebut dengan fungsi fitness. Selanjutnya konstruksi dasar dari Algoritma Genetika adalah sebagai berikut : Pendefinisian Kromosom Pendefinisian Fungsi Fitness Membangkitkan Sebuah Populasi Awal Reproduksi Crossover Mutasi Pelestarian 3. METODE PENELITIAN a. Perancangan Sistem Cara kerja program secara garis besar adalah mencari nilai barang yang paling maksimum dengan berat barang tidak melebihi kapasitas yang tersedia. Pencariannya menggunakan algoritma genetika. Berikut adalah gambar blok diagram sistem: Gambar 3.1 Blok Diagram Sistem b. Perancangan Program Perancangan ini terdiri dari perancangan penerapan algoritma genetika dalam knapsack problem, perancangan fungsi, dan perancangan flowchart. Perancangan Penerapan Algoritma Genetika dalam Knapsack Problem Representasi Kromosom Dalam kasus knapsack problem, gen direpresentasikan dalam bentuk string bit. Caranya yaitu dengan memilih barang secara manual pada Tabel 3.1, di mana barang yang terpilih diberi tanda dan tanda x untuk barang yang tidak dipilih. Kedua tanda tersebut bisa dikodekan sebagai 1 untuk tanda dan 0 untuk tanda x. Dengan demikian representasi kromosom untuk masalah di atas adalah pengkodean biner dengan panjang 4 bit (sejumlah barang yang ada) [8]. Tabel 3.1 Daftar Barang yang Bisa Dibawa Pedagang dan Pilihannya Kode Nama Barang Berat (kg) Nilai (Rp) Pilihan I Pilihan II b1 A 3 6 x b2 B 2 5 b3 C 5 9 x x b4 D 4 8 Sehingga didapatkan kromosom seperti pada gambar berikut ini. Gambar 3.2 Representasi Kromosom D-29
3 Tabel 3.2 Representasi Knapsack Problem Jika Kapasitas Maksimum 6 kg Nm Brg Berat (kg) A 3 6 B 2 5 C 5 9 D 4 8 Nilai (Rp) Kode Biner Berat (kg) Nilai (Rp) Fit ness (a) (b) Kromosom K1 menyatakan bahwa barang-barang yang terpilih adalah b2 dan b4. Sesuai dengan Tabel 3.1, ternyata totalnya sama dengan 6 kg. Kromosom K1 ini dinyatakan valid karena total beratnya kurang atau sama dengan berat maksimal yang diijinkan (6 kg). Sedangkan kromosom K2 menyatakan barang-barang yang terpilih adalah b1, b2, dan b4 yang total beratnya sama dengan 9 kg. Dengan demikian, K2 dikatakan kromosom yang tidak valid karena memberikan total berat yang melebihi berat maksimal yang diijinkan (6 kg) Prosedur Inisialisasi Inisialisasi terhadap secara kromosom dilakukan secara acak (random) Fungsi Fitness Untuk membangun fungsi fitness dalam kasus knapsack problem, bisa dimulai dengan tujuan yang ingin dicapai, yakni menemukan sejumlah barang yang total nilainya paling besar (maksimasi) dan total beratnya kurang atau sama dengan total berat yang diijinkan sehingga bisa ditulis fungsi fitness-nya adalah n f = b v i i i= 1 f = n b w w batasan total beratnya i i i= 1 di mana b i bernilai 1 atau 0 yang menyatakan barang ke-i diambil atau tidak diambil, v i menyatakan nilai barang ke-i dan w i menyatakan berat barang ke-i. [8] Oleh karena kapasitas maksimumnya 6 kg, maka berat pada kode biner (a) masih sama dengan (tidak melebihi) kapasitas, sehingga nilai fitness sama dengan nilai dari kode biner = 13, sedangkan berat pada kode biner (b) melebihi kapasitas, sehingga nilai fitness-nya didapat dari pengurangan kapasitas dan berat pada kode biner yakni 6 9 = Seleksi [5] Untuk menyelesaikan masalah knapsack problem, digunakan metode seleksi induk yaitu seleksi berdasarkan roulette wheel. Langkah-langkah penyeleksiannya: 1. Hitung fungsi fitness untuk masing-masing kromosom eval(v i ), i = 1, 2,..., pop_size (ukuran populasi) 2. Hitung total fitness dari populasi tersebut: pop _ size F = = eval( v ) i 1 i 3. Hitung probabilitas dari seleksi p i untuk masing-masing kromosom v i, i = 1, 2,..., pop_size p i = eval(v i ) / F 4. Hitung komulatif p q i untuk masing-masing kromosom v i, i = 1, 2,..., pop_size i = = q i p j 1 j Proses seleksi berdasarkan atas pemutaran roulette wheel sebanyak pop_size kali; setiap kali dipilih kromosom tunggal sebagai populasi baru, dengan cara: Bangkitkan bilangan acak r Bila r < q 1 maka pilih kromosom pertama (v 1 ); bila tidak pilih kromosom ke-i v i (2 i pop_size) sedemikian rupa sehingga q i-1 < r q i D-30
