BAB 2 TINJAUAN PUSTAKA

Ukuran: px
Mulai penontonan dengan halaman:

Download "BAB 2 TINJAUAN PUSTAKA"

Transkripsi

1 BAB 2 TINJAUAN PUSTAKA 2.1. Motor Induksi Tiga Fasa Motor induksi adalah suatu mesin listrik yang merubah energi listrik menjadi energi gerak dengan menggunakan gandengan medan listrik dan mempunyai slip antara medan stator dan medan rotor. Stator adalah bagian dari mesin yang tidak berputar dan terletak pada bagian luar. Stator terbuat dari besi bundar berlaminasi dan mempunyai alur alur sebagai tempat meletakkan kumparan. Rotor adalah bagian dari mesin yang berputar bebas dan letaknya bagian dalam. Rotor terbuat dari besi laminasi yang mempunayi slot dengan batang alumunium / tembaga yang terhubung singkat pada ujungnya. Motor induksi merupakan motor arus bolak-balik yang paling banyak digunakan terutama dalam industri. Penamaannya berdasarkan cara memperoleh arus pada rotornya. Arus motor ini didapat bukan dari sumber tertentu tetapi secara induksi atau imbas, sebagai akibat adanya perbedaan relatif antara putaran rotor dan medan putar yang dihasilkan oleh arus stator. Belitan stator yang dihubungkan dengan sumber tegangan tiga fasa akan menghasilkan medan magnet yang berputar. Medan putar pada stator tersebut akan memotong konduktor pada rotor, sehingga terinduksi tegangan sesuai dengan hukum lenz, sehingga rotor akan turut berputar mengikuti medan putar stator. Perbedaan putaran relatif antara putaran medan stator dan putaran rotor disebut slip (S) [16]. 11

2 12 Berdasarkan cara penamaan dan proses terjadinya medan putar rotor, maka prinsip kerja motor induksi tiga fasa adalah berdasarkan prinsip induksi elektromagnetik dimana bila sumber tegangan tiga fasa dipasang pada kumparan medan stator, maka akan timbul medan putar dengan kecepatan (n) yang ditunjukan pada Persamaan 2.1 [16],[17] : 120 f n...(2.1) P Dimana: n : kecepatan sinkron (rpm) f : frekuensi stator (Hz) P : jumlah kutub (buah) Medan putar stator tersebut akan memotong batang konduktor pada rotor. Akibatnya pada kumparan jangkar atau rotor akan timbul tegangan induksi (ggl). Karena kumparan jangkar merupakan kumparan tertutup, ggl akan mengalirkan arus pada kumparan rotor. Adanya arus dalam medan magnet menimbulkan gaya pada rotor. Bila kopel mula yang dihasilkan oleh gaya rotor cukup besar untuk memikul kopel beban, rotor akan berputar searah medan putar stator. Seperti telah dijelaskan sebelumnya, tegangan induksi timbul karena terpotongnya batang konduktor (rotor) oleh medan putar stator, artinya agar tegangan terinduksi maka diperlukan adanya perbedaan relatif antara kecepatan medan putar stator (n s ) dengan kecepatan putaran rotor (n r ) [2].

3 13 Perbedaan kecepatan antara medan putar stator dengan perputaran rotor tersebut disebut dengan slip (S) dan dinyatakan dengan Persamaan (2.2) [2] : n nr S x100%...(2.2) n s s Persamaan (2.2) dapat ditulis dengan Persamaan (2.3, 2.4, 2.5) : n = n (1 S)...(2.3) n = n (1 S)... (2.4) S = n n... (2.5) Dengan demikian Persamaan (2.5) slip rpm (kecepatan slip) menjadi Persaman (2.6) : (n n ) = S. n.... (2.6) Maka diperolehlah frekuensi slip dengan Persamaan (2.7): P f 2 = ( n s n r ) = Sf 1...(2.7) 120 Dimana: n s n r S P f 1 = f s f 2 : kecepatan stator (rpm) : kecepatan rotor (rpm) : slip : jumlah kutub : frekuensi suplai = frekuensi stator (Hz) : frekuensi slip = frekuensi rotor (Hz)

4 Pengaturan kecepatan motor induksi Pengaturan kecepatan motor induksi dapat dilakukan dengan beberapa cara. Dengan mengacu pada Persamaan (2.1), maka variabel P (jumlah kutub) dan f (frekuensi) akan mempengaruhi kecepatan putar motor induksi [3]: A. Pengaturan Kecepatan dengan Mengubah Jumlah Kutub Motor Jumlah kutub motor induksi jenis sangkar bajing dapat diubah dengan merencanakan kumparan stator sedemikian rupa, sehingga dapat menerima tegangan masuk pada dua posisi kumparan yang berbeda, dengan perbandingan 1 : 2. B. Pengaturan Kecepatan dengan Mengubah Frekuensi Jaringan Selain jumlah kutub, pengubahan frekuensi juga dapat berpengaruh pada kecepatan putar motor induksi. Hal yang harus diperhatikan, bahwa dengan pengubahan frekuensi adalah kerapatan fluks yang ada harus diusahakan tetap, agar kopel yang dihasilkan pun tidak berubah, untuk itu tegangan jaringan pun harus diubah seiring dengan pengubahan frekuensi. Hal yang paling umum dalam penerapan cara ini adalah dengan menggunakan perangkat yang dikenal sebagai inverter. C. Pengaturan Kecepatan dengan Mengubah Resistansi Tahanan Rotor Seperti pada metoda pengasutan motor, motor induksi jenis rotor belitan yang dihubungkan dengan tahanan luar dapat diatur kecepatanputarnya. Dengan mengubah-ubah nilai tahanan luar yang terhubung ke rotor, maka besarnya kopel akan berubah, demikian juga dengan kecepatan putarnya. Adapun

5 15 kerugian dari jenis ini adalah rendahnya efesiensi pada saat kecepatan putarnya dikurangi dan pengaturan kecepatan putarnya sangat dipegaruhi oleh perubahan beban yang dipikulnya. D. Pengaturan Kecepatan dengan Mengubah Besarnya Slip Dengan mengingat hubungan slip dengan daya listrik dan pengaruhnya terhadap tegangan dan kecepatan motor, maka metode ini pada prinsipnya menggunakan hubungan tersebut dengan menggunakan suatu alat tambahan, baik elektrik, maupun elektronik. Peralatan tambahan tersebut berupa sistem yang cukup rumit. Dari sekian banyak metode untuk mengatur kecepatan putar motor induksi, cara dengan mengubah frekuensi jaringan adalah yang paling umum digunakan yaitu dengan menggunakan inverter. Dengan cara tersebut daerah pengaturan kecepatan putarnya cukup lebar [3] Variable Speed Drive Variable Speed Drive atau juga disebut dengan Variable Frequency Drive atau singkatnya disebut dengan inverter adalah solusi aplikasi yang membutuhkan kemampuan pengaturan motor lebih lanjut, misal: pengaturan putaran motor sesuai bebannya atau sesuai dengan kecepatan yang diinginkan. Rangkaian dalam VSD pada umumnya terdiri dari sebuah rectifier, filter, inverter, dan rangkaian kontrol. Pemasangan VSD bisa untuk aplikasi motor AC maupun DC. Istilah inverter sering digunakan untuk aplikasi AC [13]. Salah satu jenis Variable Speed Drive (VSD) yang

6 16 sering digunakan adalah tipe ATV12H075M2 seperti pada Gambar 2.1 (Tabel lampiran 1), di mana tipe jenis ini memiliki input satu fasa dan keluarannya tiga fasa [15]. Gambar 2.1. Variable Speed Drive (VSD) tipe ATV12H075M2 Secara sederhana untuk drive AC, Variable Speed Drive atau inverter akan mengubah AC ke DC yang kemudian diatur dengan suatu teknik penyaklaran switching mengubah DC menjadi tegangan dan frekuensi keluaran AC yang bervariasi. Ada empat jenis inverter yaitu [18]: 1. Variable voltage inverter (VVI) Jenis inverter ini menggunakan konverter jembatan SCR untuk mengubah tegangan input AC ke DC. SCR adalah komponen elektronika daya yang memiliki kemampuan untuk mengatur nilai tegangan DC mulai dari 0 hingga mendekati 600

7 17 VDC. Induktor L 1 sebagai choke dengan kapasitor C 1 membentuk bagian dengan istilah DC-link yang membantu memperhalus kualitas tegangan DC hasil konversi. Bagian inverter sendiri terdiri dari kumpulan divais penyaklaran seperti: thyristor, transistor bipolar, MOSFET, atau IGBT. Gambar 2.2 rangkaian variabel inverter tegangan menunjukkan inverter yang menggunakan transistor bipolar. Pengatur logika, biasanya dalam bentuk kartu elektronik, yang memiliki komponen utama sebuah mikroprosesor akan mengatur kapan waktu transistor-transistor inverter hidup atau mati untuk menghasilkan tegangan dan frekuensi yang bervariasi untuk dilanjutkan ke motor sesuai bebannya. f Gambar 2.2. Rangkaian variabel inverter tegangan Tipe inverter ini menggunakan enam langkah untuk menyelesaikan satu putaran 360 (6 langkah masing-masing 60 ). Oleh karena hanya enam langkah, inverter jenis ini memiliki kekurangan yaitu torsi yang pulsatif (peningkatan/ penurunan nilai yang mendadak) setiap penyaklaran terjadi seperti pada Gambar 2.3.

8 18 Ini dapat ditemui pada operasi kecepatan rendah seiring variasi putaran motor. Istilah teknis dari putaran yang bervariasi ini adalah cogging. Selain itu, bentuk gelombang sinyal keluaran yang tidak sinusoidal sempurna mengakibatkan pemanasan berlebih di motor mestipun motor dijalankan di bawah nilai rating-nya. Tegangan Arus Gambar 2.3. Gelombang dari Variable Voltage Inverter (VVI) 2. Current source inverter (CSI) Jenis inverter satu ini menggunakan SCR untuk menghasilkan tegangan DClink yang bervariasi untuk suplai ke bagian inverter yang juga terdiri dari SCR untuk menyaklarkan keluaran ke motor seperti pada Gambar 2.4. Beda dengan VVI yang mengontrol tegangan, CSI justru mengontrol arus yang akan disuplai ke motor. Karena inilah pemilihan motor haruslah hati-hati agar cocok dengan drive. Percikan arus akibat proses penyaklaran dapat dilihat pada keluaran jika kita mengukurnya menggunakan oscilloscope seperti pada Gambar 2.5. Pada kecepatan rendah sifat arus yang pulsatif dapat mengakibatkan motor tersendat cog.

