Metoda Penyelesaian Pendekatan
|
|
|
- Iwan Budiman
- 9 tahun lalu
- Tontonan:
Transkripsi
1 Metod Elemen Hingg Dlm Hidrulik Bb 3 Dsr Pertm: Metod Penyelesin Pendektn Ir. Djoko Luknnto, M.Sc., Ph.D. milto:[email protected]
2 I. Tig Lngkh Pokok (hl.54). Bentuk sebuh penyelesin pendektn Û. Optimsikn Û 3. Prkirkn ketelitin Û 5/8/04
3 3. Pembentukn Û (hl.54) Û(;) = Ø 0 () + Ø () + Ø () + + N Ø N () Ø 0 (), Ø (),, Ø N () disebut fungsi tril, fungsi bsis,,, N dlh prmeter yng dicri; sering disebut sebgi derjd bebs (DOF) Û(;) merupkn fungsi dri dn,,, N Ø 0 () tidk diklikn dengn prmeter ; fungsiny untuk memenuhi syrt kondisi bts. 5/8/04
4 4. Kriteri Optimsi Untuk Û (hl.55) Ad du kriteri yng terkenl dlm MEH A. Metod Residu Berbobot (MWR) dipliksikn pd persmn dsr yng berbentuk persmn differensil B. Metod Vrisi Ritz (RVM) dipliksikn pd persmn dsr yng berbentuk persmn integrl. 5/8/04
5 5 A. Metod Residu Berbobot (MWR) (hl.55) me-minimum-kn selisih (error) pd persmn dsr [bukn pd fungsi Û() yng kit cri] d 4 metod metod koloksi metod subdomin metod kudrt terkecil metod Glerkin 5/8/04
6 6 B. Metod Vrisi Ritz (RVM) (hl.55) me-minimum-kn sutu kuntits fisik mislkn energi [bukn pd fungsi Û() yng kit cri] mislkn dlm meknik sttis, bisny yng diminimumkn dlh energi potensil. 5/8/04
7 7 3. Prkirkn Ketelitin Û (hl.56) diinginkn sutu prkirn seberp dekt ketelitin Û dengn U ketelitin ini disebut dengn error / keslhn E() = U() Û() secr prktis kit tidk pernh dpt menghitung E(), kren didlmny mengndung penyelesin ect U(). oleh kren itu hrus d cr lin untuk memprkirkn E(). 5/8/04
8 8 Derjd Bebs (DOF) (hl.56) jik kit dpt memprkirkn keslhn E() = U() Û() dn ternyt terllu besr pkh d cr untuk memperkecil? y slh stu cr yitu dengn membut Û() yng bru yng mempunyi derjd bebs lebih tinggi. 5/8/04
9 9 Teknik Memperoleh Û() (hl.56) sudhkh ketelitinny diterim jik belum; tmbh DOF mislny Û(;) i hrus dicri Kriteri Optimsi untuk menentukn nili i terbik Penyelesin Û() diperoleh Telitikh Û() terhdp U()? 5/8/04
10 0 Û() dgn Kriteri Berbed (hl.56) Û(;) Û(;) Kriteri Koloksi Kriteri Subdomin Û() diperoleh Û() diperoleh Û(;) Û(;) Kriteri Kudrt Terkecil Kriteri Glerkin Û() diperoleh Û() diperoleh 5/8/04
11 II. Contoh Ksus (hl.4) Deskripsi: Sebuh kbel yng tergntung pd du perletkn dn mendpt bebn mert kren bert sendiri. Gmbr: posisi tnp bebn W() = 0 W<0 b = L ()g Persmn dsr: d d T dw ( ) d W (0) ( ) g 0, W ( L) 0 0 L 5/8/04
12 Contoh Ksus (lnjutn) (hl.59) Persmn Dsr: d d du d Domin: < < Kondisi Bts: U() du d 5/8/04
13 Kondisi Bts: Contoh Ksus (lnjutn) (hl.59) dlm bentuk seperti di bwh ini, kondisi bts mempunyi rti khusus di lpngn, mislkn debit sesui cirn. du( ) ( ) d 3 oleh kren itu kondisi bts ditulis sebgi: bukn: du( ) d du( ) d () 4 5/8/04
14 4 III. Pembentukn Û (hl.60) Û(;) = N N- persmn pendektn di ts hrus memenuhi:. Persmn dsr (bik yng differensil mupun vrisionl) pd interior dri dominny. Nili-nili kondisi bts yng telh ditentukn pd derh bts. untuk memenuhi Butir, diperlukn du metod yng berbed; hl ini disebut dengn pplying the boundry conditions. 5/8/04
15 5 Apliksi Kondisi Bts (hl.60). Cr Teoritis. Kondisi Bts (bik semu tu sebgin) dipliksikn lngsung ke Û pd wl nlisis dengn membentukny ke sutu fungsi yng memenuhi kondisi bts tersebut.. Cr Numeris. Kondisi Bts dipliksikn ke Û yng sudh dioptimsikn pd khir nlisis. Kedu cr ini menghsilkn Û yng sm. 5/8/04
16 6 Cr Teoritis (hl.6) Dibentuk solusi cob dlm bentuk Û(;) dn dipks memenuhi kondisi bts untuk setip nili i. Û(;) = Ø 0 () + Ø () + Ø () + + N Ø N () hrus memenuhi kondisi bts U() = 5/8/04
17 7 Cr Teoritis Û (hl.6) Û(;) = Ø 0 () + Ø () + Ø () + + N Ø N () = Agr untuk setip i ini terpenuhi mk:. Ø 0 () =. Ø i () = 0 untuk i =,,, N 5/8/04
18 5/8/04 8 Cr Teoritis dû/d (hl.6) Hrus dipenuhi: Agr untuk setip i ini terpenuhi mk:... ˆ 0 N N d d d d d d d d d du N i d d d d,,..., untuk 0 0
19 9 Mengunci (hl.6) Tmpk bhw dpt dibentuk sutu solusi cob yng sellu memenuhi kondisi bts untuk setip i. Artiny ppun jug cr yng digunkn untuk optimsi i, kondisi bts kn sellu terpenuhi. Sift seperti ini disebut mengunci tu constrining solusi cob. 5/8/04
20 0 Lngkh (hl.6) Kit lkukn pd solusi cob dgn N=4 Û(;) = Kondisi bts: Û(;) = = ˆ d d U = / 5/8/04