4 Operator Genetika Metode crossover yang digunakan pada kromosom berbentuk string biner ini adalah crossover satu titik (one-point crossover). Adapun mutasi yang digunakan pada masalah knapsack problem ini adalah mutasi yang bernilai biner Penentuan Parameter Parameter yang digunakan pada knapsack problem ini sbb: 1. Ukuran populasinya = Probabilitas pindah silang = 60% atau Probabilitas mutasi = 2% atau Jumlah generasi = Gambar 3.3 Flowchart Main Program D-31
5 4. HASIL DAN PEMBAHASAN Table 4.1 berikut adalah contoh barang yang akan diujikan dengan knapsack problem. Tabel 4.1 Tabel contoh barang Barang Berat Nilai A B C D Hasil pengujian dengan system akan menampilkan kombinasi barang optimum (total harga maksimum dan berat barang >= total kapasitas gerobak pengangkutnya). Gambar 4.1 Output Contoh Kasus Knapsack Problem Tabel 4.2 Data Barang Barang Berat Nilai A B C D E F G H I J K L M N O P Q R S T D-32
6 Apabila diinputkan data seperti pada tabel 4.1 maka output yang dihasilkan bias jadi seperti pada gambar 4.43 atau gambar 4.44 berikut atau kemungkinan lainnya, tergantung dari kombinasi barang yang terpilih pada saat random (pengacakan). Gambar 4.2 Kemungkinan Pertama, Output dari Data Tabel 4.1 Gambar 4.3 Kemungkinan Kedua, Output dari Data Tabel KESIMPULAN Setelah melakukan pengujian, maka dapat diambil beberapa kesimpulan: 1. Aplikasi ini akan menghasilkan optimasi kombinatorial yang mendekati solusi optimalnya. 2. Hasil dari program bergantung kepada penentuan parameter dan data yang diinputkan. 6. DAFTAR PUSTAKA Adit279,2008,Knapsack Problem dengan Algoritma Genetika. Diakses 13 Maret 2008, 14:56 WIB. Desiani, Anita dan Muhammad Arhami Konsep Kecerdasan Buatan. Yogyakarta: Andi Offset. Khannedy, Eko Kurniawan Pemrograman C. Indonesia. Diakses 13 Maret 2008, 14:51 WIB. Kusumadewi, Sri Artificial Intelligence (Teknik dan Aplikasinya). Yogyakarta: Graha Ilmu. Kuswadi, Son Kendali Cerdas, Teori dan Aplikasi Praktisnya. Yogyakarta: Andi Offset. Setiadi, Robert Algoritma itu Mudah. Jakarta: Prima Infosarana Media. Shrestha, Dipti dan Maya Hristakeva. Solving the 0-1 Knapsack problem with Genetic Algorithms. USA: Computer Science Department, Simpson College. Suyanto Evolutionary Computation: Komputasi Berbasis Evolusi dan Genetika. Bandung: Informatika. Wibowo, Agus Urip Ari, Juni Nurma Sari dan Kori Cahyono Bahasa Pemrograman I. Rumbai: Politeknik Caltex Riau. Wicaksono, Prasetyo Andy Makalah IF2251 Strategi Algoritmik: Eksplorasi Algoritma Brute Force, Greedy dan Pemrograman Dinamis pada Penyelesaian Masalah 0/1 Knapsack. Bandung: STEI, Institut Teknologi Bandung. D-33
KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA
LAPORAN TUGAS BESAR ARTIFICIAL INTELLEGENCE KNAPSACK PROBLEM DENGAN ALGORITMA GENETIKA Disusun Oleh : Bayu Kusumo Hapsoro (113050220) Barkah Nur Anita (113050228) Radityo Basith (113050252) Ilmi Hayyu
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Algoritma Genetika Algoritma genetika merupakan algoritma pencarian heuristik ysng didasarkan atas mekanisme seleksi alami dan genetika alami (Suyanto, 2014). Adapun konsep dasar
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah
Implementasi Algoritma Genetika dalam Pembuatan Jadwal Kuliah Leonard Tambunan AMIK Mitra Gama Jl. Kayangan No. 99, Duri-Riau e-mail : [email protected] Abstrak Pada saat ini proses penjadwalan kuliah
IMPLEMENTASI ALGORITMA GENETIKA PADA KNAPSACK PROBLEM UNTUK OPTIMASI PEMILIHAN BUAH KEMASAN KOTAK
IMPLEMENTASI ALGORITMA GENETIKA PADA KNAPSACK PROBLEM UNTUK OPTIMASI PEMILIHAN BUAH KEMASAN KOTAK Komang Setemen Jurusan Manajemen Informatika, Fakultas Teknik Kejuruan, Universitas Pendidikan Ganesha
RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA
ABSTRAKSI RANCANG BANGUN SISTEM PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN MENGGUNAKAN ALGORITMA GENETIKA Tedy Rismawan, Sri Kusumadewi Jurusan Teknik Informatika, Fakultas Teknologi Industri Universitas
