PENINGKATAN PEROLEHAN MINYAK EFEK RESIKEL RESIDU PENCAIRAN BATUBARA

Ukuran: px
Mulai penontonan dengan halaman:

Download "PENINGKATAN PEROLEHAN MINYAK EFEK RESIKEL RESIDU PENCAIRAN BATUBARA"

Transkripsi

1 PENINGKATAN PEROLEHAN MINYAK EFEK RESIKEL RESIDU PENCAIRAN BATUBARA Muhammad Hanif Coal Liquefaction Centre, Puspiptek, Serpong Pusat Teknologi Pengembangan Sumberdaya Energi Abstract This paper presents the effect of recycle CLB (coal liquid bottom) on oil yield from coal liquefaction process which contains of activated catalyst, organic residue, and ash from coal. To recover activated catalyst from CLB is not extremely difficult but also very expensive. Therefore one possible way of utilizing this activated catalyst and remaining convertible organic residue in CLB more effectively is by recycling the CLB. As a result, the efficiency of coal liquefaction process can be improved significantly. Experiment using 1L autoclave that's equipped with stirrer is conducted using Banko Coal at operating temperature of 450 o C, initial hydrogen pressure of 12 MPa, and holding time 60 min. Catalyst used in the experiment is medium grade limonite (MGL) from Soroako with particle size less than 0.8 m and concentration of 3% mafc as Fe. Coal particle size is 200 mesh (74 m).the experiment result suggests that CLB addition can increase the oil yield of coal liquefaction. Recycle (additional) CLB of 50 and 70wt% mafc can increase the oil yield from 25,71wt% mafc to 51,83 and 65,7wt% mafc respectively. Kata kunci: hidrogenasi, likuifaksi, katalis, limonit, Soroako, pencairan batubara, CLB, daur ulang 1. PENDAHULUAN Proses pencairan batubara secara langsung, sejauh perkembangannya, telah mengalami banyak kemajuan terutama bila dibandingkan dengan tahap-tahap awal pengembangan teknologi tersebut. Kemajuan yang telah dicapai adalah peroleh dan kualitas produk minyak yang lebih baik yang dihasilkan pada kondisi proses seperti tekanan dan temperatur yang lebih rendah. Namun, belum ada yang mengoperasikan teknologi pencairan batubara secara langsung dalam skala komersial. Sementara itu, beberapa negara masih terus melakukan studi kelayakan penerapan teknologi dan peningkatan efisiensi proses. Untuk meningkatkan efisiensi proses dan seiringan dengan itu kelayakan penerapannya, salah satu kuncinya adalah dengan menyempurnakan proses dan mengembangkan katalis baru. Pada proses Bergius, yang merupakan proses pencairan batubara pertama, reaksi pencairan batubara dilakukan hanya dalam satu tahap namun memerlukan temperatur dan tekanan sangat tinggi dengan menggunakan katalis sekali pakai yang aktivitasnya rendah. Proses pencairan sekarang, sementara itu, terdiri dari dua atau tiga stage (tahap) dengan kondisi operasi lebih rendah. Kondisi operasi sedimikian dapat dicapai karena pelarut yang digunakan memiliki kemampuan donor hidrogen yang sangat baik, begitu pula katalisnya memiliki aktivitas dan selektivitas tinggi. Tahap pertama dari proses pencairan batubara yang dikembangkan saat ini adalah pembersihan batubara dari mineral organik dilanjutkan dengan pengeringan. Pada tahapan ini struktur dan susunan makromolekul batubara dapat berubah, sehingga mempengaruhi kereaktifan batubara. Tahap kedua adalah pemanasan batubara di dalam preheater secara cepat bersama dengan pelarut, katalis dan gas hidrogen bertekanan, hingga mencapai temperatur reaksinya (Syah, Y. T., 1981). Pada tahap ini terjadi dekarboksilasi, pembentukan karbonat, dan dehidrasi dan batubara, secara substansial, diperkirakan telah terlarut. Pemanasan cepat sampai beberapa ratus derajat per- menit diperkirakan merupakan tahap yang sangat esensial agar yield minyak tinggi bisa didapatkan dan reaksi retrogresif bisa dicegah. Pada tahap pemanasan awal tersebut, katalis belum berfungsi secara efektif. Ini disebabkan oleh waktu kontak yang singkat. Pada tahap ini, sangat diperlukan pelarut donor Peningkatan Perolehan Minyak... (Muhammad Hanif) 45