9 19 f Gambar 2.4. Skema sumber inverter arus Tegangan Arus Gambar 2.5. Gelombang output sumber inverter arus 3. Pulse width modulation Teknik penyaklaran satu ini memberikan output yang lebih sinusoidal dibandingkan dua jenis inverter sebelumnya. Drive yang menggunakan PWM terbukti lebih efisien dan memberikan tingkat performa yang lebih tinggi. Sama seperti VVI, sebuah PWM juga terdiri atas rangkaian konverter, DC link, control logic, dan sebuah inverter. Biasanya konverter yang digunakan adalah tipe tidak terkontrol (dioda biasa) namun juga ada yang menggunakan setengah terkontrol atau kontrol penuh [18].

10 20 Penyearah dioda dan penyearah thyristor yang dikendalikan sudut fasanya masih banyak digunakan dalam aplikasi tertentu karena faktor kesederhanaan dan biaya yang rendah, tetapi penyearah jenis ini akan mengurangi kualitas daya pada sisi AC masukan yang disebabkan adanya kandungan harmonisa yang masih besar serta faktor daya yang relatif rendah. Teknik modulasi lebar pulsa (PWM = Pulse Width Modulation) banyak diterapkan pada aplikasi penyearah [19]. Konverter AC-DC yang menggunakan penyearah PWM beroperasi dengan menjaga frekuensi konstan dan waktu divariasikan, dengan demikian lebar pulsa bervariasi [20]. PWM akan menarik arus dari sumber hampir mendekati bentuk gelombang sinusoidal. PWM tipe kontrol yang sangat baik digunakan utnuk me ningkatkan faktor kerja penyearah dan mengurangi harmonisa arus masukan, karena tipe kontrol PWM dapat dinyalakan dan dimatikan beberapa kali setiap setengah siklus, sehingga dapat meredam harmonisa yang timbul pada arus masukan. Bentuk rangkaian dan prinsip kerja dari penyearah PWM satu fasa seperti yang pada Gambar 2.6, penyearah PWM full bridge, dimana menggunakan empat swich daya yang anti parallel dengan diode untuk mengontrol tegangan DC (V o ) [21]. Penyearah terdiri dari empat buah transistor IGBT dimana bentuknya seperti itu disebut dengan bentuk full bridge, induktansi diletakkan di sisi input dan kapasitansi diletakkan di sisi output yang dikontrol oleh pulse width modulation (PWM). Tegangan sumber berupa V S tegangan pada sisi penyearah input berupa V o dengan bentuk gelombang yang sinusoidal yang dipisahkan oleh induktansi input.

11 21 Gambar 2.6. Penyearah PWM satu fasa full bridge. (a) Rangkaian penyearah PWM, rangkaian ekivalen dengan (b) T 1 dan T 4 On, (c) T 2 dan T 3 On, (d) T 1 dan T 3 atau T 2 dan T 4 On [21] Penyearah ini bekerja dengan cara: 1. Apabila T 1 dan T 4 dalam keadaan on maka T 2 dan T 3 dalam keadaan off, V AFE = V o (Gambar 2.6(b)) 2. Apabila T 1 dan T 4 dalam keadaan off, maka T 2 dan T 3 dalam keadaan on, V AFE = -V o (Gambar 2.6(c)) 3. Apabila T 1 dan T 3 dalam keadaan on, T 2 dan T 4 dalam keadaan off, atau T 1 dan T 3 dalam keadaan off, T 2 dan T 4 dalam keadaan on, V AFE = 0 (Gambar 2.6(d)) Tujuan untuk mengontrol penyearah yaitu untuk menyerap arus harmonisa dari sumber jaringan, dimana sefasa dengan sumber tegangan. Hal ini didapatkan dengan mengontrol penyearah salah satunya dengan cara modulasi lebar pulsa. Tegangan dan arus dalam kondisi kontrol dapat dilihat pada Gambar 2.7 [22].

12 22 Salah satu cara yang bisa dilakukan pada switching transistor seperti pada Gambar 2.7 yang paling bawah, ini menggambarkan dua keadaan alternatif, yang pertama, arus mengalir ke beban (T 1 dan T 4 berkonduksi) dan kedua, penyearah input di short circuit (D 1 dan T 3 berkonduksi). Area hitam menggambarkan konduksi transistor, area putih menggambarkan elemen pasif berkonduksi. transistor di turnoff dan arus mengalir melalui dioda. V Vr eff V r (1) V g(1)m V d Vn V n (1) m I C Id reff I n (1) T 1 ; D 1 T 2 ; D 2 T 3 ; D 3 T 4 ; D 4 Gambar 2.7. Bentuk gelombang tegangan dan arus pada penyearah PWM [22]

13 23 Tegangan keluaran dan parameter dari penyearah PWM dapat dihitung dengan dua langkah yaitu : 1. Dengan hanya mempertimbangkan satu pasang pulsa, sehingga jika satu pulsa mulai dari t = 1 dan berakhir saat t = 1 + 1, pulsa lain mulai saat t = + 1 dan berakhir saat t = ( ) dan 2. Dengan menggabungkan efek semua pulsa. Jika pulsa mth mulai dari t = m, dimana lebar pulsa adalah m, nilai rata-rata tegangan keluaran bergantung pada jumlah pulsa p, yang didapatkan dari = sin ( ) = [cos cos( + )]... (2.8) Jika arus beban dengan nilai rata-rata I a selalu kontinyu dan ripple diabaikan, arus input sesaat dapat diekspresikan dalam deret Fourier seperti berikut ini. ( ) = + ( cos + sin ),,... (2.9) Karena bentuk gelombang arus input simetris, disana tidak terdapat harmonisa genap dan A 0 akan menjadi nol dan koefisien dari Persamaan 2.9 adalah : = 1 ( ) cos ( ) = 2 / cos ( ) 2 / cos ( ) = 0

14 24 = 1 ( ) sin ( ) = 2 / sin ( ) 2 / sin ( ) = sin sin + sin (2.10) untuk n= 1, 3, 5, Persamaan (2.9) dapat ditulis kembali menjadi Persamaan (2.11) : ( ) = 2 sin( + f ),,...(2.11) Dimana: f n = tan -1 (A n /B n ) = 0 dan = ( + ) / 2 = / Harmonisa Harmonisa adalah gangguan yang terjadi pada sistem distribusi tenaga listrik akibat terjadinya distorsi gelombang arus dan tegangan. Gejala pembentukan gelombang dengan frekuensi berbeda yang merupakan perkalian bilangan bulat dengan frekuensi dasarnya. Hal ini disebut frekuensi harmonisa yang timbul pada bentuk gelombang aslinya sedangkan bilangan bulat pengali frekuensi dasar disebut angka urutan harmonisa. Misalnya, frekuensi dasar suatu sistem tenaga listrik adalah 50 Hz, maka harmonisa keduanya adalah gelombang dengan frekuensi 100 Hz, harmonisa ketiga adalah gelombang dengan frekuensi sebesar 150 Hz dan seterusnya. Gelombang-gelombang ini kemudian menumpang pada gelombang murni/aslinya sehingga terbentuk gelombang cacat yang merupakan jumlah antara gelombang murni sesaat dengan gelombang harmonisanya seperti pada Gambar 2.8 [23].

15 25 Gambar 2.8. Gelombang fundamenal dengan gelombang harmonisanya [23] Perhitungan Harmonisa Untuk menentukan besar Total Harmonic Distortion (THD) dari perumusan analisa deret Fourier untuk tegangan dan arus dalam fungsi waktu yaitu [24]: v(t) = Vo + ( + )......(2.12) ( ) = Vo + ( + )...(2.13) Tegangan dan arus RMS dari gelombang sinusoidal yaitu nilai puncak gelombang dibagi 2 dan secara deret Fourier untuk tegangan dan arus yaitu [25]: V = V (2.14) I = I +...(2.15) Pada umumnya untuk mengukur besar harmonisa yang disebut dengan Total Harmonic Distortion (THD). Untuk THD tegangan dan arus didefenisikan sebagai nilai RMS harmonisa urutan diatas frekuensi fundamental dibagi dengan nilai RMS pada frekuensi fundamentalnya, dan tegangan DC nya diabaikan.

16 26 Besar Total Harmonic Distortion (THD) untuk tegangan dan arus ditunjukan pada persamaan (2.16) dan (2.17) yaitu : = = ( ).. (2.16) = = ( )...(2.17) Hubungan Persamaan THD dengan arus RMS dari Persamaan (2.17) yaitu: = 1 2 = = Selanjutnya di dapat Persamaan (2.18) yaitu: = +. = (1 + ) 1 2 = 2 1 = +, 1 + )...(2.18) Sehingga arus RMS terhadap THD I yaitu: =, (2.19) Individual Harmonic Distortion (IHD) adalah perbandingan nilai RMS pada orde harmonisa terdistorsi terhadap nilai RMS pada frekuensi fundamental yaitu :

17 27 = =...(2.20) = =...(2.21) Dimana: V h = Tegangan harmonisa pada orde terdistorsi I h = Arus harmonisa pada orde terdistorsi Hubungan Persamaan IHD dengan arus RMS dari Persamaan (2.21) yaitu: =...(2.22) = =...(223) Selanjutnya dari Persamaan (2.22) di dapat yaitu: = +. = (2.24) = (2.25) Sehingga arus RMS terhadap IHD i yaitu: = (2.26) 2.5. Batasan Harmonisa Untuk mengurangi harmonisa pada suatu sistem secara umum tidaklah harus mengeliminasi semua harmonisa yang ada, tetapi cukup dengan mereduksi sebagian harmonisa tersebut sehingga diperoleh nilai dibawah standar yang diizinkan. Hal ini berkaitan dengan analisa secara teknis dan ekonomis, dimana dalam mereduksi harmonisa secara teknis dibawah standar yang diizinkan sementara dari sisi ekonomis tidak membutuhkan biaya yang besar. Standar yang digunakan sebagai batasan