Optimalisasi Penyelesaian Knapsack Problem Dengan Algoritma Genetika
Optimalisasi Penyelesaian Knapsack Problem Dengan Algoritma Genetika I Wayan Supriana a1 a Jurusan Ilmu Komputer, Fakultas MIPA, Universitas Udayana, Indonesia Jalan Kampus Bukit Jimbaran, Bali, Indonesia
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA
OPTIMASI PENDUGAAN PARAMETER DALAM ANALISIS STRESS DAN STRAIN TERHADAP MATERIAL MENGGUNAKAN ALGORITMA GENETIKA Mike Susmikanti Pusat Pengembangan Informatika Nuklir, Badan Tenaga Nuklir Nasional Kawasan
Genetic Algorithme. Perbedaan GA
Genetic Algorithme Algoritma ini bekerja dengan sebuah populasi yang terdiri atas individu-individu (kromosom). Individu dilambangkan dengan sebuah nilai kebugaran (fitness) yang akan digunakan untuk mencari
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA
PENENTUAN MATCHING MAKSIMUM PADA GRAPH BIPARTISI BERBOBOT DENGAN MENGGUNAKAN ALGORITMA GENETIKA,, Universitas Negeri Malang E-mail: [email protected] ABSTRAK: Matching berguna untuk menyelesaikan
BAB 3 ANALISIS DAN PERANCANGAN APLIKASI
27 BAB 3 ANALISIS DAN PERANCANGAN APLIKASI 3.1 Analisis Pada subbab ini akan diuraikan tentang analisis kebutuhan untuk menyelesaikan masalah jalur terpendek yang dirancang dengan menggunakan algoritma
ERWIEN TJIPTA WIJAYA, ST.,M.KOM
ERWIEN TJIPTA WIJAYA, ST.,M.KOM DEFINISI ALGEN adalah algoritma yang memanfaatkan proses seleksi alamiah yang dikenal dengan evolusi Dalam evolusi, individu terus menerus mengalami perubahan gen untuk
Pengantar Kecerdasan Buatan (AK045218) Algoritma Genetika
Algoritma Genetika Pendahuluan Struktur Umum Komponen Utama Seleksi Rekombinasi Mutasi Algoritma Genetika Sederhana Referensi Sri Kusumadewi bab 9 Luger & Subblefield bab 12.8 Algoritma Genetika 1/35 Pendahuluan
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial
Algoritma Genetika dan Penerapannya dalam Mencari Akar Persamaan Polinomial Muhammad Abdy* 1, Maya Sari Wahyuni* 2, Nur Ilmi* 3 1,2,3 Jurusan Matematika, Universitas Negeri Makassar e-mail: * 1 [email protected],
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN KOMPOSISI BAHAN PANGAN HARIAN Tedy Rismawan 1, Sri Kusumadewi 2 Jurusan Teknik Informatika, Fakultas Teknologi Industri Universitas Islam Indonesia e-mail: 1
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 Edisi... Volume..., Bulan 20.. ISSN :
Jurnal Ilmiah Komputer dan Informatika (KOMPUTA) 45 IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENJADWALAN MATA PELAJARAN DI SMAN 1 CIWIDEY Rismayanti 1, Tati Harihayati 2 Teknik Informatika Universitas Komputer
PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP)
Abstrak PENERAPAN ALGORITMA GENETIKA PADA PERSOALAN PEDAGANG KELILING (TSP) Aulia Fitrah 1, Achmad Zaky 2, Fitrasani 3 Program Studi Informatika, Sekolah Teknik Elektro dan Informatika, Institut Teknologi
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN
APLIKASI ALGORITMA GENETIKA UNTUK PENENTUAN TATA LETAK MESIN Hari Purnomo, Sri Kusumadewi Teknik Industri, Teknik Informatika Universitas Islam Indonesia Jl. Kaliurang Km 4,5 Yogyakarta [email protected],
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS
APLIKASI UNTUK PREDIKSI JUMLAH MAHASISWA PENGAMBIL MATAKULIAH DENGAN MENGGUNAKAN ALGORITMA GENETIKA, STUDI KASUS DI JURUSAN TEKNIK INFORMATIKA ITS Hafid Hazaki 1, Joko Lianto Buliali 2, Anny Yuniarti 2
ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR
Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) Volume 5, No. 03(2016), hal 265 274. ALGORITMA GENETIKA PADA PEMROGRAMAN LINEAR DAN NONLINEAR Abdul Azis, Bayu Prihandono, Ilhamsyah INTISARI Optimasi
BAB I PENDAHULUAN. 1.1 Latar Belakang
BAB I PENDAHULUAN 1.1 Latar Belakang Pada awal diciptakan, komputer hanya difungsikan sebagai alat hitung saja. Namun seiring dengan perkembangan zaman, maka peran komputer semakin mendominasi kehidupan.