2 hidrogen yang berfungsi menghambat terjadinya reaksi retrogresif. Setelah dipanaskan slurry batubara tersebut kemudian dimasukkan ke dalam reaktor dimana batubara akan mengalami perengkahan secara termal dan akan terjadi reaksi katalitik, hidrogenasi dan hidrokraking. Produk dari reaktor kemudian akan menjalani proses pemisahan dimana produk minyak dipisahkan. Residu dari proses pemisahan adalah campuran padatan, terdiri dari abu batubara, katalis dan sisa batubara yang tidak bereaksi, disebut sebagai CLB (Coal Liquid Bottom) (Mochida, I., et.al., 2002). Dalam proses pencairan batubara secara langsung, biasanya digunakan katalis terdispersi (dispersed catalyst) (Cugini,A.V., et al., 1994). Selama proses berlangsung, katalis macam ini tercampur dengan abu atau residu padat batubara akibatnya sulit dilakukan pemisahan dan dengan demikian hanya dapat digunakan sekali sebelum dibuang. Namun, katalis terdispersi memiliki kelebihan dibandingkan dengan katalis tersokong (supported catalyst), yaitu kontak yang terjadi lebih intim antara katalis dengan pelarut sehingga proses pencairan menjadi lebih efisien. Katalis tersokong, dalam proses pencairan batubara, tidak sebaiknya digunakan karena pori-pori katalis dapat tersumbat oleh abu batubara serta residu padat batubara sehingga katalis mudah mengalami deaktivasi atau poisoning. Di sisi lain, meskipun pemakaian katalis terdispersi dalam batubara (highly dispersed catalyst on coal) dapat meningkatkan permukaan kontak secara signifikan serta mengurangi jumlah pemakaiannya, tetap saja biaya yang diperlukan cukup besar karena katalis tidak mungkin diresikel. DAUR ULANG COAL LIQUID BOTTOM (CLB) Kandungan CLB, yang dihasilkan dari proses pencairan batubara, antara lain berupa katalis yang sudah teraktivasi dan residu organik yang potensial untuk didaur ulang. Katalis dalam jumlah besar seringkali terbuang begitu saja karena teknologi rekoveri katalis yang belum memadai. Padahal, penggunaan katalis daur ulang yang diambil dari sisa residu tersebut menunjukan bahwa katalis memiliki aktivitas yang cukup baik walaupun lebih rendah dibandingkan dengan katalis baru pakai (fresh catalyst) (Guin, J.,et al., 1979). Konversi batubara yang tidak sempurna menyisakan banyak residu organik padat yang sangat disayangkan karena residu padat tersebut beserta sejumlah besar minyak batubara terbuang disebabkan sulitnya mengambil minyak dari sisa padatan. Produk CLB dalam proses pencairan bisa mencapai 40% artinya produk ini cukup potensial untuk diresikal sehingga efisiensi proses dapat ditingkatkan. CLB mengandung katalis yang telah teraktivasi serta residu organik yang masih mungkin untuk terkonversi lebih lanjut menjadi minyak. Oleh karena itu, keberhasilan resikel CLB ini akan secara signifikan membantu dalam peningkatan kelayakan penerapan teknologi pencairan batubara secara langsung yaitu dengan berkurangnya penggunaan katalis segar (make up fresh catalyst), bertambahnya perolehan minyak sehingga residu yang terbuang akan berkurang, dan berkurangnya jumlah solvent atau pelarut donor yang digunakan yang akan mengakibatkan efisiensi proses secara keseluruhan meningkat. Dalam tulisan ini, akan diuraikan pengaruh resikel CLB atau penambahan CLB terhadap perolehan produk pencairan batubara, terutama perolehan minyak. 2. BAHAN DAN METODE 2.1. Bahan Batubara Batubara muda yang dipergunakan di dalam riset ini adalah batubara Banko Tengah yang diperoleh dari area kuasa penambangan PTBA di Tanjung Enim, Sumatera Selatan. Adapun karakteristik batubara muda Bangko Tengah adalah sebagai berikut : Tabel 1 Propertis Batubara Banko Tengah % berat kering Abu C H N S Odiff % berat Air % berat 63,72 4,64 1,07 0,6 17,37 2,33 10,27 Sumber : Hasil analisis Lab Analitik, UPT-LSDE. Sebelum diumpankan ke dalam autoclave batubara terlebih dahulu digiling hingga berukuran lolos 200 mesh (74 m) kemudian dikeringkan sampai kandungan airnya sekitar 10% berat. Sampel batubara yang tidak dipergunakan langsung disimpan di dalam desikator untuk menghindari penyerapan air dari udara terbuka Solvent Pelarut BSU yang dipergunakan merupakan heavy fraction dengan kisaran titik didih o C dan karakteristik seperti pada Tabel 2 dan Tabel 3. Fraksi pelarut diperoleh dari distilasi vakum 10 mmhg di laboratorium pencairan batubara. Pelarut BSU diperoleh dari TCLC (Takasago Coal Liquefaction Center) Jepang. 46 Jurnal Energi dan Lingkungan Vol. 3, No. 2, Desember 2007 Hlm