21 Lngkh (hl.63) = = - ¼ kedu persmn ini disebut persmn konstrin Pers. dpt ditulis sebgi: = Pers. dpt ditulis sebgi: = -¼ /8/04
22 Lngkh 3 (hl.63) Pers. disubstitusikn, sehingg Û(;) = ( ) Û(;) = + (-) + 3 ( -) + 4 ( 3 -) Pers. disubstitusikn, sehingg Û(;) = + (- ¼ )(-) + 3 ( -) + 4 ( 3 -) Û(;) = - ¼ (-) + 3 (-)(-3) + 4 (-) ( + -) 5/8/04
23 3 Û(;) ketemu (hl.63) Û(;) = - ¼ (-) + 3 (-)(-3) + 4 (-) ( + -) disederhnkn menjdi: Û(;) = Ø 0 () + Ø () + Ø () dengn Ø 0 () = - ¼ (-) Ø () = (-)(-3) Ø () = (-) ( + -) 3 dn 4 diubh menjdi dn 5/8/04
24 4 menghitung dû/d (hl.63) Untuk debit : ˆ( ; ) dengn duˆ ( ; ) d d0 d d0( ) d d( ) d d( ) d 4 ( 3( ( d d ) ) )( ) d d 5/8/04
25 5 IV. Empt MWR untuk Û (hl.65). Persmn Dsr d du( ) d d. Persmn Pendektn 0 duˆ( ) d d d 0 5/8/04
26 6 Definisi Residul (hl.65) R = LHS Pers. Pendektn LHS Pers. dsr R d d duˆ( ) d 0 d d du( ) d 0 diperoleh residul, R dlh: ( ; ) ˆ( ) R d 0 du d d substitusi diperoleh: R(;) = - ¼ + 4(-) + 3 (3-4) / 5/8/04
27 7 konsep pokok MWR (hl.65) Residul: R(;) = - ¼ + 4(-) + 3 (3-4) / Konsep pokok: mencri nili dn yng menghsilkn nili R(;) pling kecil. Secr intuisi jik R(;) mengecil, mk E() = U() Û() jug mengecil. 5/8/04
28 8. Metod Koloksi (hl.66) Untuk setip prmeter i yng dibutuhkn, pilih stu titik i dlm domin. Pd setip titik tersebut pks residu R( i ;) = 0 R( ;) = 0, R( ;) = 0,, R( N ;) = 0 Untuk N nili i, kn diperoleh N sistem persmn. Titik-titik i tersebut dlh titik koloksi. 5/8/04
29 9 Metod Koloksi (hl.66) Pilih titik-titik i mislkn = 4/3, = 5/3 substitusikn kedlm residul R(;) = - ¼ + 4(-) + 3 (3-4) / = 0 diperoleh sistem persmn 4/ = /8 8/3 + 3 = 97/00 diperoleh nili: =.0993 dn = /8/04
30 30 dengn nili: =.0993 dn = Metod Koloksi (hl.66) mk diperoleh solusi cob : Û K () = - ¼ (-) (-)(-3) (-) ( + -) dn debit/ flu -ny: K () = + ¼ (-) (-) (-) (+) liht hl. 67 (perhtikn pd st R=0, E0) 5/8/04
31 3. Metod Subdomin (hl.67) Untuk setip prmeter i yng dibutuhkn, pilih stu intervl i dlm domin. Pd setip intervl tersebut pks residu rert = 0, Rd ( ; ) 0, Rd ( ; ) 0,..., Rd ( ; ) 0 N Untuk N nili i, kn diperoleh N sistem persmn. Intervl-intervl i tersebut dinmi subdomin. N 5/8/04
32 3 Metod Subdomin (hl.68) Bgi subdomin menjdi: = dn =.5, sehingg diperoleh du persmn ( ) 3(3 4) d ( ) 3(3 4) d 0 5/8/04
33 33 Metod Subdomin (hl.68) diperoleh sistem persmn / + 09/8 = 9/4 3/ + 63/8 = /4 diperoleh nili: =.547 dn = /8/04
34 34 Metod Subdomin (hl.68) dengn nili: =.547 dn = mk diperoleh solusi cob : Û S () = - ¼ (-) (-)(-3) (-) ( + -) dn debit/ flu -ny: S () = ½ + ¼ (-) (-) (-) (+) grfik hsil liht hl /8/04
35 35 3. Metod Kudrt terkecil (hl.68) Minimumkn integrl kudrt residul dlm domin terhdp setip prmeter i, tu secr mtemtis ditulis sbb: Minimumkn R ( ; ) d Agr nili integrl tersebut minimum diperlukn syrt yitu derivsi integrl tersebut untuk setip i mempunyi nili nol. 5/8/04
36 5/8/04 36 Kudrt terkecil (hl.69) formulsiny: 0 ) ; ( ) ; (..., 0, ) ; ( ) ; ( 0, ) ; ( ) ; ( d R R d R R d R R N disederhnkn menjdi: konstn dieliminsi dri setip integrl di ts. 0 ) ; ( 0,..., ) ; ( 0, ) ; ( d R d R d R N
37 selnjutny Kudrt terkecil (hl.70) R( ; ) R( ; ) 4( ) dn 3(3 4) substitusi kedlm residul menghsilkn ( ) 3(3 4) 4( ) d 0 4 4( ) 3(3 4) 3(3 4) d 0 5/8/04
38 38 Kudrt terkecil 3 (hl.7) jik integrsi dilkukn diperoleh sistem persmn 6/ = 8 ln 7/ 7 + 7/5 = 33/4 diperoleh nili: =.355 dn = /8/04
39 39 Kudrt terkecil 4 (hl.7) dengn nili: =.355 dn = mk diperoleh solusi cob : Û L () = - ¼ (-) (-)(-3) (-) ( + -) dn debit/ flu -ny: L () = ½ + ¼ (-) (-) (-) (+) grfik hsil liht hl /8/04
40 40 4. Metod Glerkin (hl.7) Untuk setip prmeter i yng dibutuhkn, dihruskn rert berbobot untuk residul = 0 Fungsi yng digunkn sebgi pembobot dlh Ø i () yng terkit dengn i dlm domin. Untuk N nili i, kn diperoleh N sistem persmn R( ; ) ( ) d 0, R( ; ) ( ) d R( ; ) N ( ) d 0 0,..., 5/8/04
41 4 Glerkin (hl.7) substitusi residul dn fungsi bobot menghsilkn 4 4( ) 3(3 4) ( )( 3) d 0 4 4( ) 3(3 4) ( )( ) d 0 jik integrsi dilkukn diperoleh sistem persmn -05/3-4/5 = 9/6 8 ln -4/5-8/ = /6 4 ln 5/8/04