Lingkup Metode Optimasi
Algoritma Genetika Lingkup Metode Optimasi Analitik Linier Non Linier Single Variabel Multi Variabel Dgn Kendala Tanpa Kendala Numerik Fibonacci Evolusi Complex Combinasi Intelijen/ Evolusi Fuzzy Logic
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika
Optimasi Penjadwalan Ujian Menggunakan Algoritma Genetika Nia Kurnia Mawaddah Wayan Firdaus Mahmudy, ([email protected]) Jurusan Matematika, FMIPA Universitas Brawijaya, Malang 65145 Abstrak Penjadwalan
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Tinjauan Pustaka (Samuel, Toni & Willi 2005) dalam penelitian yang berjudul Penerapan Algoritma Genetika untuk Traveling Salesman Problem Dengan Menggunakan Metode Order Crossover
BAB III. Metode Penelitian
BAB III Metode Penelitian 3.1 Diagram Alir Penelitian Secara umum diagram alir algoritma genetika dalam penelitian ini terlihat pada Gambar 3.1. pada Algoritma genetik memberikan suatu pilihan bagi penentuan
Algoritma Evolusi Dasar-Dasar Algoritma Genetika
Algoritma Evolusi Dasar-Dasar Algoritma Genetika Imam Cholissodin [email protected] Pokok Bahasan 1. Pengantar 2. Struktur Algoritma Genetika 3. Studi Kasus: Maksimasi Fungsi Sederhana 4. Studi
BAB I PENDAHULUAN. sejumlah aktivitas kuliah dan batasan mata kuliah ke dalam slot ruang dan waktu
18 BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Penjadwalan merupakan kegiatan administrasi utama di berbagai institusi. Masalah penjadwalan merupakan masalah penugasan sejumlah kegiatan dalam periode
PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA)
Penjadwalan Ujian Akhir Semester dengan Algoritma Genetika PENJADWALAN UJIAN AKHIR SEMESTER DENGAN ALGORITMA GENETIKA (STUDI KASUS JURUSAN TEKNIK INFORMATIKA UNESA) Anita Qoiriah Jurusan Teknik Informatika,
Jl. Ahmad Yani, Pontianak Telp./Fax.: (0561)
APLIKASI PENCARIAN RUTE TERPENDEK MENGGUNAKANALGORITMA GENETIKA (Studi Kasus: Pencarian Rute Terpendek untuk Pemadam Kebakaran di Wilayah Kota Pontianak) [1] Putri Yuli Utami, [2] Cucu Suhery, [3] Ilhamsyah
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik
Penyelesaian Puzzle Sudoku menggunakan Algoritma Genetik Afriyudi 1,Anggoro Suryo Pramudyo 2, M.Akbar 3 1,2 Program Studi Sistem Informasi Fakultas Ilmu Komputer. Universitas Bina Darma Palembang. email
BAB 2 LANDASAN TEORI. 2.1 Algoritma Genetika
6 BAB 2 LANDASAN TEORI 2.1 Algoritma Genetika Algoritma genetika merupakan metode pencarian yang disesuaikan dengan proses genetika dari organisme-organisme biologi yang berdasarkan pada teori evolusi
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T
PENERAPAN ALGORITMA GENETIKA PADA PERENCANAAN LINTASAN KENDARAAN Achmad Hidayatno Darjat Hendry H L T Abstrak : Algoritma genetika adalah algoritma pencarian heuristik yang didasarkan atas mekanisme evolusi
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA
PENGEMBANGAN APLIKASI PENJADWALAN KULIAH SEMESTER I MENGGUNAKAN ALGORITMA GENETIKA Bagus Priambodo Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Mercu Buana e- mail : [email protected]
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI 2.1 Travelling Salesman Problem (TSP) Travelling Salesmen Problem (TSP) termasuk ke dalam kelas NP hard yang pada umumnya menggunakan pendekatan heuristik untuk mencari solusinya.
Bab II Konsep Algoritma Genetik
Bab II Konsep Algoritma Genetik II. Algoritma Genetik Metoda algoritma genetik adalah salah satu teknik optimasi global yang diinspirasikan oleh proses seleksi alam untuk menghasilkan individu atau solusi
BAB I PENDAHULUAN. kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta
BAB I PENDAHULUAN A. Latar Belakang Matematika adalah cabang ilmu pengetahuan yang dapat digunakan dalam kehidupan sehari-hari dan juga merupakan disiplin ilmu yang berdiri sendiri serta tidak merupakan
Analisis Operator Crossover pada Permasalahan Permainan Puzzle
Analisis Operator Crossover pada Permasalahan Permainan Puzzle Kun Siwi Trilestari [1], Ade Andri Hendriadi [2] Program Studi Teknik Informatika, Fakultas Ilmu Komputer, Universitas Singaperbanga Karawang
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Achmad Basuki Politeknik Elektronika Negeri Surabaya PENS-ITS Surabaya 2003 Algoritma Genetika Algoritma
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika
Optimasi Multi Travelling Salesman Problem (M-TSP) Menggunakan Algoritma Genetika Wayan Firdaus Mahmudy ([email protected]) Program Studi Ilmu Komputer, Universitas Brawijaya, Malang, Indonesia Abstrak.