3 Pelarut BSU tersebut diperoleh dari unit BSU (Bench Scale Unit) kapasitas 100 kg/jam di Takasago dengan menggunakan batubara Banko. Dari pelarut yang sama dipergunakan untuk membuat katalis slurry. Tabel 2 Fraksi Pelarut Heavy Oil BSU Fraksi (% berat) H 2O LO MO HO CLB 0,15 0,19 1,37 93,05 5,24 Hasil analisis Lab. Pencairan Batubara - LSDE PUSPIPTEK, Serpong LO (C5-180 oc), MO ( oc), HO ( oc), CLB (+ 420 oc) Tabel 3 Komposisi Ultimat Heavy Oil BSU Ultimat Analysis (% berat) C H N S Odiff Katalis Dalam penelitian ini digunakan katalis limonit Soroako yang diperoleh dari penambangan nikel di Soroako, Sulawesi Selatan. Karakteristik katalis tersebut dapat dilihat pada Tabel Tabel 4. Tabel 4 Karakteristik Katalis Limonit Soroako % Solid % Solvent Basis kering (% berat) Fe Mg Al Si Mo Ni S 25,58 74,42 46,96 0,08 3,35 2,64 0,09 1,29 - Katalis yang dimasukkan ke reaktor berbentuk slurry yang dibuat dengan menggerus katalis padat di dalam pelarut dengan menggunakan tower mill. Pelarut digunakan pada saat penggerusan gunanya untuk mencegah oksidasi katalis oleh udara juga untuk membuat dispersivitas yang lebih baik. Kecepatan dan waktu tower mill dapat diatur. Untuk membuat katalis slurry waktu yang diperlukan ditentukan selama 3 jam atau lebih dengan perkiraan ukuran diameter partikel katalis di dalam slurry sekitar 0,5-0,8 m. Pelarut yang digunakan pada penggilingan katalis ini memiliki karakteristik yang sama dengan pelarut yang digunakan dalam proses pencairan Coal Liquid Bottom (CLB) CLB merupakan sisa atau residu hasil distilasi produk slurry pencairan batubara yang kandungan bahan organiknya masih cukup tinggi dan juga mengandung katalis yang telah teraktivasi. CLB ini diperoleh dari BSU (Bench Scale Unit) 100 kg/day dengan batubara Banko yang dilakukan di Jepang. Sebelum digunakan, CLB digerus sampai berukuran sama dengan batubara yaitu lolos 200 mesh (74 m) kemudian dianalisis kandungan abu dan logamnya, terutama kandungan Fe-nya. Adapun karakteristik dari CLB yang digunakan dalam penelitian ini adalah seperti pada Tabel 5. Tabel 5 Karakteristik CLB Yang Ditambahkan Dalam Proses Pencairan Konsentrasi [%berat] Nama : NLF-61-CLB CLB (org) Abu Fe 86,58 13,42 4, Percobaan Seluruh reaksi di dalam studi ini dilakukan dengan menggunakan autoclave 1L berpengaduk, seperti pada Gambar 1. Variabel riset yang digunakan di dalam studi ini adalah variasi konsentrasi CLB yang ditambahkan dalam proses dengan rasio pelarut terhadap batubara konstan. Dengan ditambahkannya CLB, konsentrasi total katalis dasar besi dalam proses menjadi lebih besar dari 3% berat batubara kering bebas abu (mafc) sebagai Fe. Konsentrasi Fe lebih besar dari 3% berat dianggap tidak berpengaruh terhadap aktivitas katalis secara keseluruhan karena dalam hasil percobaan sebelumnya didapat bahwa konsentrai tersebut merupakan konsentrasi katalis yang optimum dengan perolehan minyak maksimal (Hidayat H., et al., 2002). Jadi jika konsentrasi katalis lebih besar dari 3% berat mafc sebag Fe maka perbedaannya tidak signifikan dibandingkan 3% berat mafc. Variabel pertama ditetapkan diambil dari penambahan CLB sebesar 0% dan 50 % berat mafc. Perolehan minyak dan CLB dari kedua kondisi di atas diplot terhadap prosentasi penambahan CLB dalam sebuah grafik sebelum kemudian pada grafik dibuat garis lurus untuk masing-masing produk pada kedua kondisi sehingga didapat titik potong garis CLB dengan sumbu X (pada perolehan CLB sama dengan nol). Variabel ketiga diambil dari titik potong tersebut yaitu CLB addition sebesar 70% berat mafc. Metode ini diambil berdasarkan pada asumsi bahwa proses ini dilakukan secara kontinyu yaitu tidak mungkin perolehan CLB berharga dibawah 0% berat mafc. Ini merupakan suatu cara pendekatan agar dapat diketahui berapa persen seharusnya CLB yang bisa ditambahkan atau diresikel sehingga kontinuitas proses tetap berlangsung. Desain eksperimen secara keseluruhan adalah sebagai berikut : Peningkatan Perolehan Minyak... (Muhammad Hanif) 47