18 28 harmonisa adalah yang dikeluarkan oleh International Electrotechnical Commission (IEC) yang mengatur batasan harmonisa pada beban beban kecil satu fasa ataupun tiga fasa. Untuk beban tersebut umumnya digunakan standar IEC Pada standar IEC , beban beban kecil tersebut diklasifikasikan dalam kelas A, B, C, dan D, dimana masing-masing kelas mempunyai batasan harmonisa yang berbeda beda yang dijelaskan sebagai berikut [4],[5]. 1). Kelas A Kelas ini merupakan semua kategori beban termasuk didalamnya peralatan penggerak motor dan semua peralatan 3 fasa yang arusnya tidak lebih dari 16 amper perfasanya. Semua peralatan yang tidak termasuk dalam 3 kelas yang lain dimasukkan dalam kategori kelas A. Batasan harmonisanya hanya didefinisikan untuk peralatan satu fasa (tegangan kerja 230 V) dan tiga fasa (230/400 V) dimana batasan arus harmonisanya seperti yang diperlihatkan Tabel 2.1. Tabel 2.1. Batasan arus harmonisa untuk peralatan kelas A Harmonisa ke-n Arus harmonisa maksimum yang diizinkan (A) Harmonisa Ganjil 3 2,30 5 1,14 7 0,77 9 0, , ,21 15 n 39 2,25/n Harmonisa Genap 2 1,08 4 0,43 6 0,30 8 n 40 1,84/n

19 29 2). Kelas B Kelas ini meliputi semua peralatan tool portable yang batasan arus harmonisanya merupakan harga absolut maksimum dengan waktu kerja yang singkat. Batasan arus harmonisanya diperlihatkan pada Tabel 2.2. Tabel 2.2. Batasan arus harmonisa untuk peralatan kelas B Harmonisa ke-n Arus harmonisa maksimum yang diizinkan (A) Harmonisa Ganjil 3 3,45 5 1,71 7 1, , , , n 39 3,375/n Harmonisa Genap 2 1,62 4 0, ,45 8 n 40 2,76/n 3). Kelas C Kelas C termasuk didalamnya semua peralatan penerangan dengan daya input aktifnya lebih besar 25 watt. Batasan arusnya diekspresikan dalam bentuk persentase arus fundamental. Persentase arus maksimum yang diperbolehkan untuk masing masing harmonisa diperlihatkan Tabel 2.3.

20 30 Tabel 2.3. Batasan arus harmonisa untuk peralatan kelas C Harmonisa ke-n Arus harmonisa maksimum yang diizinkan (% fundamental) xPF rangkaian n ). Kelas D Kelas ini berisi semua jenis peralatan yang dayanya dibawah 600 watt dan dianggap memiliki dampak terbesar pada jaringan listrik. Ini khususnya personal komputer, layar monitor dan penerima TV. Batasan arusnya diekspresikan dalam bentuk ma/w untuk peralatan dengan daya pengenal melebihi 75 W tapi kurang dari 600 W atau dalam ampere untuk peralatan yang lebih besar dari 600 W. Batasan arus harmonisanya diperlihatkan pada oleh Tabel 2.4. Tabel 2.4. Batasan arus harmonisa untuk peralatan kelas D Harmonisa ke-n Arus harmonisa maksimum yang diizinkan (ma/w) Arus harmonisa maksimum yang diizinkan (A) 75 < P < 600W P > 600W 3 3,4 2,30 5 1,9 1,14 7 1,0 0,77 9 0,5 0, ,35 0, ,296 0,21 15 n 39 3,85/n 2,25/n

21 Filter Harmonisa Tujuan utama dari filter harmonisa adalah untuk mengurangi amplitudo satu frekuensi tertentu dari sebuah tegangan atau arus. Penambahan filter harmonisa pada suatu sistem tenaga listrik yang mengandung sumber-sumber harmonisa, maka penyebaran arus harmonisa keseluruh jaringan dapat ditekan sekecil mungkin. Selain itu filter harmonisa pada frekuensi fundamental dapat mengkompensasi daya reaktif dan dipergunakan untuk memperbaiki faktor daya sistem [26] Filter pasif Filter pasif merupakan metode penyelesaian yang efektif dan ekonomis untuk masalah harmonisa, rangkaian filter pasif seperti Gambar 2.9. Filter pasif sebagian besar didesain untuk memberikan bagian khusus untuk mengalihkan arus haromonisa yang tidak diinginkan dalam sistem tenaga. Filter pasif banyak digunakan untuk mengkompensasi kerugian daya reaktif akibat adanya harmonisa pada sistem instalasi. Gambar 2.9. Filter pasif

22 32 Beberapa jenis filter pasif yang umum beserta konfigurasi dan impedansinya seperti pada Gambar 2.10 [27]. Passive single-tuned filter atau band-pass filter adalah yang paling umum digunakan. Dua buah passive single-tuned filter akan memiliki karakteristik yang mirip dengan double band-pass filter. Tipe filter pasif yang paling umum digunakan adalah single-tuned filter. Filter umum ini biasa digunakan pada tegangan rendah. Rangkaian filter ini mempunyai impedansi yang rendah. Sebelum merancang suatu filter pasif, maka perlu diketahui besarnya kebutuhan daya reaktif pada sistem. Daya reaktif sistem ini diperlukan untuk menghitung besarnya nilai kapasitor yang diperlukan untuk memperbaiki sistem tersebut [9]. Band-Pass High-Pass Double Band-Pass Composite Gambar Jenis-jenis filter pasif [9] Passive LC filter Rangkain passive LC filter untuk inverter tiga fasa seperti Gambar 2.11.

23 33 Gambar Rangkaian passive LC filter untuk inverter tiga fasa [10]. Meminimalkan daya reaktif sebuah kriteria tambahan yang diperlukan untuk menentukan induktansi dan kapasitansi dari passive LC filter. Pada penelitian ini daya reaktif digunakan sebagai tambahan meskipun kriterianya berdasarkan biaya minimum, ukuran, kerugian, dan lain-lain. Ukuran minimalisasi, kerugian dan biaya filter, kriteria tambahan berdasarkan daya reaktif minimum juga termasuk digunakan [28]. Namun, sebagai passive LC filter pada harmonik diberikan dalam bentuk Fourier seri ekspresi dari induktansi dan kapasitansi dari passive LC filter yang tidak diperoleh [6] Prinsip pereduksian harmonisa dari passive LC filter Prinsip kerja dari filter shunt (filter pasif paralel) adalah dengan meng-short circuit-kan arus harmonisa yang ada dekat dengan sumber distorsi. Ini dilakukan agar supaya menjaga arus harmonisa yang masuk tersebut tidak keluar menuju peralatan lain dan sumber suplai energi listrik. Komponen filter pasif ini terdiri dari dua komponen yakni kapasitor yang dihubungkan seri dengan induktor (reaktor). Pemasangan filter jenis ini dapat memberikan keuntungan tersendiri bagi sistem tenaga listrik, disamping mampu mereduksi tingkat harmonisa, pemasangan kapasitor

24 34 pada peralatan ini dapat memperbaiki cos sistem, pada reaktornya berfungsi sebagai filter dan juga melindungi kapasitor dari over kapasitor hal ini dikarenakan adanya resonansi. Sebuah rangkaian LC dipasang pada frekuensi harmonisa sebagai filter, pemasangannya secara paralel dengan peralatan yang menyebabkan distorsi harmonisa seperti Gambar 2.12 [9]. Gambar Pemodelan passive LC filter [9] Merancang passive LC filter Rangkaian impedansi passive LC filter seperti Gambar Gambar Rangkaian impedansi passive LC filter [29]

25 35 Passive LC filter terdiri dari hubungan paralel komponen-komponen pasif yaitu Induktor dan kapasitor. Dalam mendesain passive LC filter terlebih dahulu menentukan besar kapasitor sesuai kebutuhan faktor daya dan induktor filter. Langkah-langkah yang harus dilakukan dalam merancang passive LC filter adalah sebagai berikut [29],[30] : A. Menghitung nilai kapasitor ( C ) 1) Tentukan ukuran kapasitas kapasitor Qc berdasarkan kebutuhan daya reaktif untuk perbaikan faktor daya. Daya reaktif kapasitor ( Qc ) adalah : Q C = P {tan(cos -1 pf 1 ) tan (cos -1 pf 2 )} Dimana : P pf 1 pf 2 : daya aktif (kw). : faktor daya mula-mula sebelum diperbaiki. : faktor daya setelah diperbaiki. 2) Tentukan reaktansi kapasitor ( X C ) : =... (2.27) Dimana: X C V Q C : reaktansi kapasitif (Ω). : tegangan RMS (Volt). : daya reaktif kapasitor (VAR).

26 36 3) Tentukan kapasitas dari kapasitor ( C ) =...(2.28) Dimana : C f 0 : kapasitansi kapasitor (Farad) : frekuensi fundamental (Hz). B. Menghitung nilai induktor ( L ) 1) Tentukan nilai impedansi Z induktor [29]: =...(2.29) 2) Tentukan Reaktansi Induktif dari Induktor [29,30]: =...(2.30) 3) Tentukan reaktansi karakteristik dari filter pada orde tuning: = h...(2.31) 4) Tentukan Tahanan (R) dari Induktor [29,30]: =...(2.32) 5) Tentukan induktansi dari induktor didapat [30]: = + ( ) = + ( ) = +

27 37 di mana = 2, maka nilai induktansi dari indutor (L) [30]: =...(2.33) Di mana: V s : daya pada input VSD (Volt) Z I L : impedansi sistem (Ω) : arus yang mengalir pada VSD (A) : induktansi (H) Dari Gambar 2-13 dapat dicari impedansi rangkain dengan persamaan: = (2.34) Passive single tuned filter Passive single-tuned filter adalah filter yang terdiri dari komponen-komponen pasif R, L dan C terhubung seri, seperti pada Gambar Passive single-tuned filter akan mempunyai impedansi yang kecil pada frekuensi resonansi sehingga arus yang memiliki frekuensi yang sama dengan frekuensi resonansi akan dibelokkan melalui filter. Untuk mengatasi harmonisa di dalam sistem tenaga listrik yang paling banyak digunakan adalah passive single tuned filter.