BAB 2 DASAR TEORI. 2.1 Teka-Teki Silang
BAB 2 DASAR TEORI 2.1 Teka-Teki Silang Teka-teki silang atau disingkat TTS adalah suatu permainan yang mengharuskan penggunanya untuk mengisi ruang-ruang kosong dengan huruf-huruf yang membentuk sebuah
PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 3 No. 1 Hal. 98 106 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PEMAMPATAN MATRIKS JARANG DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL YOSI PUTRI, NARWEN
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI ABSTRAK
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI POLA PENYUSUNAN BARANG DALAM RUANG TIGA DIMENSI Eddy Triswanto Setyoadi, ST., M.Kom. ABSTRAK Melakukan optimasi dalam pola penyusunan barang di dalam ruang tiga
BAB III METODE PENELITIAN. Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika
BAB III METODE PENELITIAN 3.1. Waktu dan Tempat Penelitian Penelitian dilakukan dilingkungan Jurusan Ilmu Komputer Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Lampung. Waktu penelitian dilaksanakan
BAB II LANDASAN TEORI
27 BAB II LANDASAN TEORI 2.1. Penelitian Terkait Penelitian terkait yang menggunakan algoritma genetika untuk menemukan solusi dalam menyelesaikan permasalahan penjadwalan kuliah telah banyak dilakukan.
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN
APLIKASI ALGORITMA GENETIKA DALAM MENENTUKAN SPESIFIKASI PC BERDASARKAN KEMAMPUAN FINANSIAL KONSUMEN Eva Haryanty, S.Kom. ABSTRAK Komputer adalah salah satu peralatan yang pada saat ini banyak pula digunakan
Generator Jadwal Perkuliahan Menggunakan Algoritma Genetika
Generator Jadwal Perkuliahan Menggunakan Algoritma Genetika Zainal Akbar 1), Muh. Fajri Raharjo 2), Eddy Tungadi 3) CAIR, Politeknik Negeri Ujung Pandang Jl. Perintis Kemerdekaan km. 10, Tamalanrea Makassar,
ALGORITMA GENETIKA. Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning
ALGORITMA GENETIKA Suatu Alternatif Penyelesaian Permasalahan Searching, Optimasi dan Machine Learning Disusun oleh: Achmad Basuki Politeknik Elektronika Negeri Surabaya, PENS ITS Surabaya 2003 Algoritma
PERANCANGAN TATA LETAK FASILITAS BAGIAN PRODUKSI MENGGUNAKAN METODE ALGORITMA GENETIK DI PT. PUTRA SEJAHTERA MANDIRI
PERANCANGAN TATA LETAK FASILITAS BAGIAN PRODUKSI MENGGUNAKAN METODE ALGORITMA GENETIK DI PT. PUTRA SEJAHTERA MANDIRI TUGAS SARJANA Diajukan Untuk Memenuhi Sebagian Dari Syarat-Syarat Memperoleh Gelar Sarjana
PENERAPAN ALGORITMA GENETIKA UNTUK PENJADWALAN UJIAN TUGAS AKHIR PADA JURUSAN TEKNIK INFORMATIKA UNIVERSITAS MUHAMMADIYAH MALANG
PENERAPAN ALGORITMA GENETIKA UNTUK PENJADWALAN UJIAN TUGAS AKHIR PADA JURUSAN TEKNIK INFORMATIKA UNIVERSITAS MUHAMMADIYAH MALANG TUGAS AKHIR Sebagai Persyaratan Guna Meraih Sarjana Strata 1 Teknik Informatika
2 TINJAUAN PUSTAKA. 2.1 Peringkasan Teks
4 2 TINJAUAN PUSTAKA 2.1 Peringkasan Teks Peringkasan teks adalah proses pemampatan teks sumber ke dalam versi lebih pendek namun tetap mempertahankan informasi yang terkandung didalamnya (Barzilay & Elhadad
ABSTRAK. Universitas Kristen Maranatha
ABSTRAK Dalam beberapa tahun terakhir ini, peranan algoritma genetika terutama untuk masalah optimisasi, berkembang dengan pesat. Masalah optimisasi ini beraneka ragam tergantung dari bidangnya. Dalam
Sistem Penjadwalan Outsourcing Menggunakan Algoritma Genetika (Studi Kasus : PT. Syarikatama)
Sistem Penjadwalan Outsourcing Menggunakan Algoritma Genetika (Studi Kasus : PT. Syarikatama) Ari Janata 1, Elin Haerani 2 1,2 Teknik Informatika, UIN Sultan Syarif Kasim Riau Jl. H.R. Soebrantas no. 155
BAB II TINJAUAN PUSTAKA
BAB II TINJAUAN PUSTAKA 2.1 Konsep Dasar Sistem dan Informasi 2.1.1 Sistem Menurut Sutabri (2004), bahwa sistem adalah sekelompok unsur yang erat hubungannya satu dengan yang lainnya berfungsi untuk mencapai
BAB III PERANCANGAN. Gambar 3.1 di bawah ini mengilustrasikan jalur pada TSP kurva terbuka jika jumlah node ada 10:
BAB III PERANCANGAN Pada bagian perancangan ini akan dipaparkan mengenai bagaimana mencari solusi pada persoalan pencarian rute terpendek dari n buah node dengan menggunakan algoritma genetika (AG). Dari
M. Ainul Yaqin 1,Totok Lisbiantoro 2, Jurusan Teknik Informatika, Fakultas Sains dan Teknologi Universitas Islam Negeri Maulana Malik Ibrahim Malang
OPTIMASI PENJADWALAN PERKULIAHAN JURUSAN TEKNIK INFORMATIKA UNIVERSITAS ISLAM NEGERI MAULANA MALIK IBRAHIM MALANG MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI RANK M. Ainul Yaqin 1,Totok Lisbiantoro
PERMASALAHAN OPTIMASI 0-1 KNAPSACK DAN PERBANDINGAN BEBERAPA ALGORITMA PEMECAHANNYA
PERMASALAHAN OPTIMASI 0-1 KNAPSACK DAN PERBANDINGAN BEBERAPA ALGORITMA PEMECAHANNYA Fitriana Passa (13508036) Program Studi Teknik Informatika Institut Teknologi Bandungg Jl. Ganesha 10 Bandung Email:
BAB 2 LANDASAN TEORI
18 BAB 2 LANDASAN TEORI 2.1 Pengertian Optimasi Optimasi adalah salah satu ilmu dalam matematika yang fokus untuk mendapatkan nilai minimum atau maksimum secara sistematis dari suatu fungsi, peluang maupun
BAB 2 TINJAUAN PUSTAKA
BAB 2 TINJAUAN PUSTAKA 2.1 Penjadwalan Penjadwalan kegiatan belajar mengajar pada suatu lembaga pendidikan biasanya merupakan salah satu pekerjaan yang tidak mudah dan menyita waktu. Pada lembaga pendidikan
Algoritma Evolusi Real-Coded GA (RCGA)
Algoritma Evolusi Real-Coded GA (RCGA) Imam Cholissodin [email protected] Pokok Bahasan 1. Siklus RCGA 2. Alternatif Operator Reproduksi pada Pengkodean Real 3. Alternatif Operator Seleksi 4.