4 Batubara yang diumpan: 75 gram Rasio pelarut/mafc : 2,0 berat/berat Katalis yang diumpan : 3,0 %bt mafc basis Fe, S/Fe : 3 mol/mol Temperatur : 450 o C Tekanan awal gas H 2 : 12 MPa Waktu reaksi : 60 menit Kecepatan pengaduk : 1000 rpm Gambar 1. Skema AC 1L Apabila seluruh umpan (serbuk batubara muda, pelarut, katalis slurry dan sulfur) sudah dimasukkan ke dalam autoclave dan autoclave ditutup, maka pembilasan dilakukan. Pembilasan dilakukan dengan pertama-tama mengalirkan gas nitrogen bertekanan kg/cm 2 ke dalam autoclave untuk menghilangkan oksigen di dalam autoclave lalu dilanjutkan dengan mengalirkan gas hidrogen hingga tekanan sekitar kg/cm 2 untuk membersihkan ruangan di dalam autoclave dari konsentrasi udara (nitrogen dan oksigen). Masing-masing pembilasan baik dengan nitrogen maupun dengan hidrogen dilakukan sebanyak tiga kali. Setelah proses pembilasan, kemudian tes kebocoran dilakukan dengan mengalirkan gas hidrogen pada tekanan 200 kg/cm 2 ke dalam autoclave dan ditahan selama semalam. Untuk mengetahui ada tidaknya kebocoran adalah dengan melihat indikasi terjadinya penurunan tekanan. Tes kebocoran juga dilakukan dengan menggunakan hydrogen gas detector atau dengan menyemprotkan air sabun ke tempat kemungkinan terjadinya kebocoran. Apabila tidak ada kebocoran, maka tekanan gas hidrogen dapat diturunkan sampai tekanan gas yang ditentukan dan autoclave siap untuk dioperasikan. Kemudian, aliran air pendingin untuk pengaduk, termokopel dan kontrol panel siap dioperasikan. Kecepatan pemanasan sistem autoclave 1 liter di laboratorium Pencairan Batubara Muda BPP Teknologi adalah 284 o /jam. Waktu reaksi mulai dihitung setelah suhu cairan mencapai 450 o C Analisis Produk Hasil pencairan batubara muda terdiri dari dua (2) macam produk yaitu gas dan cairan slurry. Pengambilan gas hasil reaksi langsung dilakukan pada tiga kondisi tekanan yaitu tinggi, medium dan rendah, dimaksudkan agar representatif. Analisa komposisi gas dilakukan dengan menggunakan instrumen kromatografi gas TCD dan FID untuk mendapatkan konsentrasi gas H 2, CO, CO 2, C 1 sampai C 4. Analisa gas H 2 S secara dilakukan secara tersendiri, yaitu dengan menggunakan peralatan Gastec Dragger yang pembacaannya menggunakan tabung indikator. Sementara itu, produk cairan slurry dipisahkan dengan metode distilasi vakum. Hasil distilasi yang diinginkan adalah produk minyak dengan titik didih C5-420 o C yang terdiri dari fraksi-fraksi LO/light oil (C o C), MO/middle oil ( o C), HO/heavy oil ( o C). Sisanya adalah padatan CLB/coal liquid bottom (+420 o C). 3. HASIL PERCOBAAN DAN DISKUSI Hasil percobaan pencairan batubara secara langsung dengan variasi penambahan CLB ditunjukkan pada Tabel 6. Tabel 6. Perolehan Produk Cair Dan Gas CLB/R (wt%) Distillate 25,71 51,83 65,70 CLB 41,1 11,12 7,55 H 2O 13,80 17,49 11,09 C 1-C 4 13,62 17,17 12,58 CO+CO 2 10,18 9,99 9,93-4,42-7,59-6,85 Dapat dilihat pada Tabel 6 bahwa penambahan CLB berbanding lurus dengan perolehan minyak dan berbanding terbalik dengan perolehan CLB. Maksudnya adalah semakin besar CLB yang ditambahkan (CLB/R) maka semakin besar perolehan minyak yang dan sebaliknya perolehan CLB semakin kecil. Kondisi ini menunjukkan bahwa penambahan CLB akan menambah efisiensi proses karena perolehan minyak yang diinginkan akan bertambah sementara jumlah residu atau batubara yang tidak terkonversi akan berkurang. Dari Gambar 2 yang merupakan plot antara perolehan minyak terhadap penambahan CLB (CLB/R) terlihat sebagai garis lurus. Dengan metode ekstrapolasi maka didapat penambahan CLB maksimal adalah sekitar 80% berat batubara kering bebas abu (mafc). Harga tersebut diperoleh dari titik potong antara sumbu X dengan garis perolehan CLB. Harga ini merupakan perkiraan jumlah CLB maksimal yang 48 Jurnal Energi dan Lingkungan Vol. 3, No. 2, Desember 2007 Hlm

5 Yield (% berat mafc) bisa ditambahkan dalam proses kontinyu sehingga berjalan dengan efisien. Bila CLB ditambahkan di bawah harga tersebut maka perolehan CLB masih berharga positif artinya CLB yang akan terakumulasi dan dibuang sebagai residu. Sementara bila penambahan CLB berada di atas 80 % berat mafc maka perolehan CLB berharga negatif. Melakukan hal ini tidak mungkin dalam skala skala kontinyu karena CLB yang harus diumpankan akan berkurang. Sehingga dapat dipastikan bahwa penambahan CLB optimal adalah sekitar 80% berat mafc. DAFTAR PUSTAKA Cugini, A.V., Krastman, D., Martello, D.V., Frommell, D.F., Wells, A.W. and Holder, G.D., Effect of catalyst dispersion on coal liquefaction with iron catalysts, Energy & Fuels, 8, 1994, p Guin, J., Tarrer, A., Taylor,Jr.L., Lee, J.M., VanBrackle, H.F. and Curtis, C.W., Further studies of cataliytic activity of coal mineral in coal liquefaction : 2. Performance of iron and SRC mineral residue, as catalysts and sulfur scavangers, Ind.Eng.Chem. Process Des. Dev., 18, 4, 1979, p Effect of CLB Addition on Oil Yield in Coal Liquefaction (1 L AC, Central Banko, Heavy Oil, 450 oc, 60 min, 12 MPa, Soroako 1% wt daf as Fe, S/ Fe =3) Hidayat H., Muksin, Hanif M., Perbandingan aktivitas katalis limonit Soroako terhadap katalis dasar besi dalam proses pencairan batubara secara langsung, diusulkan publikasi di seminar Teknologi Untuk Negeri, BPPT, CLB resikel (% berat mafc) Mochida, I., Sakanishi, K., Catalysis in Coal Liquefaction, Advances an Catalysis, 40, p Shah, Y.T., Reaction Engineering in Direct Coal Liquefaction, Addison-Willey Pub. Co., Tokyo, Gambar 2. Pengaruh CLB/R Terhadap Perolehan Minyak 4. KESIMPULAN Kesimpulan yang dapat dibuat dari pembahasan di atas adalah bahwa perolehan minyak secara signifikan dapat ditingkatkan dengan penambahan secara optimal CLB yaitu sebesar 80% berat mafc. Peningkatan Perolehan Minyak... (Muhammad Hanif) 49

PENGARUH PENAMBAHAN SULFUR PADA PROSES PENCAIRAN BATUBARA BANKO

PENGARUH PENAMBAHAN SULFUR PADA PROSES PENCAIRAN BATUBARA BANKO PENGARUH PENAMBAHAN SULFUR PADA PROSES PENCAIRAN BATUBARA BANKO Herman Hidayat dan Adiarso Balai Besar Teknologi Energi, Puspiptek Serpong Badan Pengkajian dan Penerapan Teknologi Abstract The effect of