42 4 Glerkin (hl.7) dengn nili: =.378 dn = mk diperoleh solusi cob : Û G () = - ¼ (-) (-)(-3) (-) ( + -) dn debit/ flu -ny: G () = ½ + ¼ (-) (-) (-) (+) grfik hsil liht hl /8/04
43 43 Resume Residul Berbobot (hl.7) Secr umum metod residul berbobot dpt diformulsikn seperti di bwh. Sedngkn fungsi bobot yng digunkn tip-tip metod berbed (liht hl.7-75). R( ; ) W ( ) d 0, R( ; ) W ( ) d 0,..., R( ; ) W N ( ) d 0 5/8/04
44 44 V. Metod Vrisi Ritz untuk Û (hl.75) Metod ini tidk dibhs di sini kren membutuhkn mt kulih Klkulus Vrisi Hsil metod ini sm dengn Metod Glerkin. Bhkn beberp hli memberi nm kombinsi yitu Metod Ritz-Glerkin. Silkn liht hl.(75-78) 5/8/04
45 45 VI. Estimsi Ketelitin untuk Û (hl.78) Semkin tinggi DOF yng digunkn, mk ketelitin penyelesin pendektn -ny mkin tinggi Bhsn rinci silkn liht hl.78-86) 5/8/04
46 Resume Memperoleh Û() 46 Û(;) i hrus dicri sudhkh ketelitinny diterim jik belum; tmbh DOF ( i ) mislny Û(;) dikunci/ constrined dengn kondisi bts Kriteri Optimsi pd R(;) untuk menentukn nili i terbik Penyelesin Û() diperoleh Telitikh Û() terhdp U()? 5/8/04
47 Resume Memperoleh Û() 47 Anlisis yng dibutuhkn: Û(;) i hrus dicri Sistem Persmn Linier Û(;) dikunci/ constrined dengn kondisi bts Anlisis Integrsi Kriteri Optimsi pd R(;) untuk menentukn nili i terbik Sistem Persmn Linier Penyelesin Û() diperoleh 5/8/04
48 48 be winner nd cts like winners.. 5/8/04
Integral Tak Wajar. Ayundyah Kesumawati. March 25, Prodi Statistika FMIPA-UII
Kesumwti Prodi Sttistik FMIPA-UII Mrch 25, 205 Sutu integrl tertentu b f (x)dx () diktkn wjr jik i memenuhi du syrt berikut: i. Bts integrsi dn b merupkn bilngn berhingg ii. fungsi f (x) terbts pd intervl
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI Bb berikut ini kn disjikn mteri pendukung yng dpt membntu penulis untuk menyelesikn permslhn yng kn dibhs pd bb selnjutny. Adpun mteri pendukungny dlh pengertin mtriks, jenis-jenis
MODEL POTENSIAL 1 DIMENSI
MODEL POTENSIAL 1 DIMENSI 1. Sumur Potensil Tk Berhingg Kit tinju prtikel bermss m dengn energi positif, berd dlm sumur potensil stu dimensi dengn dinding potensil tk berhingg dn potensil didlmny nol,
PROBLEM SOLVING TERKAIT DENGAN KELAS X SEMESTER 1 PADA STANDAR KOMPETENSI (SK) 1.
PROLEM SOLVING TERKIT DENGN KELS X SEMESTER PD STNDR KOMPETENSI (SK). LJR Memechkn mslh yng berkitn dengn bentuk pngkt, kr, dn logritm Oleh: Sigit Tri Guntoro. Du orng berselisih mengeni bnykny psngn bilngn
ANALISIS NUMERIK. Inter polasi. SPL simultan. Akar Persama. linear
ANALISIS NUMERIK Inter polsi SPL simultn Akr Persm n Non liner INTERPOLASI Tujun Interpolsi bergun untuk menksir hrg-hrg tengh ntr titik dt yng sudh tept. Interpolsi mempunyi orde tu derjt. Mcm Interpolsi
1) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persamaan kuadrat adalah seperti di bawah ini:
) BENTUK UMUM DAN BAGIAN-BAGIAN PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh seperti di bwh ini: b c dengn, b, c bilngn dn riil Dimn, disebut sebgi koefisien dri b disebut sebgi koefisien dri c disebut
SISTEM BILANGAN REAL. 1. Sifat Aljabar Bilangan Real
SISTEM BILANGAN REAL Dlm terminologi Aljbr Abstrk, sistem bilngn rel disebut dengn field (lpngn) pd opersi penjumlhn dn perklin. Sutu opersi biner bis ditulis dengn sutu psngn terurut (, b) yng unik dri
3. LIMIT DAN KEKONTINUAN. INF228 Kalkulus Dasar
. LIMIT DAN KEKONTINUAN INF8 Klkulus Dsr . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn
INTEGRAL. Bogor, Departemen Matematika FMIPA IPB. (Departemen Matematika FMIPA IPB) Kalkulus I Bogor, / 45
INTEGRAL Deprtemen Mtemtik FMIPA IPB Bogor, 2012 (Deprtemen Mtemtik FMIPA IPB) Klkulus I Bogor, 2012 1 / 45 Topik Bhsn 1 Pendhulun 2 Anti-turunn 3 Lus di Bwh Kurv 4 Integrl Tentu 5 Teorem Dsr Klkulus 6
3. LIMIT DAN KEKONTINUAN
3. LIMIT DAN KEKONTINUAN 1 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi di =1, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp
15. INTEGRAL SEBAGAI LIMIT
15. INTEGRAL SEBAGAI LIMIT 15.1 Jumlh Riemnn Dlm kulih Klkulus pd thun pertm, integrl Riemnn bisny diperkenlkn sebgi limit dri jumlh Riemnn, tidk mellui integrl Riemnn ts dn integrl Riemnn bwh. Hl ini
DETERMINAN. Misalkan A adalah suatu matriks persegi. a) Jika A memiliki satu baris atau satu kolom bilangan nol, maka det(a) = 0.