28 38 Gambar Passive single tuned filter [12] Berdasarkan Gambar 2.14, besarnya impedansi passive single tuned filter pada frekuensi fundamental adalah [5]: = + ( )...(2.35) Pada frekuensi resonansi, Persamaan (2.34) menjadi: = +...(2.36) Jika frekuensi sudut saat resonansi adalah: = 2 h...(2.37) Impedansi filter dapat ditulis sebagai berikut: = + 2 h...(2.38) = + ( h )...(2.39) Saat resonansi terjadi nilai reaktansi induktif dan reaktansi kapasitif sama besar, maka diperoleh impedansi passive single tuned filter seperti pada Persamaan (2.40) adalah =... (2.40)

29 39 Pada Persamaan (2.40) menunjukkan bahwa pada frekuensi resonansi, impedansi passive single-tuned filter akan mempunyai impedansi yang sangat kecil, lebih kecil dari impedansi beban yaitu sama dengan tahanan induktor R, sehingga arus harmonisa yang mempunyai frekuensi yang sama dengan frekuensi resonansi akan dialirkan atau dibelokkan melalui passive single-tuned filter dan tidak mengalir ke sistem. Frekuensi respon dan sudut fasa dari passive single-tuned filter ditunjukkan seperti Gambar 2.15 (a) dan (b), dimana dapat dilihat bahwa pada frekuensi harmonisa atau orde ke-5 dari harmonisa (fr = 250 Hz), impedansi passive single-tuned filter sangat kecil. (a) Frekuansi respon passive single tuned filter (b) Sudut fasa fungsi orde harmonisa Gambar (a) Frekuensi respon, (b) sudut fasa Passive single tuned filter [31]

30 40 Dengan demikian Passive single tuned filter diharapkan dapat mengurangi IHD tegangan dan IHD arus sampai dengan 10-30%. Besarnya tahanan R dari induktor dapat ditetukan oleh faktor kualitas dari induktor. Faktor kualitas (Q) adalah kualitas listrik suatu induktor, secara matematis Q adalah perbandingan nilai reaktansi induktif atau reaktansi kapasitif pada frekuensi resonansi dengan tahanan R. Semakin besar nilai Q yang dipilih maka semakin kecil nilai R dan semakin bagus kualitas dari filter dimana energi yang dikonsumsi oleh filter akan semakin kecil, artinya rugi-rugi panas filter adalah kecil [29]. Pada frekuensi tuning: Faktor kualitas: = 1 =...(2.41) =...(2.42) Berdasarkan persamaan (2.17), tahanan resistor adalah: =...(2.43) Prinsip pereduksian harmonisa dari passive single-tuned filter Pada Frekuensi resonansi (fr), Passive single tuned filter memiliki impedansi minimum sebesar nilai resistansi R dari induktor. Oleh karena itu, filter ini menyerap semua arus harmonik yang dekat dengan frekuensi resonansi (fr) yang diinjeksikan, dengan distorsi tegangan harmonik yang rendah pada frekuensi ini. Pada prinsipnya, sebuah Passive single tuned filter untuk setiap harmonik yang akan dihilangkan.

31 41 Filter-filter ini dihubungkan pada busbar dimana pengurangan tegangan harmonik ditentukan bersama-sama, filter-filter ini membentuk filter bank. Ada dua parameter yang perlu dipertimbangkan dalam menentukan nilai R, L, dan C, yaitu: 1. Faktor kualitas (Quality factor, Q) 2. Penyimpangan frekuensi relative (Relative Frequency Deviation, δ) Kualitas dari sebuah filter (Q) adalah ukuran ketajaman penyetelan filter tersebut dalam mengeliminasi harmonisa. Filter dengan Q tinggi disetel pada frekuensi rendah (misalnya harmonisa kelima), dan nilainya biasanya terletak antara 30 dan 100. Dalam single-tuned filter, faktor kualitas Q didefinisikan sebagai perbandingan antara induktansi atau kapasitansi pada frekuensi resonansi terhadap resistansi. Perkiraan nilai Q untuk reaktor inti udara (air core reactors) adalah 75 dan lebih besar 75 untuk reaktor inti besi (iron-core reactors) [21]. Passive single-tuned filter yang diletakkan secara paralel akan men-short circuit-kan arus harmonisa yang ada dekat dengan sumber distorsi. Ini dilakukan untuk menjaga arus harmonisa yang masuk tidak keluar menuju peralatan lain dan sumber supply energi listrik. Passive single tuned filter yang merupakan hubungan seri komponen R, L, dan C memberikan keuntungan tersendiri bagi sistem tenaga listrik, disamping mampu mereduksi tigkat harmonisa, pemasangan kapasitor dapat merperbaiki cos φ sistem, sedangkan induktor (reaktor) berfungsi sebagai filter dan juga melindungi kapasitor dari over kapasitor akibat adanya resonansi. Sebuah

32 42 rangkaian passive single tuned filter dipasang pada frekuensi harmonisa sebagai filter, seperti pada Gambar 2.16 Gambar Pemodelan passive single tuned filter [31] Pada Gambar 2.17 diperlihatkan gelombang hasil dari pemfilteran harmonisa dengan menggunakan bantuan simulasi MATLAB/Simulink, dimana gelombang harmonisa menjadi berkurang distorsinya. Hasil simulasi MATLAB/Simulink dapat menjelaskan proses eliminasi gelombang arus terdistorsi dimana distorsi gelombang arus yang terjadi akibat beban non linier seperti yang ditunjukkan pada gelombang warna biru. Setelah kapasitor dan induktor yang digunakan sebagai filter untuk memperbaiki gelombang warna biru dengan sinyal gelombang warna hijau, sehingga menghasilkan gelombang yang terperbaiki seperti yang ditunjukkan gelombang warna merah dengan tingkat distorsi gelombang mendekati bentuk sinusoidal. Dengan demikian tingkat distorsi gelombang dapat diperbaiki oleh induktor dan kapasitor.

33 43 Gelombang arus terdistorsi Gelombang kapasitor dan induktor Gelombang yang sudah diperbaiki Gambar Kompensasi gelombang filter Merancang passive single tuned filter Mendesain passive single tuned filter yang terdiri dari hubungan seri komponen-komponen pasif induktor, kapasitor dan tahanan seperti Gambar 2.18, adalah bagaimana menentukan besarnya komponen-komponen dari filter tersebut [13], [14],[29]. Gambar Rangkaian resonansi seri

34 44 Langkah-langkah rancangan passive single tuned filter adalah : a. Tentukan ukuran kapasitas kapasitor Qc berdasarkan kebutuhan daya reaktif untuk perbaikan faktor daya dengan Persamaan (2.44). Daya reaktif kapasitor adalah : = {tan 1 1 tan (2.44) Dimana : P : beban (kw) pf 1 : faktor daya mula-mula sebelum diperbaiki pf 2 : faktor daya setelah diperbaiki b. Tentukan reaktansi kapasitor dengan Persamaan (2.45) : =...(2.45) c. Tentukan kapasitansi dari kapasitor dengan Persamaan (2.46) : C =...(2.46) d. Tentukan reaktansi induktif dari induktor dengan Persaman (2.47) : X =...(2.47) e. Tentukan induktansi dari induktor dengan Persamaan (2.48) : =...(2.48)

35 45 f. Tentukan reaktansi karakteristik dari filter pada orde tuning dengan Persamaan (2.49) : = h...(2.49) g. Tentukan tahanan (R) dari Induktor dengan Persamaan (2.50) : =...(2.50) Untuk menentukan kebutuhan daya reaktif dapat digambarkan dalam bentuk segitiga daya seperti Gambar P(watt) 2 2( ) 1( ) ( ) Gambar Segitiga daya untuk menentukan kebutuhan daya reaktif Q [30] Kebutuhan daya reaktif dapat dihitung dengan pemasangan kapasitor untuk memperbaiki faktor daya beban. Komponen daya aktif (P) umumnya konstan, daya semu (S) dan daya reaktif (Q) berubah sesuai dengan faktor daya beban. Daya Reaktif (Q) = Daya Aktif (P) tan φ Dengan merujuk segitiga daya Gambar 2.19, maka : Daya reaktif pada pf awal yaitu : =.....(2.51)

36 46 Daya reaktif pada pf diperbaiki yaitu : =.....(2.52) Sehingga rating kapasitor yang diperlukan untuk memperbaiki faktor daya yaitu: Daya reaktif ΔQ = Q 1 - Q 2 Atau ΔQ = P(tan 1-2)...(2.53) Besar nilai ΔQ yang didapat, selanjutnya menentukan nilai reaktansi kapasitif yang besarnya ditentukan berdasarkan Persamaan (2.45) dan besar nilai kapasitansi kapasitor yang dibutuhkan untuk memperbaiki faktor daya pada Persamaan (2.46).

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Harmonisa Dalam sistem tenaga listrik dikenal dua jenis beban yaitu beban linier dan beban tidak linier. Beban linier adalah beban yang memberikan bentuk gelombang keluaran

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan

BAB 2 TINJAUAN PUSTAKA. yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan BAB 2 TINJAUAN PUSTAKA Sistem distribusi dalam sitem tenaga listrik dikenal dua jenis beban, yaitu beban linier dan beban non-linier. Beban disebut linier apabila nilai arus dan bentuk gelombang tegangan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. berdasarkan induksi medan magnet stator ke statornya, dimana arus rotor motor ini

BAB 2 TINJAUAN PUSTAKA. berdasarkan induksi medan magnet stator ke statornya, dimana arus rotor motor ini BAB 2 TINJAUAN PUSTAKA 2.1 Motor Induksi Satu Fasa Motor induksi merupakan motor listrik arus bolak balik (ac) yang paling luas digunakan. Penamaannya berasal dari kenyataan bahwa motor ini bekerja berdasarkan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah

BAB 2 TINJAUAN PUSTAKA Pembangkit Harmonisa Beban Listrik Rumah Tangga. Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah 24 BAB 2 TINJAUAN PUSTAKA 2.1. Pembangkit Harmonisa Beban Listrik Rumah Tangga Secara umum jenis beban non linear fasa-tunggal untuk peralatan rumah tangga diantaranya, switch-mode power suplay pada TV,

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat.