Lebih terperinci

ANALISIS KONSUMSI HIDROGEN PADA PENCAIRAN BATUBARA BANKO TENGAH DAN RESIDU KILANG MINYAK BALIKPAPAN

ANALISIS KONSUMSI HIDROGEN PADA PENCAIRAN BATUBARA BANKO TENGAH DAN RESIDU KILANG MINYAK BALIKPAPAN ANALISIS KONSUMSI HIDROGEN PADA PENCAIRAN BATUBARA BANKO TENGAH DAN RESIDU KILANG MINYAK BALIKPAPAN Hartiniati Pusat Teknologi Pengembangan Sumber Daya Energi BPPT Gedung II Lantai 22 Jl MH Thamrin no

Lebih terperinci

KARAKTERISTIK PROSES HIDROKONVERSI KATALITIK DENGAN BAHAN BAKU BITUMEN

KARAKTERISTIK PROSES HIDROKONVERSI KATALITIK DENGAN BAHAN BAKU BITUMEN KARAKTERISTIK PROSES HIDROKONVERSI KATALITIK DENGAN BAHAN BAKU BITUMEN Yusnitati 1), Muhammad Hanif 2), dan Adiarso 3) 1) Pusat Teknologi Pengembangan Sumberdaya Energi BPPT Gedung II Lantai 22 Jl MH Thamrin

Lebih terperinci

REAKTIFITAS BERBAGAI JENIS PELARUT DARI RESIDU KILANG MINYAK PLAJU PADA PENCAIRAN BATUBARA BANKO TENGAH

REAKTIFITAS BERBAGAI JENIS PELARUT DARI RESIDU KILANG MINYAK PLAJU PADA PENCAIRAN BATUBARA BANKO TENGAH REAKTIFITAS BERBAGAI JENIS PELARUT DARI RESIDU KILANG MINYAK PLAJU PADA PENCAIRAN BATUBARA BANKO TENGAH Hartiniati Pusat Teknologi Pengembangan Sumberdaya Energi BPPT Gedung II lantai 22, Jl. MH Thamrin

Lebih terperinci

ANALISIS KEUNGGULAN LIMONIT SOROAKO SEBAGAI KATALIS PENCAIRAN BATUBARA (DIRECT LIQUEFACTION)

ANALISIS KEUNGGULAN LIMONIT SOROAKO SEBAGAI KATALIS PENCAIRAN BATUBARA (DIRECT LIQUEFACTION) ANALISIS KEUNGGULAN LIMONIT SOROAKO SEBAGAI KATALIS PENCAIRAN BATUBARA (DIRECT LIQUEFACTION) Herman Hidayat 1) dan Lambok Hilarius Silalahi 2) 1) Laboratorium Sumberdaya Energi, Puspiptek, Serpong 2) Pusat

Lebih terperinci

PERBANDINGAN KARAKTERISTIK PENCAIRAN BATUBARA BANKO DAN YALLOURN SEBAGAI EFEK DARI PERUBAHAN SUPLAI HIDROGEN

PERBANDINGAN KARAKTERISTIK PENCAIRAN BATUBARA BANKO DAN YALLOURN SEBAGAI EFEK DARI PERUBAHAN SUPLAI HIDROGEN PERBANDINGAN KARAKTERISTIK PENCAIRAN BATUBARA BANKO DAN YALLOURN SEBAGAI EFEK DARI PERUBAHAN SUPLAI HIDROGEN Yuli Artanto 1) dan Yusnitati 2) 1) Laboratorium Pencairan Batubara, Puspiptek, Serpong 2) Pusat

Lebih terperinci

PEMANFAATAN RESIDU KILANG MINYAK PLAJU SEBAGAI PELARUT PADA PROSES PENCAIRAN BATUBARA (Co-Processing)

PEMANFAATAN RESIDU KILANG MINYAK PLAJU SEBAGAI PELARUT PADA PROSES PENCAIRAN BATUBARA (Co-Processing) PEMANFAATAN RESIDU KILANG MINYAK PLAJU SEBAGAI PELARUT PADA PROSES PENCAIRAN BATUBARA (Co-Processing) Muhamad Hanif Rasyid 1) dan Herman Hidayat 2) 1) Laboratorium Pencairan Batubara (CLC), Puspiptek,

Lebih terperinci

EVALUASI KINERJA KATALIS LIMONIT SOROAKO PROSES PENCAIRAN BATUBARA BANKO SELATAN

EVALUASI KINERJA KATALIS LIMONIT SOROAKO PROSES PENCAIRAN BATUBARA BANKO SELATAN EVALUASI KINERJA KATALIS LIMONIT SOROAKO PROSES PENCAIRAN BATUBARA BANKO SELATAN Lambok Hilarius Silalahi Pusat Teknologi Konservasi dan Konversi Energi Badan Pengkajian dan Penerapan Teknologi Abstract,

Lebih terperinci

KOMPARASI KARAKTERISTIK PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN AKIBAT PERUBAHAN TEMPERATUR

KOMPARASI KARAKTERISTIK PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN AKIBAT PERUBAHAN TEMPERATUR KOMPARASI KARAKTERISTIK PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN AKIBAT PERUBAHAN TEMPERATUR Yuli Artanto dan Hartiniati Pusat Teknologi Pengembangan Sumberdaya Energi Badan Pengkajian dan Penerapan

Lebih terperinci

PENGARUH TEMPERATUR PADA PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN

PENGARUH TEMPERATUR PADA PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN PENGARUH TEMPERATUR PADA PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN YALLOURN Yusnitati dan Hartiniati Pusat Teknologi Pengembangan Sumberdaya Energi, BPPT Abstract A coal liqueafaction test was carried

Lebih terperinci

OPTIMASI CO-PROCESSING DENGAN PENGATURAN RASIO PELARUT DAN BATUBARA: Studi Batubara Banko Selatan

OPTIMASI CO-PROCESSING DENGAN PENGATURAN RASIO PELARUT DAN BATUBARA: Studi Batubara Banko Selatan OPTIMASI CO-PROCESSING DENGAN PENGATURAN RASIO PELARUT DAN BATUBARA: Studi Batubara Banko Selatan Lambok Hilarius Silalahi Pusat Pengembangan Teknologi Sumberdaya Energi BPPT Gedung II Lantai 22 Jl. M.H.