DETERMINAN Fungsi determinn dri sutu mtriks persegi A (dinotsikn dengn det(a) tu A ) didefinisikn sebgi jumlh dri semu hsil kli elementer bertnd dri A. Sementr, ngk tu bilngn dri det(a) disebut determinn
LIMIT FUNGSI DAN KEKONTINUAN
LIMIT FUNGSI DAN KEKONTINUAN RANGKUMAN MATERI Sebelum memsuki mteri, perhtikn himpunn-himpunn berikut: ) Himpunn bilngn sli:,,,4,5,.... b) Himpunn bilngn bult:...,,,0,,,.... p c) Himpunn bilngn rsionl:
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. 3. Untuk k 2 didefinisikan bahwa a
CONTOH SOLUSI BEBERAPA SOAL OLIMPIADE MATEMATIKA Oleh: Wiworo, S.Si, M.M. Dikethui bhw,. Untuk k didefinisikn bhw k k k. Tentukn jumlh tk hingg dri. Kit mislkn S S. Dengn demikin kit dpt menuliskn Kedu
Kerjakan di buku tugas. Tentukan hasil operasi berikut. a. A 2 d. (A B) (A + B) b. B 2 e. A (B + B t ) c. A B f. A t (A t + B t ) Tes Mandiri
Mmt Apliksi SMA Bhs Dikethui A = Tentukn hsil opersi berikut A c A A b A A d A Dikethui A = Tentukn hsil opersi berikut (A + B) c (B A) b A + AB + B d B BA + A Sol Terbuk Kerjkn di buku tugs Jik X = dn
r x = 0. Koefisien-koefisien persamaan yang dihasilkan adalah analitik pada x = 0. Jadi dapat kita gunakan metode deret pangkat.
Husn Arifh,M.Sc : Persmn Legendre Emil : [email protected] Persmn diferensil Legendre (1) 1 x 2 y 2xy + n n + 1 y = 0 Prmeter n pd (1) dlh bilngn rill yng diberikn. Setip penyelesin dri (1) dinmkn fungsi
Bab a. maka notasi determinan dari matriks A ditulis : det (A) atau. atau A.
Bb DETERMINAN MATRIKS Determinn sutu mtriks dlh sutu fungsi sklr dengn domin mtriks bujur sngkr. Dengn kt lin, determinn merupkn pemetn dengn domin berup mtriks bujur sngkr, sementr kodomin berup sutu
2. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT
. PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT A. Persmn Kudrt. Bentuk umum persmn kudrt : x + bx + c = 0, 0. Nili determinn persmn kudrt : D = b c. Akr-kr persmn kudrt dpt dicri dengn memfktorkn tupun
LIMIT DAN KONTINUITAS
LIMIT DAN KONTINUITAS Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di =, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA
K- Kels X mtemtik PEMINATAN PERSAMAAN DAN PERTIDAKSAMAAN LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi persmn dn pertidksmn logritm.. Dpt
3. LIMIT DAN KEKONTINUAN
. LIMIT DAN KEKONTINUAN . Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi Fungsi dits tidk terdeinisi di, kren di titik tersebut berbentuk 0/0. Tpi msih bis ditnykn berp nili jik mendekti
matematika PEMINATAN Kelas X FUNGSI LOGARITMA K-13 A. Definisi Fungsi Logaritma
K-3 Kels mtemtik PEMINATAN FUNGSI LOGARITMA Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi definisi fungsi logritm.. Dpt menggunkn konsep fungsi logritm dlm menyelesikn
Matriks yang mempunyai jumlah baris sama dengan jumlah kolomnya disebut matriks bujur sangkar (square matrix). contoh :
TRIKS. PENGERTIN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom diseut
BAB: PENERAPAN INTEGRAL Topik: Volume Benda Putar (Khusus Kalkulus 1)
BAB: PENERAPAN INTEGRAL Topik: Volume Bend Putr (Khusus Klkulus ) Kompetensi yng diukur dlh kemmpun mhsisw menghitung volume bend putr dengn metode cincin, metode ckrm, tu metode kulit tbung.. UAS Klkulus,
DETERMINAN DAN INVERS MATRIKS BLOK 2 2
Buletin Ilmih Mth. Stt. dn Terpnny (Bimster) Volume 06, No. 3(2017), hl 193 202. DETERMINAN DAN INVERS MATRIKS BLOK 2 2 Ilhmsyh, Helmi, Frnsiskus Frn INTISARI Mtriks blok merupkn mtriks persegi yng diblok
MUH1G3/ MATRIKS DAN RUANG VEKTOR
MUHG3/ MATRIKS DAN RUANG VEKTOR TIM DOSEN 3 Sistem Persmn Liner Sistem Persmn Liner Su Pokok Bhsn Pendhulun Solusi SPL dengn OBE Solusi SPL dengn Invers mtriks dn Aturn Crmmer SPL Homogen Beerp Apliksi
STRATEGI PENGAJARAN MATEMATIKA UNTUK MENENTUKAN AKAR-AKAR PERSAMAAN KUADRAT
Jurnl Vol II. No., Mret 08, hlm. 9-95 vilble online t www.jurnl.un.c.id/indeks/jmp STRTEGI PENGJRN MTEMTIK UNTUK MENENTUKN KR-KR PERSMN KUDRT Indh Purnm Putri, Symsudhuh, Ihd Hsbiyti 3 Progrm Studi Mgister
,, % ,, % -0: 0 -0: 0! 2 % 26, &
PERSAMAAN LINIER GAUSS-SIEDEL METHOD Simultneous Liner Equtions Oleh : Purwnto,S.Si Bentuk Umum x + x + 3 x 3 + + n x n = b Sebuh persmn linier dengn : n peubh : x, x, x 3,, x n n konstnt :,, 3,, n Contoh
A. PENGERTIAN B. DETERMINAN MATRIKS
ATRIKS A. PENGERTIAN triks dlh sutu deretn elemen yng mementuk empt persegi pnjng, terdiri dri m ris dn n kolom. Elemen terseut dpt erentuk koefisien, ilngn tu simul. triks yng mempunyi m ris dn n kolom
Aljabar Linear Elementer
ljbr Liner Elementer M3 3 SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
FISIKA BESARAN VEKTOR
K-3 Kels X FISIKA BESARAN VEKTOR TUJUAN PEMBELAJARAN Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi pengertin besrn vektor.. Mengusi konsep penjumlhn vektor dengn berbgi metode.
Aljabar Linear Elementer
ljbr Liner Elementer M SKS Silbus : Bb I Mtriks dn Opersiny Bb II Determinn Mtriks Bb III Sistem Persmn Liner Bb IV Vektor di Bidng dn di Rung Bb V Rung Vektor Bb VI Rung Hsil Kli Dlm Bb VII Trnsformsi
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT. Supriyono Jurusan Pendidikan Matematika FKIP Universitas Muhammadiyah Purworejo.
MENENTUKAN AKAR-AKAR PERSAMAAN PANGKAT EMPAT Supriyono Jurusn Pendidikn Mtemtik FKIP Universits Muhmmdiyh Purworejo Abstrk Tulisn ini terdiri bgin yitu () bgin pendhulun yng membhs bentuk umum persmn pngkt
INTEGRAL FOURIER KED. Diasumsikan syarat-syarat berikut pada f(x): 1. f x memenuhi syarat Dirichlet pada setiap interval terhingga L, L.