BAB 2 TINJAUAN PUSTAKA. induk agar keandalan sistem daya terpenuhi untuk pengoperasian alat-alat. BAB 2 TINJAUAN PUSTAKA 2.1 Distribusi daya Beban yang mendapat suplai daya dari PLN dengan tegangan 20 kv, 50 Hz yang diturunkan melalui tranformator dengan kapasitas 250 kva, 50 Hz yang didistribusikan

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan

BAB 2 TINJAUAN PUSTAKA. Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan BAB 2 TINJAUAN PUSTAKA 2.1. Sumber Harmonisa Beban non linier pada peralatan rumah tangga umumnya merupakan peralatan elektronik yang didalamnya banyak terdapat penggunaan komponen semi konduktor pada

Lebih terperinci

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang

BAB III PENGUMPULAN DAN PENGOLAHAN DATA. Dalam system tenaga listrik, daya merupakan jumlah energy listrik yang BAB III PENGUMPULAN DAN PENGOLAHAN DATA 3.1 Daya 3.1.1 Daya motor Secara umum, daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam system tenaga listrik, daya merupakan jumlah energy listrik

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya

BAB 2 TINJAUAN PUSTAKA. 2.1 Sistem Catu Daya Listrik dan Distribusi Daya 9 BAB 2 TINJAUAN PUSTAKA 2.1 Sistem Catu Daya Listrik dan Distribusi Daya Pada desain fasilitas penunjang Bandara Internasional Kualanamu adanya tuntutan agar keandalan sistem tinggi, sehingga kecuali

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika

BAB 2 TINJAUAN PUSTAKA. Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika 8 BAB 2 TINJAUAN PUSTAKA 2.1. Pembangkit Tegangan Tinggi DC Pembangkit tegangan tinggi DC sangat diperlukan pada riset dibidang fisika terapan dan tes instalasi kabel pada aplikasi industri. Unit pembangkit

Lebih terperinci

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter

tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tuned filter dan filter orde tiga. Kemudian dianalisa kesesuaian antara kedua filter tersebut. 1.5. Manfaat Penelitian Adapun manfaat dari penelitian ini dapat memberikan konsep mengenai penggunaan single

Lebih terperinci

Peredaman Harmonik Arus pada Personal Computer All In One Menggunakan Passive Single Tuned Filter

Peredaman Harmonik Arus pada Personal Computer All In One Menggunakan Passive Single Tuned Filter Mustamam, Azmi Rizki Lubis, Peredaman... ISSN : 598 99 (Online) ISSN : 5 364 (Cetak) Peredaman Harmonik Arus pada Personal Computer All In One Menggunakan Passive Single Tuned Filter Mustamam ), Azmi Rizki

Lebih terperinci

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah

Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Rancang Bangun Rangkaian AC to DC Full Converter Tiga Fasa dengan Harmonisa Rendah Mochammad Abdillah, Endro Wahyono,SST, MT ¹, Ir.Hendik Eko H.S., MT ² 1 Mahasiswa D4 Jurusan Teknik Elektro Industri Dosen

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Transformator Ukur Transformator ukur di rancang secara khusus untuk pengukuran dalam sistem daya. Transformator ini banyak digunakan dalam sistem daya karena mempunyai keuntungan,

Lebih terperinci

Studi Analisis dan Mitigasi Harmonisa pada PT. Semen Indonesia Pabrik Aceh

Studi Analisis dan Mitigasi Harmonisa pada PT. Semen Indonesia Pabrik Aceh B-456 JURNAL TEKNIK ITS Vol. 5 No. 2 (2016) ISSN: 2337-3539 (2301-9271 Print) Studi Analisis dan Mitigasi Harmonisa pada PT. Semen Indonesia Pabrik Aceh Stefanus Suryo Sumarno, Ontoseno Penangsang, Ni

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1 Umum Suatu sistem tenaga listrik dikatakan ideal jika bentuk gelombang arus yang dihasilkan dan bentuk gelombang tegangan yang disaluran ke konsumen adalah gelombang sinus murni.

Lebih terperinci

BAB 1 PENDAHULUAN. Energi listrik merupakan peran penting dalam kehidupan diberbagai sektor

BAB 1 PENDAHULUAN. Energi listrik merupakan peran penting dalam kehidupan diberbagai sektor BAB 1 PENDAHULUAN 1.1 Latar Belakang Energi listrik merupakan peran penting dalam kehidupan diberbagai sektor seperti di industri, perkantoran, rumah tangga dan sebagainya. Seiring dengan perkembangan

Lebih terperinci

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang

BAB II HARMONISA PADA GENERATOR. Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang BAB II HARMONISA PADA GENERATOR II.1 Umum Generator sinkron disebut juga alternator dan merupakan mesin sinkron yang digunakan untuk menkonversikan daya mekanis menjadi daya listrik arus bolak balik. Arus

Lebih terperinci

BAB 1 PENDAHULUAN. adalah rectifier, converter, inverter, tanur busur listrik, motor-motor listrik,

BAB 1 PENDAHULUAN. adalah rectifier, converter, inverter, tanur busur listrik, motor-motor listrik, BAB 1 PENDAHULUAN 1.1. Latar Belakang Dewasa ini banyak konsumen daya listrik menggunakan beban tidak linier, baik konsumen rumah tangga, perkantoran maupun industri. Contoh beban tidak linier adalah rectifier,

Lebih terperinci

Reduksi Harmonisa dan Ketidakseimbangan Tegangan menggunakan Hybrid Active Power Filter Tiga Fasa berbasis ADALINE-Fuzzy

Reduksi Harmonisa dan Ketidakseimbangan Tegangan menggunakan Hybrid Active Power Filter Tiga Fasa berbasis ADALINE-Fuzzy Reduksi Harmonisa dan Ketidakseimbangan Tegangan menggunakan Hybrid Active Power Filter Tiga Fasa berbasis ADALINE-Fuzzy Oleh: Marselin Jamlaay 2211 201 206 Dosen Pembimbing: 1. Prof. Dr. Ir. Mochamad

Lebih terperinci

LAMPIRAN A RANGKAIAN CATU DAYA BEBAN TAK LINIER. Berikut adalah gambar rangkaian catu daya pada lampu hemat energi :

LAMPIRAN A RANGKAIAN CATU DAYA BEBAN TAK LINIER. Berikut adalah gambar rangkaian catu daya pada lampu hemat energi : LAMPIRAN A RANGKAIAN CATU DAYA BEBAN TAK LINIER Berikut adalah gambar rangkaian catu daya pada lampu hemat energi : Gb-A.1. Rangkaian Catu Daya pada Lampu Hemat Energi Gb-A.2. Rangkaian Catu Daya pada

Lebih terperinci

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC)

DAYA ELEKTRIK ARUS BOLAK-BALIK (AC) DAYA ELEKRIK ARUS BOLAK-BALIK (AC) 1. Daya Sesaat Daya adalah energi persatuan waktu. Jika satuan energi adalah joule dan satuan waktu adalah detik, maka satuan daya adalah joule per detik yang disebut

Lebih terperinci

BAB 1 PENDAHULUAN. Pemakaian daya listrik dengan beban tidak linier banyak digunakan pada

BAB 1 PENDAHULUAN. Pemakaian daya listrik dengan beban tidak linier banyak digunakan pada 14 BAB 1 PENDAHULUAN 1.1. Latar Belakang Pemakaian daya listrik dengan beban tidak linier banyak digunakan pada konsumen rumah tangga, perkantoran maupun industri seperti penggunaan rectifier, converter,

Lebih terperinci

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan

BAB 3 METODE PENELITIAN. Serdang. Dalam memenuhi kebutuhan daya listrik industri tersebut menggunakan BAB 3 METODE PENELITIAN 3.1 Lokasi Penelitian Penelitian yang dilakukan adalah studi kasus pada pabrik pengolahan plastik. Penelitian direncanakan selesai dalam waktu 6 bulan dan lokasi penelitian berada

Lebih terperinci

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

BAB 1 PENDAHULUAN. tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah BAB 1 PENDAHULUAN 1.1 Latar belakang masalah Kualitas daya listrik sangat dipengaruhi oleh penggunaan jenis-jenis beban tertentu seperti beban non linier dan beban induktif. Akibat yang ditimbulkan adalah

Lebih terperinci

BAB II LANDASAN TEORI. Harmonisa adalah satu komponen sinusoidal dari satu perioda gelombang

BAB II LANDASAN TEORI. Harmonisa adalah satu komponen sinusoidal dari satu perioda gelombang BAB II LANDASAN TEORI 2.1 Harmonisa Harmonisa adalah satu komponen sinusoidal dari satu perioda gelombang yang mempunyai satu frekuensi yang merupakan kelipatan integer dari gelombang fundamental. Jika

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya

BAB 2 TINJAUAN PUSTAKA. Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya BAB TINJAUAN PUSTAKA.. Faktor Daya Pada suatu jaringan distribusi arus bolak-balik dengan tegangan (V), daya aktif (P) dan daya reaktif (Q), maka besarnya daya semu (S) adalah sebanding dengan arus (I)

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1. Mesin Induksi Mesin induksi ialah mesin yang bekerja berdasarkan perbedaan kecepatan putar antara stator dan rotor. Apabila kecepatan putar stator sama dengan kecepatan putar

Lebih terperinci

I Wayan Rinas. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit Jimbaran, Bali, *

I Wayan Rinas. Jurusan Teknik Elektro, Fakultas Teknik, Universitas Udayana Kampus Bukit Jimbaran, Bali, * Simulasi Penggunaan Filter Pasif, Filter Aktif dan Filter Hybrid Shunt untuk Meredam Meningkatnya Distorsi Harmonisa yang Disebabkan Oleh Munculnya Gangguan Jurusan Teknik Elektro, Fakultas Teknik, Universitas

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI 6 BAB II LANDASAN TEORI 2.1 Umum Untuk menjaga agar faktor daya sebisa mungkin mendekati 100 %, umumnya perusahaan menempatkan kapasitor shunt pada tempat yang bervariasi seperti pada rel rel baik tingkat

Lebih terperinci

BAB II TINJAUAN PUSTAKA. macam sumber listrik dapat digunakan yaitu sumber DC sebesar 600 V, 750

BAB II TINJAUAN PUSTAKA. macam sumber listrik dapat digunakan yaitu sumber DC sebesar 600 V, 750 BAB II TINJAUAN PUSTAKA 2.1 Kereta Rel Listrik (KRL) Kereta Rel Listrik (KRL) merupakan kereta yang menggunakan tenaga listrik dalam menggerakkan motornya. Pada Kereta Rel Listrik (KRL) dua macam sumber