Lebih terperinci

KAJIAN GEOKIMIA ORGANIK PRODUK PENCAIRAN BATUBARA LOW RANK KALIMANTAN TIMUR

KAJIAN GEOKIMIA ORGANIK PRODUK PENCAIRAN BATUBARA LOW RANK KALIMANTAN TIMUR KAJIAN GEOKIMIA ORGANIK PRODUK PENCAIRAN BATUBARA LOW RANK KALIMANTAN TIMUR Oleh: ELIS DIANA ULFA 1409201720 Dosen Pembimbing: Prof. Dr. R.Y. PERRY BURHAN, M. Sc ALUR BAHASAN: 1. Pendahuluan Latar belakang

Lebih terperinci

RISET REAKTIFITAS LIMONIT SOROAKO SEBAGAI KATALIS PADA PENCAIRAN BATUBARA DENGAN GAS FLOW TYPE REACTOR

RISET REAKTIFITAS LIMONIT SOROAKO SEBAGAI KATALIS PADA PENCAIRAN BATUBARA DENGAN GAS FLOW TYPE REACTOR RISET REAKTIFITAS LIMONIT SOROAKO SEBAGAI KATALIS PADA PENCAIRAN BATUBARA DENGAN GAS FLOW TYPE REACTOR Herman Hidayat 1) dan Lambok Hilarius Silalahi 2) 1) Laboratorium Sumber Daya Energi 2) Pusat Teknologi

Lebih terperinci

HIDROKONVERSI KATALITIK RESIDU MINYAK BUMI: PENGARUH TEMPERATUR DAN WAKTU REAKSI

HIDROKONVERSI KATALITIK RESIDU MINYAK BUMI: PENGARUH TEMPERATUR DAN WAKTU REAKSI Reaktor, Vol. 10 No. 2, Desember 2006, Hal. : 82-87 HIDROKONVERSI KATALITIK RESIDU MINYAK BUMI: PENGARUH TEMPERATUR DAN WAKTU REAKSI Hartiniati *) Abstrak Uji terhadap proses hidro-konversi katalitik residu

Lebih terperinci

PENGARUH TEMPERATUR DAN WAKTU REAKSI PADA KONVERSI KATALITIK RESIDU MINYAK BUMI

PENGARUH TEMPERATUR DAN WAKTU REAKSI PADA KONVERSI KATALITIK RESIDU MINYAK BUMI PENGARUH TEMPERATUR DAN WAKTU REAKSI PADA KONVERSI KATALITIK RESIDU MINYAK BUMI Hartiniati Pusat Pengembangan Teknologi Sumberdaya Energi BPPT Gedung II Lt. 22 Jl. MH. Thamrin No. 8 Jakarta 10340 Abstract

Lebih terperinci

KORELASI KARAKTER BIOMARKA BATUBARA MEDIUM RANK KALIMANTAN TIMUR DENGAN PRODUK PENCAIRANNYA

KORELASI KARAKTER BIOMARKA BATUBARA MEDIUM RANK KALIMANTAN TIMUR DENGAN PRODUK PENCAIRANNYA KORELASI KARAKTER BIOMARKA BATUBARA MEDIUM RANK KALIMANTAN TIMUR DENGAN PRODUK PENCAIRANNYA Latar Belakang SUMBER ENERGI 1. Pendahuluan Kompatibel Kurang Kompatibel Minyak Bumi Gas Alam Batubara Bahan

Lebih terperinci

BAB I PENDAHULUAN Latar Belakang

BAB I PENDAHULUAN Latar Belakang BAB I PENDAHULUAN 1.1. Latar Belakang Batubara merupakan endapan sedimen yang terdiri dari komponen organik dan anorganik, bagian organik disebut maseral sedangkan bagian anorganik disebut mineral. Karakteristik

Lebih terperinci

UJI SULFIDASI BIJIH BESI KALIMANTAN SELATAN DAN AMPAS PENGOLAHAN TEMBAGA PT. FREEPORT INDONESIA UNTUK KATALIS PENCAIRAN BATUBARA

UJI SULFIDASI BIJIH BESI KALIMANTAN SELATAN DAN AMPAS PENGOLAHAN TEMBAGA PT. FREEPORT INDONESIA UNTUK KATALIS PENCAIRAN BATUBARA UJI SULFIDASI BIJIH BESI KALIMANTAN SELATAN DAN AMPAS PENGOLAHAN TEMBAGA PT. FREEPORT INDONESIA UNTUK KATALIS PENCAIRAN BATUBARA Nining Sudini Ningrum Pusat Penelitian dan Pengembangan Teknologi Mineral