INTEGRAL FOURIER Disumsikn syrt-syrt berikut pd f(x):. f x memenuhi syrt Dirichlet pd setip intervl terhingg L, L.. f x dx konvergen, yitu f(x) dpt diintegrsikn secr mutlk dlm (, ). Selnjutny, Teorem integrl
Catatan Kuliah 2 Matematika Ekonomi Memahami dan Menganalisa Aljabar Matriks (2)
Cttn Kulih Mtemtik Ekonomi Memhmi dn Mengnlis ljbr Mtriks (). Vektor dn kr Krkteristik pbil dlh mtriks berordo n n dn X dlh vector n, kn dicri sklr λ R yng memenuhi persmn : X λ X tu ( λi) X gr X (solusiny
NFA. Teori Bahasa dan Automata. Viska Mutiawani - Informatika FMIPA Unsyiah
NFA Teori Bhs dn Automt Visk Mutiwni - Informtik FMIPA Unsyih 1 NFA NFA: Nondeterministic Finite Automt Atu Automt Hingg NonDeterministik (AHND) Slh stu bentuk dri Finite Automt NFA memiliki kemmpun untuk
matematika K-13 TEOREMA FAKTOR DAN OPERASI AKAR K e l a s
K-3 mtemtik K e l s XI TEOREMA FAKTOR DAN OPERASI AKAR Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Memhmi teorem fktor.. Menentukn kr dn fktor liner suku nyk dengn
E. INTEGRASI BAGIAN ( PARSIAL )
E. INTEGRASI BAGIAN ( PARSIAL ) Integrsi gin (prsil) digunkn untuk mengintegrsikn sutu perklin fungsi yng msing-msing fungsiny ukn koefisien diferensil dri yng lin ( seperti yng sudh dihs pd su. B. D )
Minggu ke 6 LIMIT FUNGSI (LIMITS OF FINCTIONS) 2,1, 2,01, 2,001, 2,0001,, 2 + 1/10 n maka :
Minggu ke 6 Modul Mtemtik LIMIT FUNGSI LIMITS OF FINCTIONS). BRISN SEQUENCES) VS. LIMIT FUNGSI LIMITS OF FUNCTIONS) Contoh : Sequence : fn) = + / n,,,,,,,,, + / n mk : Limit dri fungsi f) =, dimn vribel
BAB ALJABAR MARIX Dlm pokok bhsn ini kn disjikn dsr-dsr opersi ljbr mtrix yng berhubungn dengn nlisis struktur dengn menggunkn metode mtrix kekkun (stiffness method)... Pengertin Mtrix Mtrix merupkn sutu
Aplikasi Teori Permainan Lawan pemain (punya intelegensi yang sama). Setiap pemain mempunyai beberapa strategi untuk saling mengalahkan.
Apliksi Teori Perminn Lwn pemin (puny intelegensi yng sm) Setip pemin mempunyi beberp strtegi untuk sling menglhkn Two-Person Zero-Sum Gme Perminn dengn pemin dengn perolehn (keuntungn) bgi slh stu pemin
INTEGRAL. Misalkan suatu fungsi f(x) diintegralkan terhadap x maka di tulis sebagai berikut:
INTEGRAL.PENGERTIAN INTEGRAL Integrl dlh cr mencri sutu fungsi jik turunnn di kethui tu kelikn dri diferensil (turunn) ng diseut jug nti derivtif tu nti diferensil. Untuk menentukn integrl tidk semudh
Penyelesaian Persamaan dengan Logaritma. Persamaan & Fungsi logaritma. Pengertian Logaritma 10/9/2013
10/9/013 Penyelesin Persmn dengn Logritm Persmn & Fungsi logritm Tim Dosen Mtemtik FTP Logritm dpt digunkn untuk mencri bilngn yng belum dikethui (bilngn x) dlm sebuh persmn, khususny persmn eksponensil
III. LIMIT DAN KEKONTINUAN
KALKULUS I MUG1A4 PROGRAM PERKULIAHAN DASAR DAN UMUM PPDU TELKOM UNIVERSITY III. LIMIT DAN KEKONTINUAN 3.1 Limit Fungsi di Stu Titik Pengertin it secr intuisi Perhtikn ungsi 1 1 Fungsi dits tidk terdeinisi
Skew- Semifield dan Beberapa Sifatnya 1
Skew- Semifield dn Beberp Siftny K r y t i Jurusn Pendidikn Mtemtik Fkults Mtemtik dn Ilmu Pengethun Alm Universits Negeri Yogykrt E-mil: [email protected] Abstrk Sutu field ( lpngn ) F dlh struktur ljbr
didefinisikan sebagai bilangan yang dapat ditulis dengan b
1 PENDAHULUAN 1.1 Sistem Bilngn Rel Untuk mempeljri klkulus perlu memhmi hsn tentng system ilngn rel, kren klkulus didsrkn pd system ilngn rel dn siftsiftny. Sistem ilngn yng pling sederhn dlh ilngn sli,
17. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1
17. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (0, ) 0 x 1 x 1 0 x 2 (b, 0) 0 b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 )
MA3231 Analisis Real
MA3231 Anlisis Rel Hendr Gunwn* *http://hgunwn82.wordpress.com Anlysis nd Geometry Group Bndung Institute of Technology Bndung, INDONESIA Progrm Studi S1 Mtemtik ITB, Semester II 2016/2017 HG* (*ITB Bndung)
12. LUAS DAERAH DAN INTEGRAL
12. LUAS DAERAH DAN INTEGRAL 12.1 Lus Derh di Bwh Kurv Mslh menentukn lus derh (dn volume rung) telh dipeljri sejk er Pythgors dn Zeno, pd thun 500-n SM. Konsep integrl (yng terkit ert dengn lus derh)
det DEFINISI Jika A 0 disebut matriks non singular
DETERINAN DEFINISI Untuk setip mtriks persegi (bujur sngkr), d stu bilngn tertentu yng disebut determinn Determinn dlh jumlh semu hsil kli elementer bertnd dri sutu mtriks bujur sngkr. Disimbolkn dengn:
IAH IAAH I H HAAH xaah I A b x2ah x23h I A 3 x23b H 2
GRMMR CONTEXT-FREE DN PRING entuk umum produksi CFG dlh :, V N, (V N V T )* nlisis sintks dlh penelusurn seuh klimt (tu sentensil) smpi pd simol wl grmmr. nlisis sintks dpt dilkukn mellui derivsi tu prsing.