Lebih terperinci

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI

RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI RANCANG BANGUN PENYEARAH AC TO DC RESONANSI SERI DENGAN ISOLASI TERHADAP FREKUENSI TINGGI Renny Rakhmawati, ST, MT Jurusan Teknik Elektro Industri PENS-ITS Kampus ITS Sukolilo Surabaya Phone 03-5947280

Lebih terperinci

BAB I PENDAHULUAN. tombak pemikulan beban pada konsumen. Gangguan-gangguan tersebut akan

BAB I PENDAHULUAN. tombak pemikulan beban pada konsumen. Gangguan-gangguan tersebut akan BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Energi listrik menjadi kebutuhan pokok dalam kehidupan manusia saat ini. Energi Listrik dibangkitkan pada sistem pembangkit disalurkan ke konsumen melalui

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Inverter dan Aplikasi Inverter daya adalah sebuah perangkat yang dapat mengkonversikan energi listrik dari bentuk DC menjadi bentuk AC. Diproduksi dengan segala bentuk dan ukuran,

Lebih terperinci

Analisa dan Pemodelan PWM AC-AC Konverter Satu Fasa Simetri

Analisa dan Pemodelan PWM AC-AC Konverter Satu Fasa Simetri 1 Analisa dan Pemodelan PWM AC-AC Konverter Satu Fasa Simetri Rizki Aulia Ratnani, Mochamad Ashari, Heri Suryoatmojo. Bidang Studi Teknik Sistem Tenaga Jurusan Teknik Elektro Fakultas Teknologi Industri,

Lebih terperinci

Penggunaan Filter Daya Aktif Paralel untuk Kompensasi Harmonisa Akibat Beban Non Linier Menggunakan Metode Cascaded Multilevel Inverter

Penggunaan Filter Daya Aktif Paralel untuk Kompensasi Harmonisa Akibat Beban Non Linier Menggunakan Metode Cascaded Multilevel Inverter Penggunaan Filter Daya Aktif Paralel untuk Kompensasi Harmonisa Akibat Beban Non Linier Menggunakan Metode Cascaded Multilevel Inverter Renny Rakhmawati 1, Hendik Eko H. S. 2, Setyo Adi Purwanto 3 1 Dosen

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA II.1 Pembangkit Listrik Tenaga Angin Pembangkit Listrik Tenaga Angin memberikan banyak keuntungan seperti bersahabat dengan lingkungan (tidak menghasilkan emisi gas), tersedia dalam

Lebih terperinci

RANGKAIAN ARUS BOLAK-BALIK.

RANGKAIAN ARUS BOLAK-BALIK. Arus Bolak-balik RANGKAIAN ARUS BOLAK-BALIK. Dalam pembahasan yang terdahulu telah diketahui bahwa generator arus bolakbalik sebagai sumber tenaga listrik yang mempunyai GGL : E E sinω t Persamaan di atas

Lebih terperinci

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed

BAB II TINJAUAN PUSTAKA. relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed BAB II TINJAUAN PUSTAKA 2.1 Kajian Pustaka Dalam tugas akhir ini, penulis memaparkan empat penelitian terdahulu yang relevan dengan perangkat yang akan dirancang bangun yaitu trainer Variable Speed Drive

Lebih terperinci

ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER

ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER NASKAH PUBLIKASI ANALISIS HARMONIK DAN PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 13 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7.0 Diajukan oleh: AGUS WIDODO D 400

Lebih terperinci

PENGATURAN DAYA AKTIF PADA UNIFIED POWER FLOW CONTROLLER (UPFC) BERBASIS DUA KONVERTER SHUNT DAN SEBUAH KAPASITOR SERI

PENGATURAN DAYA AKTIF PADA UNIFIED POWER FLOW CONTROLLER (UPFC) BERBASIS DUA KONVERTER SHUNT DAN SEBUAH KAPASITOR SERI PENGATURAN DAYA AKTIF PADA UNIFIED POWER FLOW CONTROLLER (UPFC) BERBASIS DUA KONVERTER SHUNT DAN SEBUAH KAPASITOR SERI Mochamad Ashari 1) Heri Suryoatmojo 2) Adi Kurniawan 3) 1) Jurusan Teknik Elektro

Lebih terperinci

BAB II MOTOR INDUKSI 3 FASA

BAB II MOTOR INDUKSI 3 FASA BAB II MOTOR INDUKSI 3 FASA 2.1 Umum Motor listrik merupakan beban listrik yang paling banyak digunakan di dunia, motor induksi tiga fasa adalah suatu mesin listrik yang mengubah energi listrik menjadi

Lebih terperinci

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.

ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4. Jurnal Emitor Vol. 15 No. 02 ISSN 1411-8890 ANALISIS HARMONIK DAN PERANCANGAN SINGLE TUNED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 18 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 4.0 Novix Jefri

Lebih terperinci

III. METODE PENELITIAN

III. METODE PENELITIAN III. METODE PENELITIAN. 3.1 WAKTU DAN TEMPAT PENELITIAN Penelitian tugas akhir ini dilaksanakan pada bulan Agustus 2012 hingga januari 2013. Untuk pengerjaan laporan serta simulasi perangkat lunak dilakukan

Lebih terperinci

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang

BAB 2II DASAR TEORI. Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang BAB 2II DASAR TEORI Motor Sinkron Tiga Fasa Motor sinkron tiga fasa adalah motor listrik arus bolak-balik (AC) yang putaran rotornya sinkron/serempak dengan kecepatan medan putar statornya. Motor ini beroperasi

Lebih terperinci

Desain Filter Pasif Pada Sistem Kelistrikan Industri Guna Mengurangi Distorsi Harmonisa

Desain Filter Pasif Pada Sistem Kelistrikan Industri Guna Mengurangi Distorsi Harmonisa Desain Filter Pasif Pada Sistem Kelistrikan Industri Guna Mengurangi Distorsi Harmonisa Soedibyo dan Sjamsjul Anam Jurusan Teknik Elektro Fakultas Teknologi Industri - Institut Teknologi Sepuluh Nopember

Lebih terperinci

BAB 2 DASAR TEORI. Gambar 2.1. Bentuk Gelombang Hasil Distorsi Harmonik [2] 4 Universitas Indonesia

BAB 2 DASAR TEORI. Gambar 2.1. Bentuk Gelombang Hasil Distorsi Harmonik [2] 4 Universitas Indonesia BAB 2 DASAR TEORI 2.1. Distorsi Harmonik Pada dasarnya, gelombang tegangan dan arus yang ditransmisikan dan didistribusikan dari sumber ke beban berupa gelombang sinusoidal murni. Akan tetapi, pada proses

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 2 BAB III METODE PENELITIAN Pada skripsi ini metode penelitian yang digunakan adalah eksperimen (uji coba). Tujuan yang ingin dicapai adalah membuat suatu alat yang dapat mengkonversi tegangan DC ke AC.

Lebih terperinci

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-97

JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: B-97 JURNAL TEKNIK ITS Vol. 1, No. 1 (Sept. 2012) ISSN: 2301-9271 B-97 Evaluasi Harmonisa dan Perencanaan Filter Pasif pada Sisi Tegangan 20 Akibat Penambahan Beban pada Sistem Kelistrikan Pabrik Semen Tuban

Lebih terperinci

PERBANDINGAN PASSIVE LC FILTER DAN PASSIVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA

PERBANDINGAN PASSIVE LC FILTER DAN PASSIVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA PERBANDINGAN PASSIVE LC FILTER DAN PASSIVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA Mustamam ), Usman Baafai ), Marwan Ramli 3) ABSTRAK Sebagian

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN. 4.1 Harmonisa Arus Di Gedung Direktorat TIK UPI Sebelum Dipasang Filter

BAB IV HASIL DAN PEMBAHASAN. 4.1 Harmonisa Arus Di Gedung Direktorat TIK UPI Sebelum Dipasang Filter BAB IV HASIL DAN PEMBAHASAN 4.1 Harmonisa Arus Di Gedung Direktorat TIK UPI Sebelum Dipasang Filter Dengan asumsi bahwa kelistrikan di Gedung Direktorat TIK UPI seimbang maka dalam penggambaran bentuk

Lebih terperinci

ANALISIS HARMONISA YANG DIHASILKAN CYCLOCONVERTER DENGAN BERBAGAI PARAMETER

ANALISIS HARMONISA YANG DIHASILKAN CYCLOCONVERTER DENGAN BERBAGAI PARAMETER ANALISIS HARMONISA YANG DIHASILKAN CYCLOCONVERTER DENGAN BERBAGAI PARAMETER Prof. Dr. Ir. Iwa Garniwa M.K., MT., Fikri Umar Bajuber Departemen Teknik Elektro, Fakultas Teknik, Kampus UI, Depok, 16424,

Lebih terperinci

MOTOR LISTRIK 1 & 3 FASA

MOTOR LISTRIK 1 & 3 FASA MOTOR LISTRIK 1 & 3 FASA I. MOTOR LISTRIK 1 FASA Pada era industri modern saat ini, kebutuhan terhadap alat produksi yang tepat guna sangat diperlukan untuk dapat meningkatkan effesiensi waktu dan biaya.

Lebih terperinci

DAFTAR ISI PROSEDUR PERCOBAAN PERCOBAAN PENDAHULUAN PERCOBAAN Kontrol Motor Induksi dengan metode Vf...

DAFTAR ISI PROSEDUR PERCOBAAN PERCOBAAN PENDAHULUAN PERCOBAAN Kontrol Motor Induksi dengan metode Vf... DAFTAR ISI DAFTAR ISI... 1 PERCOBAAN 1... 2 1.Squirrel Cage Induction Motor (Motor Induksi dengan rotor sangkar)... 2 2.Double Fed Induction Generator (DFIG)... 6 PROSEDUR PERCOBAAN... 10 PERCOBAAN 2...