Lebih terperinci

EFEK KATALITIK Natrium-AlO 2 PADA PROSES PENCAIRAN BATUBARA TANPA PELARUT HIDROGEN DONOR

EFEK KATALITIK Natrium-AlO 2 PADA PROSES PENCAIRAN BATUBARA TANPA PELARUT HIDROGEN DONOR EFEK KATALITIK Natrium-AlO 2 PADA PROSES PENCAIRAN BATUBARA TANPA PELARUT HIDROGEN DONOR Yuli Artanto dan Yusnitati Laboratorium Pencairan Batubara,Puspiptek,serpong Badan Pengkajian dan Penerapan Teknologi

Lebih terperinci

Oleh : ENDAH DAHYANINGSIH RAHMASARI IBRAHIM DOSEN PEMBIMBING Prof. Dr. Ir. Achmad Roesyadi, DEA NIP

Oleh : ENDAH DAHYANINGSIH RAHMASARI IBRAHIM DOSEN PEMBIMBING Prof. Dr. Ir. Achmad Roesyadi, DEA NIP Oleh : ENDAH DAHYANINGSIH 2311105008 RAHMASARI IBRAHIM 2311105023 DOSEN PEMBIMBING Prof. Dr. Ir. Achmad Roesyadi, DEA NIP. 19500428 197903 1 002 LABORATORIUM TEKNIK REAKSI KIMIA JURUSAN TEKNIK KIMIA FAKULTAS

Lebih terperinci

BAB III METODOLOGI PENELITIAN. tahun 2011 di Laboratorium riset kimia makanan dan material untuk preparasi

BAB III METODOLOGI PENELITIAN. tahun 2011 di Laboratorium riset kimia makanan dan material untuk preparasi BAB III METODOLOGI PENELITIAN 3.1 Waktu dan Tempat Penelitiaan Penelitian dilaksanakan pada bulan Februari sampai dengan September tahun 2011 di Laboratorium riset kimia makanan dan material untuk preparasi

Lebih terperinci

BAB III BAB III METODE PENELITIAN. Penelitian dilaksanakan pada bulan Februari sampai dengan September

BAB III BAB III METODE PENELITIAN. Penelitian dilaksanakan pada bulan Februari sampai dengan September BAB III BAB III METODE PENELITIAN 3.1 Waktu dan Tempat Penelitian Penelitian dilaksanakan pada bulan Februari sampai dengan September tahun 2011 di Laboratorium Riset kimia makanan dan material, untuk

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Salah satu permasalahan nasional dewasa ini dan semakin dirasakan pada masa mendatang adalah masalah energi. Perkembangan teknologi, industri dan transportasi yang

Lebih terperinci

Prarancangan Pabrik Hidrorengkah Aspal Buton dengan Katalisator Ni/Mo dengan Kapasitas 90,000 Ton/Tahun BAB I PENGANTAR

Prarancangan Pabrik Hidrorengkah Aspal Buton dengan Katalisator Ni/Mo dengan Kapasitas 90,000 Ton/Tahun BAB I PENGANTAR BAB I PENGANTAR A. Latar Belakang Dewasa ini permasalahan krisis energi cukup menjadi perhatian utama dunia, hal ini disebabkan menipisnya sumber daya persediaan energi tak terbarukan seperti minyak bumi

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Penelitian ini didahului dengan perlakuan awal bahan baku untuk mengurangi pengotor yang terkandung dalam abu batubara. Penentuan pengaruh parameter proses dilakukan dengan cara

Lebih terperinci

Pemanfaatan Bentonit Dan Karbon Sebagai Support Katalis NiO-MgO Pada Hidrogenasi Gliserol

Pemanfaatan Bentonit Dan Karbon Sebagai Support Katalis NiO-MgO Pada Hidrogenasi Gliserol Pemanfaatan Bentonit Dan Karbon Sebagai Support Katalis NiO-MgO Pada Hidrogenasi Gliserol Oleh : Ferlyna Sari 2312 105 029 Iqbaal Abdurrokhman 2312 105 035 Pembimbing : Ir. Ignatius Gunardi, M.T NIP 1955

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN 4.1 Perlakuan Awal dan Karakteristik Abu Batubara Abu batubara yang digunakan untuk penelitian ini terdiri dari 2 jenis, yaitu abu batubara hasil pembakaran di boiler tungku

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN

BAB IV HASIL DAN PEMBAHASAN BAB IV HASIL DAN PEMBAHASAN IV.1. KARAKTERISTIK BATUBARA Sampel batubara yang digunakan dalam eksperimen adalah batubara subbituminus. Dengan pengujian proksimasi dan ultimasi yang telah dilakukan oleh

Lebih terperinci

OLEH : SHOLEHUL HADI ( ) DOSEN PEMBIMBING : Ir. SUDJUD DARSOPUSPITO, MT.

OLEH : SHOLEHUL HADI ( ) DOSEN PEMBIMBING : Ir. SUDJUD DARSOPUSPITO, MT. PENGARUH VARIASI PERBANDINGAN UDARA- BAHAN BAKAR TERHADAP KUALITAS API PADA GASIFIKASI REAKTOR DOWNDRAFT DENGAN SUPLAI BIOMASSA SERABUT KELAPA SECARA KONTINYU OLEH : SHOLEHUL HADI (2108 100 701) DOSEN