MEMBANGUN TOOLBOX ALGORITMA EVOLUSI FUZZY UNTUK MATLAB
MEMBANGUN TOOLBOX ALGORITMA EVOLUSI FUZZY UNTUK MATLAB Syafiul Muzid 1, Sri Kusumadewi 2 1 Sekolah Pascasarjana Magister Ilmu Komputer, Universitas Gadjah Mada, Yogyakarta e-mail: [email protected] 2 Jurusan
BAB 2 LANDASAN TEORI
5 BAB 2 LANDASAN TEORI Pada bab ini akan dibicarakan beberapa model penyelesaian problema Knapsack dengan memakai beberapa metode yang telah ada yang akan digunakan pada bab pembahasan. 2. Problema Knapsack
8. Evaluasi Solusi dan Kriteria Berhenti Perumusan Masalah METODE PENELITIAN Studi Pustaka Pembentukan Data
Gambar 4 Proses Swap Mutation. 8. Evaluasi Solusi dan Kriteria Berhenti Proses evaluasi solusi ini akan mengevaluasi setiap populasi dengan menghitung nilai fitness setiap kromosom sampai terpenuhi kriteria
Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika
Peramalan Kebutuhan Beban Sistem Tenaga Listrik Menggunakan Algoritma Genetika M. Syafrizal, Luh Kesuma Wardhani, M. Irsyad Jurusan Teknik Informatika - Universitas Islam Negeri Sultan Syarif Kasim Riau
PENDAHULUAN. Latar Belakang
Latar Belakang PENDAHULUAN Pada saat sekarang ini, setiap perusahaan yang ingin tetap bertahan dalam persaingan dengan perusahaan lainnya, harus bisa membuat semua lini proses bisnis perusahaan tersebut
SISTEM PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA (STUDI KASUS: FAKULTAS KEDOKTERAN DAN KESEHATAN UNIVERSITAS MUHAMMADIYAH JAKARTA)
Studia Informatika: Jurnal Sistem Informasi, 9(2), 2016, 177-188 SISTEM PENJADWALAN KULIAH MENGGUNAKAN METODE ALGORITMA GENETIKA (STUDI KASUS: FAKULTAS KEDOKTERAN DAN KESEHATAN UNIVERSITAS MUHAMMADIYAH
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Algoritma Genetika Algoritma Genetika merupakan suatu algoritma yang terinspirasi dari teori evolusi Darwin yang menyatakan bahwa kelangsungan hidup suatu makhluk dipengaruhi
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag.
Zbigniew M., Genetic Alg. + Data Structures = Evolution Program, Springler-verlag. 12/11/2009 1 Ditemukan oleh Holland pada tahun 1975. Didasari oleh fenomena evolusi darwin. 4 kondisi yg mempengaruhi
Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner
Vol. 7, 2, 108-117, Januari 2011 Pendekatan Algoritma Genetika pada Peminimalan Fungsi Ackley menggunakan Representasi Biner Jusmawati Massalesse Abstrak Tulisan ini dimaksudkan untuk memperlihatkan proses
APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI SKRIPSI
Prosiding Seminar Nasional Matematika dan Terapannya 2016 p-issn : 2550-0384; e-issn : 2550-0392 APLIKASI ALGORITMA GENETIKA DALAM PENENTUAN DOSEN PEMBIMBING SEMINAR HASIL PENELITIAN DAN DOSEN PENGUJI
PERANCANGAN APLIKASI PENJADWALAN TRAVELING SALESMAN PROBLEM DENGAN ALGORITMA GENETIKA
PERANCANGAN APLIKASI PENJADWALAN TRAVELING SALESMAN PROBLEM DENGAN ALGORITMA GENETIKA Hendy Tannady; Andrew Verrayo Limas Industrial Engineering Department, Faculty of Engineering, Binus University Jl.