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Daya 2.1.1 Pengertian Daya Daya adalah energi yang dikeluarkan untuk melakukan usaha. Dalam sistem tenaga listrik, daya merupakan jumlah energi yang digunakan untuk melakukan

Lebih terperinci

BAB 1 PENDAHULUAN 1.1 Latar belakang

BAB 1 PENDAHULUAN 1.1 Latar belakang BAB 1 PENDAHULUAN 1.1 Latar belakang Perkembangan elektronika daya telah membuat inverter menjadi bagian yang tidak terpisahkan dari mesin-mesin listrik AC. Penggunaan inverter sebagai sumber untuk mesin-mesin

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Telaah Penelitian Bansal (2005) mengungkapkan bahwa motor induksi 3 fase dapat diioperasikan sebagai generator induksi. Hal ini ditunjukkan dari diagram lingkaran mesin pada

Lebih terperinci

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron

BAB II MOTOR SINKRON. 2.1 Prinsip Kerja Motor Sinkron BAB II MTR SINKRN Motor Sinkron adalah mesin sinkron yang digunakan untuk mengubah energi listrik menjadi energi mekanik. Mesin sinkron mempunyai kumparan jangkar pada stator dan kumparan medan pada rotor.

Lebih terperinci

BAB 1 PENDAHULUAN. Perkembangan pemakaian peralatan elektronika dengan sumber DC satu fasa

BAB 1 PENDAHULUAN. Perkembangan pemakaian peralatan elektronika dengan sumber DC satu fasa BAB 1 PENDAHULUAN 1.1. Latar Belakang Perkembangan pemakaian peralatan elektronika dengan sumber DC satu fasa saat ini sudah sangat pesat, seperti Note Book, printer, Hand Phone, radio, tape dan lainnya.

Lebih terperinci

ANALISA PERBANDINGAN FILTER HARMONISASINGLE TUNE DAN DOUBLE TUNE PADA PENYEARAH SINUSOIDAL PULSE WIDTH MODULATION (SPWM)

ANALISA PERBANDINGAN FILTER HARMONISASINGLE TUNE DAN DOUBLE TUNE PADA PENYEARAH SINUSOIDAL PULSE WIDTH MODULATION (SPWM) ANALISA PERBANDINGAN FILTER HARMONISASINGLE TUNE DAN DOUBLE TUNE PADA PENYEARAH SINUSOIDAL PULSE WIDTH MODULATION (SPWM) Parlin Siagian1, Usman Baafai2, Marwan Ramli3 Magister Teknik Jurusan Teknik Elektro

Lebih terperinci

Perencanaan Filter Hybrid untuk Mengurangi Dampak Harmonisa pada PT. Semen Indonesia Pabrik Rembang

Perencanaan Filter Hybrid untuk Mengurangi Dampak Harmonisa pada PT. Semen Indonesia Pabrik Rembang Perencanaan Filter Hybrid untuk Mengurangi Dampak Harmonisa pada PT. Semen Indonesia Pabrik Rembang Anissa Eka Marini Pujiantara - 2210100133 Pembimbing 1. Prof. Ir. Ontoseno Penangsang,M.Sc.,Ph.D 2. Dedet

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA 2.1. Motor Induksi Tiga Fasa Motor induksi 3 fasa merupakan salah satu cabang dari jenis motor listrik yang merubah energi listrik menjadi energi gerak berupa putaran yang mempunyai

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA. jenis LED banyak diaplikasi diberbagai bidang. Dengan berkembangnya jenis-jenis

BAB 2 TINJAUAN PUSTAKA. jenis LED banyak diaplikasi diberbagai bidang. Dengan berkembangnya jenis-jenis BAB 2 TINJAUAN PUSTAKA 2.1 Lighting Emitting Diode ( LED ) Teknologi LED sekarang cukup berkembang disetiap bidang dan berbagai jenis LED banyak diaplikasi diberbagai bidang. Dengan berkembangnya jenis-jenis

Lebih terperinci

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi

BAB II DASAR TEORI. Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi BAB II DASAR TEORI 2.1 Umum Motor asinkron atau motor induksi biasanya dikenal sebagai motor induksi yang merupakan motor arus bolak-balik yang paling luas penggunaannya. Penamaan ini berasal dari kenyataan

Lebih terperinci

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG)

BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) BAB II MOTOR INDUKSI SEBAGAI GENERATOR (MISG) II.1 Umum Motor induksi tiga phasa merupakan motor yang banyak digunakan baik di industri rumah tangga maupun industri skala besar. Hal ini dikarenakan konstruksi

Lebih terperinci

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi

BAB II GENERATOR SINKRON. bolak-balik dengan cara mengubah energi mekanis menjadi energi listrik. Energi BAB II GENERATOR SINKRON 2.1. UMUM Konversi energi elektromagnetik yaitu perubahan energi dari bentuk mekanik ke bentuk listrik dan bentuk listrik ke bentuk mekanik. Generator sinkron (altenator) merupakan

Lebih terperinci

50 Frekuensi Fundamental 100 Harmonik Pertama 150 Harmonik Kedua 200 Harmonik Ketiga

50 Frekuensi Fundamental 100 Harmonik Pertama 150 Harmonik Kedua 200 Harmonik Ketiga PENGGUNAAN FILTER HIBRID KONFIGURASI SERI UNTUK MEMPERBAIKI KINERJA FILTER PASIF DALAM UPAYA PENINGKATAN PEREDUKSIAN HARMONISA PADA SISTEM KELISTRIKAN DI RSUP SANGLAH Jurusan Teknik Elektro Fakultas Teknik

Lebih terperinci

PERBANDINGAN PASSIVE LC FILTER DAN PASSVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA

PERBANDINGAN PASSIVE LC FILTER DAN PASSVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA PERBANDINGAN PASSIVE LC FILTER DAN PASSVE SINGLE TUNED FILTER UNTUK MEREDUKSI HARMONISA VARIABLE SPEED DRIVE DENGAN BEBAN MOTOR INDUKSI TIGA FASA TESIS OLEH NAMA : MUSTAMAM NIM : 107034005/TE FAKULTAS

Lebih terperinci

BAB I PENDAHULUAN. lainnya. Contohnya yaitu beban beban nonlinier, terutama peralatan listrik berbasis

BAB I PENDAHULUAN. lainnya. Contohnya yaitu beban beban nonlinier, terutama peralatan listrik berbasis BAB I PENDAHULUAN 1.1 Latar Belakang Pada zaman modern seperti sekarang ini orang semakin dimudahkan dalam melakukan suatu pekerjaan dengan bantuan peralatan yang berteknologi tinggi. Peralatan yang berteknologi

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 Umum Motor induksi merupakan motor arus bolak balik ( AC ) yang paling luas digunakan dan dapat dijumpai dalam setiap aplikasi industri maupun rumah tangga. Penamaannya

Lebih terperinci

Rangkaian Arus Bolak Balik. Rudi Susanto

Rangkaian Arus Bolak Balik. Rudi Susanto Rangkaian Arus Bolak Balik Rudi Susanto Arus Searah Arahnya selalu sama setiap waktu Besar arus bisa berubah Arus Bolak-Balik Arah arus berubah secara bergantian Arus Bolak-Balik Sinusoidal Arus Bolak-Balik

Lebih terperinci

BAB II SISTEM DAYA LISTRIK TIGA FASA

BAB II SISTEM DAYA LISTRIK TIGA FASA BAB II SISTEM DAYA LISTRIK TIGA FASA Jaringan listrik yang disalurkan oleh PLN ke konsumen, merupakan bagian dari sistem tenaga listrik secara keseluruhan. Secara umum, sistem tenaga listrik terdiri dari

Lebih terperinci

BAB II LANDASAN TEORI

BAB II LANDASAN TEORI BAB II LANDASAN TEORI 2.1 Umum Panel Inverter adalah peralatan untuk mengubah frekuensi dan tegangan untuk dapat mengontrol motor AC sangat diperlukan terutama oleh perusahaan yang banyak mempergunakan

Lebih terperinci

BAB 1 PENDAHULUAN. ini terlihat dengan semakin banyaknya penggunaan peralatan elektronik baik pada

BAB 1 PENDAHULUAN. ini terlihat dengan semakin banyaknya penggunaan peralatan elektronik baik pada BAB 1 PENDAHULUAN 1.1. Latar Belakang Dewasa ini peralatan elektronika daya cukup berkembang dengan pesat. Hal ini terlihat dengan semakin banyaknya penggunaan peralatan elektronik baik pada rumah tangga,

Lebih terperinci

BAB IV PENGUJIAN DAN ANALISIS

BAB IV PENGUJIAN DAN ANALISIS BAB IV PENGUJIAN DAN ANALISIS Pada bab ini akan dibahas mengenai pengujian alat serta analisis dari hasil pengujian. Tujuan dilakukan pengujian adalah mengetahui sejauh mana kinerja hasil perancangan yang

Lebih terperinci

BAB IV ANALISA DAN PENGUJIAN ALAT

BAB IV ANALISA DAN PENGUJIAN ALAT BAB IV ANALISA DAN PENGUJIAN ALAT 4.1. Metodologi Pengujian Alat Dengan mempelajari pokok-pokok perancangan yang sudah di buat, maka diperlukan suatu pengujian terhadap perancangan ini. Pengujian dimaksudkan

Lebih terperinci

II. TINJAUAN PUSTAKA

II. TINJAUAN PUSTAKA II. TINJAUAN PUSTAKA 2.1 HARMONISA Pada sistem tenaga listrik, daya yang didistribusikan adalah pada level tegangan dengan frekuensi tunggal (50 Hz atau 60 Hz), tetapi karena perkembangan beban listrik

Lebih terperinci

MESIN SINKRON ( MESIN SEREMPAK )

MESIN SINKRON ( MESIN SEREMPAK ) MESIN SINKRON ( MESIN SEREMPAK ) BAB I GENERATOR SINKRON (ALTERNATOR) Hampir semua energi listrik dibangkitkan dengan menggunakan mesin sinkron. Generator sinkron (sering disebut alternator) adalah mesin

Lebih terperinci

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3157

ISSN : e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3157 ISSN : 2355-9365 e-proceeding of Engineering : Vol.4, No.3 Desember 2017 Page 3157 IMPLEMENTASI DAN ANALISIS FILTER UNTUK MEMINIMALISASI NILAI HARMONISA PADA CONVERTER DC TO DC TIPE BUCK IMPLEMENTATION

Lebih terperinci

PRINSIP KERJA MOTOR. Motor Listrik

PRINSIP KERJA MOTOR. Motor Listrik Nama : Gede Teguh Pradnyana Yoga NIM : 1504405031 No Absen/ Kelas : 15 / B MK : Teknik Tenaga Listrik PRINSIP KERJA MOTOR A. Pengertian Motor Listrik Motor listrik merupakan sebuah perangkat elektromagnetis