Jarak Titik, Garis dan Bidang dalam Ruang
Pge of Kegitn eljr. Tujun Pembeljrn Setelh mempeljri kegitn beljr, dihrpkn sisw dpt :. Menentukn jrk titik dn gris dlm rung b. Menentukn jrk titik dn bidng dlm rung c. Menentukn jrk ntr du gris dlm rung.
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT
PERSAMAAN KUADRAT, FUNGSI KUADRAT DAN PERTIDAKSAMAAN KUADRAT Persmn Kudrt. Bentuk Umum Persmn Kudrt Mislkn,, Є R dn 0 mk persmn yng erentuk 0 dinmkn persmn kudrt dlm peuh. Dlm persmn kudrt 0, dlh koefisien
Metoda Elemen Hingga Dalam Hidraulika. Bab 5 Konsep Elemen. Ir. Djoko Luknanto, M.Sc., Ph.D.
Metod Elemen Hingg Dlm Hidrulik B onsep Elemen Ir. Djoko Luknnto, M.S., Ph.D. milto:[email protected] Pendhulun Domin digi menjdi intervl yng diseut elemen lngkh umum kn dierlkukn pd elemen /8/ [email protected]
matematika WAJIB Kelas X RASIO TRIGONOMETRI Kurikulum 2013 A. Definisi Trigonometri
Kurikulum 0 Kels X mtemtik WAJIB RASIO TRIGONOMETRI Tujun Pembeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun berikut.. Memhmi rsio-rsio trigonometri yng meliputi sinus, kosinus, tngen,
VEKTOR. 1. Pengertian Vektor adalah besaran yang memiliki besar (nilai) dan arah. Vektor merupakan sebuah ruas garis yang
VEKTOR 1. Pengertin Vektor dlh besrn yng memiliki besr (nili dn rh. Vektor merupkn sebuh rus gris yng P berrh dn memiliki pnjng. Pnjng rus gris tersebut dlh pnjng vektor. Rus gris dri titik P dn berujung
Fungsi f dikatakan pada / onto / surjektif jika setiap elemen himpunan B merupakan
III FUNGSI 15 1. Definisi Fungsi Definisi 1 Mislkn dn dlh himpunn. Relsi iner f dri ke merupkn sutu fungsi jik setip elemen di dlm dihuungkn dengn tept stu elemen di dlm. Jik f dlh fungsi dri ke, mk f
Teorema Dasar Integral Garis
ISBN: 978-979-79-55-9 Teorem Dsr Integrl Gris Erdwti Nurdin Progrm Studi Pendidikn Mtemtik FKIP UIR [email protected] Abstrk Slh stu generlissi integrl tentu (definite integrl) f x dx diperoleh dengn menggnti
TURUNAN FUNGSI. LA - WB (Lembar Aktivitas Warga Belajar) MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI
LA - WB (Lembr Aktivits Wrg Beljr) TURUNAN FUNGSI Oleh: Hj. ITA YULIANA, S.Pd, M.Pd MATEMATIKA PAKET C TINGKAT VI DERAJAT MAHIR 2 SETARA KELAS XI Creted By It Yulin 33 Turunn Fungsi Kompetensi Dsr 1. Menggunkn
Matematika X Semester 1 SMAN 1 Bone-Bone
http://meetbied.wordpress.com Mtemtik X Semester SMAN Bone-Bone Hsil yng pling berhrg dri semu jenis pendidikn dlh kemmpun untuk membut diri kit melkukn sesutu yng hrus kit lkukn, pd st hl itu hrus dilkukn,
Solusi Pengayaan Matematika Edisi 4 Januari Pekan Ke-4, 2007 Nomor Soal: 31-40
Solusi Pengn Mtemtik Edisi 4 Jnuri Pekn Ke-4, 007 Nomor Sol: -40. Diberikn persmn 8 9 4 8 007 dn b, dengn b. Angk stun dri b dlh. A. B. C. D. 7 E. 9 Persmn 8 9 4 8 8 9 4 8 9 4 8 8 8 9 8 4 8 8 8 0 0 b tu
PENYELESAIAN SOAL UJIAN TENGAH SEMESTER 2010
PNYLSAIAN SOAL UJIAN TNGAH SMSTR SOAL A Pengolhn dt nnul series curh hujn hrin mximum, H mm, di sutu stsiun ARR menunjukkn bhw sebrn probbilits sutu besrn curh hujn, p H (h), dpt dinytkn dengn sutu ungsi
SUKU BANYAK ( POLINOM)
SUKU BANYAK ( POLINOM) Bb 16 Skl 8.Menyelesikn mslh yng berkitn dengn teorem sis tu teorem fktor A. PENGERTIAN SUKU BANYAK. Bentuk x x x... x x, dengn 0 dn n { bil. cch} 1 0 disebut dengn Suku bnyk (Polinomil)
Hendra Gunawan. 30 Oktober 2013
MA MATEMATIKA A Hendr Gunwn Semester I, 2/24 Oktoer 2 Ltihn. Fungsi g =,, terintegrlkn pd [, ]. Nytkn integrl tentu g pd [, ] segi limit jumlh Riemnn dengn prtisi reguler, dn hitunglh niliny. //2 c Hendr
STRUKTUR BETON BERTULANG I. Tulangan Rangkap. Oleh Resmi Bestari Muin
MODUL KULIAH STRUKTUR BETON BERTULANG I Minggu ke : 9 Tulngn Rngkp Oleh Resmi Bestri Muin PRODI TEKNIK SIPIL FAKULTAS TEKNIK SIPIL dn PERENCANAAN UNIVERSITAS MERCU BUANA 2010 DAFTAR ISI DAFTAR ISI i IX
BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO
. Jwbn : C 8 3 8 6 3 3 3 6 BABAK PENYISIHAN AMSO JENJANG SMA PEMBAHASAN BABAK PENYISIHAN AMSO. Jwbn : C Tig bilngn prim pertm yng lebih besr dri 0 dlh 3, 9, dn 6. Mk 3 + 9 + 6 = 73. Jdi, jumlh tig bilngn
M A T R I K S. Oleh: Dimas Rahadian AM, S.TP. M.Sc.