BAB II KAJIAN PUSTAKA. Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi
BAB II KAJIAN PUSTAKA Pada bab kajian pustaka berikut ini akan dibahas beberapa materi yang meliputi graf, permasalahan optimasi, model matematika dari objek wisata di Yogyakarta, dan algoritma genetika
PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE SELEKSI TURNAMEN UNTUK DATA TIME SERIES
JURNAL GAUSSIAN, Volume 1, Nomor 1, Tahun 2012, Halaman 65-72 Online di: http://ejournal-s1.undip.ac.id/index.php/gaussian PELATIHAN FEED FORWARD NEURAL NETWORK MENGGUNAKAN ALGORITMA GENETIKA DENGAN METODE
Keywords Algoritma, Genetika, Penjadwalan I. PENDAHULUAN
Optimasi Penjadwalan Mata Kuliah Dengan Algoritma Genetika Andysah Putera Utama Siahaan Universitas Pembangunan Pancabudi Jl. Gatot Subroto Km. 4,5, Medan, Sumatra Utara, Indonesia [email protected]
PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK. Kata kunci: Algoritma Genetika, Shortest Path Problem, Jalur Terpendek
PERANCANGAN ALGORITMA GENETIKA UNTUK MENENTUKAN JALUR TERPENDEK Fajar Saptono 1, Taufiq Hidayat 2 Laboratorium Pemrograman dan Informatika Teori Jurusan Teknik Informatika, Fakultas Teknologi Industri,
PENCOCOKAN KATA SECARA ACAK DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL
Jurnal Matematika UNAND Vol. 2 No. 2 Hal. 1 9 ISSN : 2303 2910 c Jurusan Matematika FMIPA UNAND PENCOCOKAN KATA SECARA ACAK DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN PROGRAM PASCAL MULIA AFRIANI KARTIKA
BAB II LANDASAN TEORI. Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana :
BAB II LANDASAN TEORI 2.1 Defenisi Graph Suatu graph merupakan suatu pasangan { E(G), V(G) } dimana : V(G) adalah sebuah himpunan terhingga yang tidak kosong ( non empty finite set) yang elemennya disebut
PENERAPAN ALGORITMA GENETIKA SEBAGAI PROBLEM SOLVER DALAM GAME SUDOKU BERBASIS ANDROID
PENERAPAN ALGORITMA GENETIKA SEBAGAI PROBLEM SOLVER DALAM GAME SUDOKU BERBASIS ANDROID Yusfrizal 1 1,2 Program Studi Teknik Informatika, Fakultas Teknik dan Ilmu Komputer, Universitas Potensi Utama 3 Universitas
PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES
J~ICON, Vol. 2 No. 2, Oktober 2014, pp. 84 ~ 91 84 PENYELESAIAN MINIMUM SPANNING TREE (MST) PADA GRAF LENGKAP DENGAN ALGORITMA GENETIKA MENGGUNAKAN TEKNIK PRUFER SEQUENCES Emsi M. Y. Monifani 1, Adriana
BAB 2 LANDASAN TEORI
BAB 2 LANDASAN TEORI Pada bab ini akan membahas landasan atas teori-teori yang bersifat ilmiah untuk mendukung penulisan tugas akhir ini. Teori-teori yang dibahas mengenai pengertian penjadwalan, algoritma
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi
Optimasi Metode Fuzzy Dengan Algoritma Genetika Pada Kontrol Motor Induksi Rahman Aulia Universitas Sumatera Utara Pasca sarjana Fakultas Ilmu Komputer Medan, Indonesia [email protected] Abstract
Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP)
JTRISTE, Vol.1, No.2, Oktober 2014, pp. 50~57 ISSN: 2355-3677 Aplikasi Algoritma Genetika Untuk Menyelesaikan Travelling Salesman Problem (TSP) STMIK Handayani Makassar [email protected] Abstrak
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA
OPTIMASI PENJADWALAN CERDAS MENGGUNAKAN ALGORITMA MEMETIKA Muhammad Arief Nugroho 1, Galih Hermawan, S.Kom., M.T. 2 1, 2 Universitas Komputer Indonesia Jl. Dipatiukur No. 112-116, Bandung 40132 E-mail
BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM
BAB III ANALISA MASALAH DAN RANCANGAN PROGRAM III.1. Analisa Masalah Perkembangan game dari skala kecil maupun besar sangat bervariasi yang dapat dimainkan oleh siapa saja tanpa memandang umur, dari anak
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI
BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI 2.1 Konsep Umum Optimasi Optimasi merupakan suatu cara untuk menghasilkan suatu bentuk struktur yang aman dalam segi perencanaan dan menghasilkan struktur yang