Lebih terperinci

Analisis Kinerja Motor Arus Searah Dengan Menggunakan Sistem Kendali Modulasi Lebar Pulsa. Sudirman S.*

Analisis Kinerja Motor Arus Searah Dengan Menggunakan Sistem Kendali Modulasi Lebar Pulsa. Sudirman S.* Analisis Kinerja Motor Arus Searah Dengan Menggunakan Sistem Kendali Modulasi Lebar Pulsa Sudirman S.* ABSTRACT This paper aim to analysed.c.motor performance by using Pulse Width Modulation ( PWM). Output

Lebih terperinci

BAB II MOTOR INDUKSI TIGA PHASA

BAB II MOTOR INDUKSI TIGA PHASA BAB II MOTOR INDUKSI TIGA PHASA II.1 UMUM Faraday menemukan hukum induksi elektromagnetik pada tahun 1831 dan Maxwell memformulasikannya ke hukum listrik (persamaan Maxwell) sekitar tahun 1860. Pengetahuan

Lebih terperinci

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri

² Dosen Jurusan Teknik Elektro Industri 3 Dosen Jurusan Teknik Elektro Industri 1 Efisiensi Daya Pada Beban Dinamik Dengan Kapasitor Bank Dan Filter Harmonik Bambang Wahyono ¹, Suhariningsih ², Indhana Sudiharto 3 1 Mahasiswa D4 Jurusan Teknik Elektro Industri ² Dosen Jurusan Teknik

Lebih terperinci

GENERATOR SINKRON Gambar 1

GENERATOR SINKRON Gambar 1 GENERATOR SINKRON Generator sinkron merupakan mesin listrik arus bolak balik yang mengubah energi mekanik menjadi energi listrik arus bolak-balik. Energi mekanik diperoleh dari penggerak mula (prime mover)

Lebih terperinci

Perancangan Inverter Sinusoida 1 Fasa dengan Aplikasi Pemrograman Rumus Parabola dan Segitiga Sebagai Pembangkit Pulsa PWM

Perancangan Inverter Sinusoida 1 Fasa dengan Aplikasi Pemrograman Rumus Parabola dan Segitiga Sebagai Pembangkit Pulsa PWM Perancangan Inverter Sinusoida 1 Fasa dengan Aplikasi Pemrograman Rumus Parabola dan Segitiga Sebagai Pembangkit Pulsa PWM Agus Rusdiyanto P2Telimek, LIPI riesdian@gmail.com Bambang Susanto P2Telimek,

Lebih terperinci

Peredaman Resonansi Harmonisa Pada Sistem Kelistrikan Industri Menggunakan Filter Hybrid Dengan Konduktansi Variable

Peredaman Resonansi Harmonisa Pada Sistem Kelistrikan Industri Menggunakan Filter Hybrid Dengan Konduktansi Variable JURNAL TEKNIK ITS Vol. 4, No. 1, (2015) ISSN: 2337-3539 (2301-9271 Print) B-181 Peredaman Resonansi Harmonisa Pada Sistem Kelistrikan Industri Menggunakan Filter Hybrid Dengan Konduktansi Variable Adi

Lebih terperinci

FILTER AKTIF SHUNT 3 PHASE BERBASIS ARTIFICIAL NEURAL NETWORK (ANN) UNTUK MENGKOMPENSASI HARMONISA PADA SISTEM DISTRIBUSI 220/380 VOLT

FILTER AKTIF SHUNT 3 PHASE BERBASIS ARTIFICIAL NEURAL NETWORK (ANN) UNTUK MENGKOMPENSASI HARMONISA PADA SISTEM DISTRIBUSI 220/380 VOLT FILTER AKTIF SHUNT 3 PHASE BERBASIS ARTIFICIAL NEURAL NETWORK (ANN) UNTUK MENGKOMPENSASI HARMONISA PADA SISTEM DISTRIBUSI 220/380 VOLT Nama : Andyka Bangun Wicaksono NRP : 22 2 111 050 23 Dosen Pembimbing

Lebih terperinci

ek SIPIL MESIN ARSITEKTUR ELEKTRO

ek SIPIL MESIN ARSITEKTUR ELEKTRO ek SIPIL MESIN ARSITEKTUR ELEKTRO APLIKASI KARAKTERISTIK PENYEARAH SATU FASE TERKENDALI PULSE WIDTH MODULATION (PWM) PADA BEBAN RESISTIF Yuli Asmi Rahman * Abstract Rectifier is device to convert alternating

Lebih terperinci

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1)

MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) MODUL 3 TEKNIK TENAGA LISTRIK PRODUKSI ENERGI LISTRIK (1) 1. 1. SISTEM TENAGA LISTRIK 1.1. Elemen Sistem Tenaga Salah satu cara yang paling ekonomis, mudah dan aman untuk mengirimkan energi adalah melalui

Lebih terperinci

PENGUJIAN HARMONISA DAN UPAYA PENGURANGAN GANGGUAN HARMONISA PADA LAMPU HEMAT ENERGI

PENGUJIAN HARMONISA DAN UPAYA PENGURANGAN GANGGUAN HARMONISA PADA LAMPU HEMAT ENERGI JETri, Volume 4, Nomor 1, Agustus 004, Halaman 53-64, ISSN 141-037 PENGUJIAN HARMONISA DAN UPAYA PENGURANGAN GANGGUAN HARMONISA PADA LAMPU HEMAT ENERGI Liem Ek Bien & Sudarno* Dosen Jurusan Teknik Elektro

Lebih terperinci

NASKAH PUBLIKASI PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 9 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7.

NASKAH PUBLIKASI PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 9 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7. NASKAH PUBLIKASI PERANCANGAN HIGH PASS DAMPED FILTER PADA SISTEM DISTRIBUSI STANDAR IEEE 9 BUS DENGAN MENGGUNAKAN SOFTWARE ETAP POWER STATION 7.0 Diajukan Oeh : INDRIANA ZELLA MARGARETA D 400 130 001 JURUSAN

Lebih terperinci

Hubungan Antara Tegangan dan RPM Pada Motor Listrik

Hubungan Antara Tegangan dan RPM Pada Motor Listrik 1 Hubungan Antara Tegangan dan RPM Pada Motor Listrik Pada motor DC berlaku persamaan-persamaan berikut : V = E+I a Ra, E = C n Ф, n =E/C.Ф Dari persamaan-persamaan diatas didapat : n = (V-Ra.Ra) / C.Ф

Lebih terperinci

BAB 2 TINJAUAN PUSTAKA

BAB 2 TINJAUAN PUSTAKA BAB 2 TINJAUAN PUSTAKA 2.1 Teori Harmonisa Dalam sistem tenaga listrik yang ideal, bentuk gelombang tegangan yang disalurkan ke peralatan dan bentuk gelombang arus yang dihasilkan adalah gelombang sinus

Lebih terperinci

Studi Perencanaan Filter Hybrid Untuk Mengurangi Harmonisa Pada Proyek Pakistan Deep Water Container Port

Studi Perencanaan Filter Hybrid Untuk Mengurangi Harmonisa Pada Proyek Pakistan Deep Water Container Port JURNAL TEKNIK ITS Vol. 4, No. 2, (2015) ISSN: 2337-3539 (2301-9271 Print) A-142 Studi Perencanaan Filter Hybrid Untuk Mengurangi Harmonisa Pada Proyek Pakistan Deep Water Container Port Rahman Efandi,

Lebih terperinci

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran

BAB II MOTOR INDUKSI SATU FASA. Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran BAB II MOTOR INDUKSI SATU FASA II.1. Umum Motor induksi adalah adalah motor listrik bolak-balik (ac) yang putaran rotornya tidak sama dengan putaran medan stator, dengan kata lain putaran rotor dengan

Lebih terperinci

meningkatkan faktor daya masukan. Teknik komutasi

meningkatkan faktor daya masukan. Teknik komutasi 1 Analisis Perbandingan Faktor Daya Masukan Penyearah Satu Fasa dengan Pengendalian Modulasi Lebar Pulsa dan Sudut Penyalaan Syaifur Ridzal¹, Ir.Soeprapto,M.T.², Ir.Soemarwanto,M.T.³ ¹Mahasiswa Teknik

Lebih terperinci

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik

DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil Listrik JURNA TEKNIK POMITS Vol. 1, No. 1, (2013) 1-6 1 DC-DC Step-Up Converter Rasio Tinggi Kombinasi Charge Pump dan Boost Converter untuk Catu Daya Motor Induksi pada Mobil istrik A. M. Husni, M. Ashari Prof,

Lebih terperinci

BAB II TINJAUAN PUSTAKA. selalu berbanding lurus dengan tegangan setiap waktu [3]. Beban linear ini mematuhi

BAB II TINJAUAN PUSTAKA. selalu berbanding lurus dengan tegangan setiap waktu [3]. Beban linear ini mematuhi BAB II TINJAUAN PUSTAKA 2.1 Beban Linear Beban linear adalah beban yang impedansinya selalu konstan sehingga arus selalu berbanding lurus dengan tegangan setiap waktu [3]. Beban linear ini mematuhi Hukum

Lebih terperinci

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di

BAB II MOTOR INDUKSI TIGA FASA. biasanya adalah tipe tiga phasa. Motor induksi tiga phasa banyak digunakan di BAB II MOTOR INDUKSI TIGA FASA 2.1 Umum Motor listrik yang paling umum dipergunakan dalam perindustrian industri adalah motor induksi. Berdasarkan phasa sumber daya yang digunakan, motor induksi dapat

Lebih terperinci

Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa

Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa Analisis Pengaruh Harmonisa terhadap Pengukuran KWh Meter Tiga Fasa Agus R. Utomo Departemen Teknik Elektro, Fakultas Teknik Universitas Indonesia, Depok 16424 E-mail : arutomo@yahoo.com Mohamad Taufik

Lebih terperinci

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU)

ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) ANALISIS PENGARUH JATUH TEGANGAN TERHADAP KINERJA MOTOR INDUKSI TIGA FASA ROTOR BELITAN (Aplikasi pada Laboratorium Konversi Energi Listrik FT-USU) M. Arfan Saputra, Syamsul Amien Konsentrasi Teknik Energi

Lebih terperinci