M T R I K S Oleh Dims Rhdin M, S.TP. M.Sc Emil [email protected] JURUSN ILMU DN TEKNOLOGI PNGN UNIVERSITS SEBELS MRET SURKRT DEFINISI... Mtriks dlh susunn bilngn berbentuk jjrn segi empt siku-siku yng
FUNGSI TRANSENDEN. Definisi 1 Fungsi logaritma natural, ditulis sebagai ln, didefenisikan dengan
2 FUNGSI TRANSENDEN Fungsi trnsenen tu fungsi non-ljbr lh fungsi yng tik pt inytkn lm sejumlh berhingg opersi ljbr. Fungsi trnsenen yng bis ijumpi lm hl ini teriri ri fungsi eksponensil, fungsi logritmik,
11. PROGRAM LINEAR. A. Persamaan Garis Lurus. (x 2, y 2 ) (0, a) y 2. y 1. (x 1, y 1 ) (b, 0) X. x 1
11. PROGRAM LINEAR A. Persmn Gris Lurus y 1 (x 1, y 1 ) y 2 y 1 (x 1, y 1 ) (x 2, y 2 ) (, ) x 1 x 1 x 2 (b, ) b. Persmn gris yng bergrdien m dn mellui titik (x 1, y 1 ) dlh: y y 1 = m(x x 1 ) b. Persmn
2. Paman mempunyai sebidang tanah yang luasnya 5 hektar. Tanah itu dibagikan kepada 3. Luas tanah yang diterima oleh mereka masing-masing = 5 :3 1
. Hitunglh 7 5. : b. 5 : c. 8 : 6 d. 8 9 7 7 7 5 77 77 77. : c. 8 : 6 : 6 6 9 9 9 6 54 8 40 7 b. 5: 5 d. 4: 4: 4 6 8 7 95 Husein Tmpoms, Rumus-rumus Dsr Mtemtik 4 :. Pmn mempunyi sebidng tnh yng lusny
MODUL 6. Materi Kuliah New_S1
MODUL 6 Mteri Kulih New_S1 KULIAH 10 Spnning tree dn minimum spnning tree - Definisi spnning tree T diktkn spnning tree dri grph terhubung G bil T dlh sutu tree yng vertexvertexny sm dengn vertexny G dn
Suku banyak. Akar-akar rasional dari
Suku nyk Algoritm pemgin suku nyk menentukn Teorem sis dn teorem fktor terdiri dri Pengertin dn nili suku nyk Hsil gi dn sis pemgin suku nyk Penggunn teorem sis Penggunn teorem fktor Derjd suku nyk pd
BAB 10. MATRIKS DAN DETERMINAN
Dessy Dwiynti, S.Si, MBA Mtemtik Ekonomi 1 BAB 10. MATRIKS DAN DETERMINAN 1. Pengertin mtriks Mtriks kumpuln bilngn yng disjikn secr tertur dlm bris dn kolom yng membentuk sutu persegi pnjng, sert termut
METODE PENELITIAN. Penelitian dilaksanakan pada bulan Oktober sampai dengan November 2011
III. METODE PENELITIAN 3.1. Tempt dn Wktu Penelitin Penelitin dilksnkn pd buln Oktober smpi dengn November 2011 bertempt di Lbortorium Rekys Bioproses dn Psc Pnen, Jurusn Teknik Pertnin, Fkults Pertnin,
BAB III METODE METODE DEFUZZYFIKASI
Fuy Logi Metode Metode Deuyiksi BAB III METODE METODE DEFUYFIKASI Seperti yng telh dihs dlm, hw untuk meruh kelurn uy menjdi nili risp mk diperlukn sutu proses yng leih dikenl dengn istilh deuyiksi Dlm
LUAS DAERAH APLIKASI INTEGRAL TENTU. Indikator Pencapaian Hasil Belajar. Ringkasan Materi Perkuliahan
LUAS DAERAH APLIKASI INTEGRAL TENTU Indiktor Pencpin Hsil Beljr Mhsisw menunjukkn kemmpun dlm :. Menghitung lus pd idng dtr Ringksn Mteri Perkulihn Jik sutu derh ditsi oleh kurv f(), g(), gris dn dengn
Rumus Luas Daerah Segi Empat Sembarang? Oleh: Al Jupri Dosen Jurusan Pendidikan Matematika Universitas Pendidikan Indonesia
Rumus Lus Derh Segi Empt Sembrng? Oleh: Al Jupri Dosen Jurusn Pendidikn Mtemtik Universits Pendidikn Indonesi Kit bisny lebih menyuki brng yng siftny serb gun dn efektif, stu brng untuk berbgi jenis keperlun.
Integral Tak Tentu dan Integral Tertentu
Integrl Tk Tentu dn Integrl Tertentu Pengertin Integrl Jik F dlh fungsi umum yng ersift F = f, mk F merupkn ntiturunn tu integrl dri f. Pengintegrln fungsi f terhdp dinotsikn segi erikut : f d F c notsi
Penyelesaian Persamaan Kuadrat 1. Rumus abc Rumus menentukan akar persamaan kuadrat ax 2 bx c 0; a, b, c R dan a 0
PERSAMAAN, PERTIDAKSAMAAN DAN FUNGSI KUADRAT PERSAMAAN KUADRAT Bentuk umum persmn kudrt dlh c 0,,,c R, 0 Penyelesin Persmn Kudrt. Rumus c Rumus menentukn kr persmn kudrt c 0;,, c R dn 0, = ± 4c. Memfktorkn
Bab 3 M M 3.1 PENDAHULUAN
B SISTEM PERSAMAAN LINEAR Pd gin ini kn dijelskn tentng sistem persmn liner (SPL) dn r menentukn solusiny. SPL nyk digunkn untuk memodelkn eerp mslh rel, mislny: mslh rngkin listrik, jringn komputer, model
CHAPTER 1 EXPONENTS, ROOTS, AND LOGARITHMS
CHAPTER EXPONENTS, ROOTS, AND LOGARITHMS Indiktor (penunjuk): Mengubh bentuk pngkt negtif ke pngkt positif dn seblikny. (4 jp) A. EXPONENTS. Definition (ketentun): Positive Integers Exponents n = x x...