PERANCANGAN DAN PEMBUATAN APLIKASI OPTIMASI PENYUSUNAN IKLAN GAMBAR DENGAN ALGORITMA GENETIKA ABSTRAK
PERANCANGAN DAN PEMBUATAN APLIKASI OPTIMASI PENYUSUNAN IKLAN GAMBAR DENGAN ALGORITMA GENETIKA Leo Willyanto Santoso*, Johan Saputra**, dan Rolly Intan*** *, **, ***Jurusan Teknik Informatika FTI Universitas
PENENTUAN KOMBINASI OPTIMUM JUMLAH, BERAT, DAN WAKTU TAMBAT KAPAL DI PT (PERSERO) PELABUHAN INDONESIA III GRESIK MENGGUNAKAN ALGORITMA GENETIKA
LOGO PENENTUAN KOMBINASI OPTIMUM JUMLAH, BERAT, DAN WAKTU TAMBAT KAPAL DI PT (PERSERO) PELABUHAN INDONESIA III GRESIK MENGGUNAKAN ALGORITMA GENETIKA Oleh : Aris Saputro 1206100714 Pembimbing : Dr. M. Isa
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI 2.1 Penjadwalan Penjadwalan adalah penempatan sumber daya (resource) dalam satu waktu. Penjadwalan mata kuliah merupakan persoalan penjadwalan yang umum dan sulit dimana tujuannya
CODING VOL.2 NO. 1 (2014), Hal ISSN: X
APLIKASI JADWAL PERKULIAHAN DENGAN METODE ALGORITMA GENETIKA MENGGUNAKAN VISUAL BASIC.NET (Studi Kasus: Fakultas Matematika dan Ilmu Pengetahuan Alam) Sella Erary [1],Beni Irawan [2], Ilhamsyah [3] [1][2][3]
BAB II LANDASAN TEORI. Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan
BAB II LANDASAN TEORI 2.1 Sejarah Perusahaan Tahun 2001 pemilik CV. Tunas Jaya membuka usaha di bidang penjualan dan pengadaan suku cadang computer. Dalam bidang tersebut diharuskan berbadan hukum PD,
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION
PENERAPAN ALGORITMA GENETIKA UNTUK TRAVELING SALESMAN PROBLEM DENGAN MENGGUNAKAN METODE ORDER CROSSOVER DAN INSERTION MUTATION Samuel Lukas 1, Toni Anwar 1, Willi Yuliani 2 1) Dosen Teknik Informatika,
BAB 3 ANALISIS DAN PERANCANGAN
BAB 3 ANALISIS DAN PERANCANGAN 3.1. Analisis Sistem Berjalan 3.1.1. Penyusunan Menu Makanan Dalam penyusunan menu makanan banyak hal yang perlu diperhatikan, terutama jika menu makanan yang disusun untuk
BAB 2 LANDASAN TEORI
7 BAB 2 LANDASAN TEORI 2.1 Penjadwalan Perkuliahan Penjadwalan memiliki pengertian durasi dari waktu kerja yang dibutuhkan untuk melakukan serangkaian untuk melakukan aktivitas kerja[10]. Penjadwalan juga
PENERAPAN ALGORITMA GENETIK UNTUK OPTIMASI DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE
PENERAPAN ALGORTMA GENETK UNTUK OPTMAS DENGAN MENGUNAKAN PENYELEKStAN RODA ROULETTE Samuel Lukas, M.Tech." Abstract The purpose of this paper is to introducing genetic algorithm. This algorithm is one
Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika
Jurnal Sistem dan Teknologi Informasi (JUSTIN) Vol. 1, No. 2, (2017) 28 Implementasi Sistem Penjadwalan Akademik Fakultas Teknik Universitas Tanjungpura Menggunakan Metode Algoritma Genetika Andreas Christian
KONSEP ALGORITMA GENETIK BINER UNTUK OPTIMASI PERENCANAAN JADWAL KEGIATAN PERKULIAHAN
Jurnal Teknik dan Ilmu Komputer KONSEP ALGORITMA GENETIK BINER UNTUK OPTIMASI PERENCANAAN JADWAL KEGIATAN PERKULIAHAN (Binary Genetic Algorithm Concept to Optimize Course Timetabling) Iwan Aang Soenandi
IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM
IMPLEMENTASI ALGORITMA GENETIKA UNTUK PENCARIAN RUTE PALING OPTIMUM Anies Hannawati, Thiang, Eleazar Fakultas Teknologi Industri, Jurusan Teknik Elektro, Universitas Kristen Petra Jl. Siwalankerto 121-131,
PERBANDINGAN UNJUK KERJA METODE DECODER DENGAN METODE PENALTY DALAM MENYELESAIKAN KNAPSACK PROBLEM 0/1 MENGGUNAKAN ALGORITMA GENETIKA
J~ICON, Vol. 1 No. 1, Maret 2013, pp. 33~44 33 PERBANDINGAN UNJUK KERJA METODE DECODER DENGAN METODE PENALTY DALAM MENYELESAIKAN KNAPSACK PROBLEM 0/1 MENGGUNAKAN ALGORITMA GENETIKA Arini Aha Pekuwali 1,
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA. Abstraksi
PENENTUAN JARAK TERPENDEK PADA JALUR DISTRIBUSI BARANG DI PULAU JAWA DENGAN MENGGUNAKAN ALGORITMA GENETIKA I Dewa Made Adi Baskara Joni 1, Vivine Nurcahyawati 2 1 STMIK STIKOM Indonesia, 2 STMIK STIKOM