BAB IV METODE ANALISIS RANGKAIAN
BAB IV METODE ANALISIS RANGKAIAN. Anlisis Arus Cng Anlisis rus cng memnftkn hukum Kirchoff I (KCL) dn hukum Kirchoff I (KVL). Contoh - Tentukn esr rus dlm loop terseut dn gimn rh rusny? Ohm 0V 0V Ohm 0V
MATEMATIKA DASAR. Bab Bilangan Irasional dan Logaritma. Drs. Sumardi Hs., M.Sc. Modul ke: 02Fakultas FASILKOM. Program Studi Teknik Informatika
MATEMATIKA DASAR Modul ke: 0Fkults FASILKOM Progrm Studi Teknik Informtik Bb Bilngn Irsionl dn Logritm Drs. Sumrdi Hs., M.Sc. Bgin Isi Bilngn Irsionl - Berbgi bentuk kr dn opersiny Logritm - Sift-sift
Vektor di R 2 dan R 3
Vektor di R dn R Pengertin Vektor dlh besrn yng mempunyi besr dn rh Vektor digmbrkn oleh rus gris yng dilengkpi dengn nk pnh vektor dimuli dri titik wl (initil point) dn dikhiri oleh titik khir (terminl
Interpolasi. Umi Sa adah
Interolsi Umi S dh Interolsi Perbedn Interolsi dn Ekstrolsi Interolsi Linier L Interolsi Kudrt L h h Interolsi Qubic L h h h Interolsi dg Polinomil 5 Tble : Si equidistntl sced oints in [- ] 5 -..846
Aljabar Linier & Matriks. Tatap Muka 3
Aljbr Linier & Mtriks Ttp Muk Eliminsi Guss-Jordn Sistem persmn linier dengn n vribel dn m persmn secr umum dinytkn sbg: Sistem persmn linier tsb dpt dinytkn dlm bentuk mtriks sbb: A x X = b dengn A dlh
METODE ANALISIS. Tentukan arus pada masing-masing tahanan dengan menggunakan metode arus cabang untuk rangkaian seperti pada Gambar 1.
1. Anlisis Arus Cng METODE ANALSS Metode rus ng dlh slh stu metode penyelesin nlisis rngkin il rngkin terdiri dri du tu leih sumer. Pd metode rus ng ini, kn diperoleh rus pd setip ng dri sutu rngkin yng
Matriks. Pengertian. Lambang Matrik
triks Pengertin Definisi: trik dlh susunn bilngn tu fungsi yng diletkkn ts bris dn kolom sert dipit oleh du kurung siku. Bilngn tu fungsi tersebut disebut entri tu elemen mtrik. mbng mtrik dilmbngkn dengn
Tujuan Pembelajaran. ) pada hiperbola yang berpusat di (0, 0). 2. Dapat menentukan persamaan garis singgung di titik (x 1
K-3 mtemtik K e l s XI IRISAN KERUCUT: GARIS SINGGUNG PADA HIPERBOLA Tujun Pemeljrn Setelh mempeljri mteri ini, kmu dihrpkn memiliki kemmpun erikut.. Dpt menentukn persmn gris singgung di titik (, ) pd
MATEMATIKA INTEGRAL TENTU DAN LUAS DAERAH
MATEMATIKA KELAS XII - KURIKULUM GABUNGAN 5 Sesi N INTEGRAL TENTU DAN LUAS DAERAH A. DEFINISI INTEGRAL TENTU Bentuk integrl f d = f + c diseut segi integrl tk tentu kren hsil dri pengintegrlnn msih erup
E-LEARNING MATEMATIKA
MOUL E-LEARNING E-LEARNING MATEMATIKA Oleh : NURYAIN EKO RAHARJO, M.P. NIP. 7 Penulisn Modul e Lerning ini diiyi oleh dn IPA BLU UNY TA Sesui dengn Surt Perjnjin Pelksnn e Lerning Nomor./H./PL/ Tnggl Juli
INTEGRAL. Integral Tak Tentu Dan Integral Tertentu Dari Fungsi Aljabar
INTEGRAL Integrl Tk Tentu Dn Integrl Tertentu Dri Fungsi Aljr A. Integrl Tk Tentu Hitung integrl dlh kelikn dri hitung differensil. Pd hitung differensil yng dicri dlh fungsi turunnny, sedngkn pd hitung
PERTEMUAN 4 Metode Simpleks Kasus Maksimum
PERTEMUAN 4 Metode Simpleks Ksus Mksimum Untuk menyelesikn Persoln Progrm Linier dengn Metode Simpleks untuk fungsi tujun memksimumkn dn meminimumkn crny ered Model mtemtik dri Permslhn Progrm Linier dpt
BAB II LANDASAN TEORI
BAB II LANDASAN TEORI. Mtriks Definisi. (Anton, Howrd. ). Mtriks dlh sutu susunn bilngn berbentuk segi empt. Bilngn-bilngn dlm susunn itu disebut nggot dlm mtriks tersebut. Ukurn (size) sutu mtriks dinytkn
Matematika SMA (Program Studi IPA)
Smrt Solution UJIAN NASIONAL TAHUN PELAJARAN 2013/2014 Disusun Sesui Indiktor Kisi-Kisi UN 2013 Mtemtik SMA (Progrm Studi IPA) Disusun oleh : Pk Anng - Blogspot Pge 1 of 13 5. 2. Menyelesikn sol pliksi
14. SIFAT-SIFAT INTEGRAL RIEMANN
4. SIFAT-SIFAT INTEGRAL RIEMANN 4. Sift-sift Dsr Integrl Riemnn Pd bb ini kit kn mempeljri sift-sift dsr integrl Riemnn. Sift pertm dlh sift kelinern, yng dinytkn dlm Proposisi. Sepnjng bb ini, I menytkn
Sistem pengukuran. Bab III SISTEM PENGUKURAN. III.1. Karakteristik Statis. Karakteristik instrument pengukuran. Akurasi (ketelitian)
Sistem pengukurn Bb III SISTEM PENGUKURAN III.1. Krkteristik Sttis III.2. Krkteristik Dinmis III.3. Prinsip Dsr Pengukurn Sistem pengukurn merupkn bgin pertm dlm sutu sistem pengendlin Jik input sistem
BAB 7. LIMIT DAN LAJU PERUBAHAN
BAB 7. LIMIT DAN LAJU PERUBAHAN 7. LIMIT FUNGSI 7.. Limit fungsi di sutu titik Menggmbrkn perilku fungsi jik peubhn mendekti sutu titik Illustrsi: Dikethui f( ) f(), 3,30,0 3,030,00 3,003 3 f() = f() 3,000?
APLIKASI INTEGRAL PENERAPAN INTEGRAL. Luas daerah kelengkungan
APLIKASI INTEGRAL APLIKASI INTEGRAL PENERAPAN INTEGRAL Lus derh kelengkungn PENERAPAN INTEGRAL Indiktor 1 Indiktor 9 Lus derh di bwh kurv berdsr prinsip Riemn Volume bend putr, jik kurv diputr mengelilingi
6. Himpunan Fungsi Ortogonal
6. Himpunn Fungsi Ortogonl Mislkn f periodik dengn periode, dn mulus bgin demi bgin pd [ π, π]. Jik S f N (θ) = N n= N c ne inθ, n =,, 2,..., dlh jumlh prsil dri deret Fourier f, mk kit telh menunjukkn