Lebih terperinci

SISTEM GASIFIKASI FLUIDIZED BED BERBAHAN BAKAR LIMBAH RUMAH POTONG HEWAN DENGAN INERT GAS CO2

SISTEM GASIFIKASI FLUIDIZED BED BERBAHAN BAKAR LIMBAH RUMAH POTONG HEWAN DENGAN INERT GAS CO2 SISTEM GASIFIKASI FLUIDIZED BED BERBAHAN BAKAR LIMBAH RUMAH POTONG HEWAN DENGAN INERT GAS CO2 Oleh : I Gede Sudiantara Pembimbing : Prof. I Nyoman Suprapta Winaya, ST.,Masc.,Ph.D. I Gusti Ngurah Putu Tenaya,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN 17 BAB III METODE PENELITIAN Dalam bab ini akan dibahas diagram alir proses penelitian, peralatan dan bahan yang digunakan, variabel penelitian dan prosedur penelitian. Penelitian dilakukan di Laboratorium

Lebih terperinci

Bab II Teknologi CUT

Bab II Teknologi CUT Bab II Teknologi CUT 2.1 Peningkatan Kualitas Batubara 2.1.1 Pengantar Batubara Batubara merupakan batuan mineral hidrokarbon yang terbentuk dari tumbuh-tumbuhan yang telah mati dan terkubur di dalam bumi

Lebih terperinci

4 Hasil dan Pembahasan

4 Hasil dan Pembahasan 4 Hasil dan Pembahasan Sebelum dilakukan sintesis katalis Cu/ZrSiO 4, serbuk zirkon (ZrSiO 4, 98%) yang didapat dari Program Studi Metalurgi ITB dicuci terlebih dahulu menggunakan larutan asam nitrat 1,0

Lebih terperinci

HIDRODESULFURISASI TIOFEN MENGGUNAKAN KATALIS CoMo/H-ZEOLIT Y

HIDRODESULFURISASI TIOFEN MENGGUNAKAN KATALIS CoMo/H-ZEOLIT Y HIDRODESULFURISASI TIOFEN MENGGUNAKAN KATALIS CoMo/H-ZEOLIT Y Rustam Musta Abstrak: Telah dilakukan penelitian terhadap reaksi hidrodesulfurisasi (HDS) tiofen menggunakan katalis CoMo/H-zeolit Y. Proses

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang

BAB I PENDAHULUAN 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Bahan bakar minyak bumi adalah salah satu sumber energi utama yang banyak digunakan berbagai negara di dunia pada saat ini. Menurut Badan Pengkajian dan Penerapan Teknologi

Lebih terperinci

II. DESKRIPSI PROSES

II. DESKRIPSI PROSES II. DESKRIPSI PROSES Usaha produksi dalam pabrik kimia membutuhkan berbagai sistem proses dan sistem pemroses yang dirangkai dalam suatu sistem proses produksi yang disebut teknologi proses. Secara garis

Lebih terperinci

BAB I PENDAHULUAN. 1.1 Latar Belakang

BAB I PENDAHULUAN. 1.1 Latar Belakang BAB I PENDAHULUAN 1.1 Latar Belakang Pemakaian batubara sebagai sumber energi telah menjadi salah satu pilihan di Indonesia sejak harga bahan bakar minyak (BBM) berfluktuasi dan cenderung semakin mahal.

Lebih terperinci

BAB I PENDAHULUAN. Kebutuhan akan pemenuhan energi semakin meningkat seiring dengan

BAB I PENDAHULUAN. Kebutuhan akan pemenuhan energi semakin meningkat seiring dengan BAB I PENDAHULUAN 1.1 Latar Belakang Masalah Kebutuhan akan pemenuhan energi semakin meningkat seiring dengan pertumbuhan ekonomi, penduduk, pengembangan wilayah, dan pembangunan dari tahun ke tahun. Selama

Lebih terperinci

BAB III METODELOGI PENELITIAN

BAB III METODELOGI PENELITIAN BAB III METODELOGI PENELITIAN 3.1 ALAT DAN BAHAN Pada penelitian ini alat-alat yang digunakan meliputi: 1. Lemari oven. 2. Pulverizing (alat penggerus). 3. Spatula/sendok. 4. Timbangan. 5. Kaca arloji

Lebih terperinci

HIDRORENGKAH FRAKSI BERAT MINYAK BUMI MENGGUNAKAN KATALIS LEMPUNG TERPILAR ALUMINIUM BERPENGEMBAN NIKEL

HIDRORENGKAH FRAKSI BERAT MINYAK BUMI MENGGUNAKAN KATALIS LEMPUNG TERPILAR ALUMINIUM BERPENGEMBAN NIKEL HIDRORENGKAH FRAKSI BERAT MINYAK BUMI MENGGUNAKAN KATALIS LEMPUNG TERPILAR ALUMINIUM BERPENGEMBAN NIKEL Adi Darmawan Laboratorium Kimia Anorganik Jurusan Kimia Fakultas MIPA Universitas Diponegoro Semarang

Lebih terperinci

Regenerasi Katalis Ni-Zeolit Alam Aktif Untuk Hidrocracking Minyak Jarak Pagar

Regenerasi Katalis Ni-Zeolit Alam Aktif Untuk Hidrocracking Minyak Jarak Pagar Prosiding Semirata FMIPA Universitas Lampung, 2013 Regenerasi Katalis Ni-Zeolit Alam Aktif Untuk Hidrocracking Minyak Zainal Fanani*, Addy Rachmat*, Iwan Wahyudi *Jurusan Kimia, FMIPA UNSRI email: zainalf313@yahoo.co.id

Lebih terperinci

PEMBUATAN DIETIL ETER DENGAN BAHAN BAKU ETANOL DAN KATALIS ZEOLIT DENGAN METODE ADSORBSI REAKSI

PEMBUATAN DIETIL ETER DENGAN BAHAN BAKU ETANOL DAN KATALIS ZEOLIT DENGAN METODE ADSORBSI REAKSI PEMBUATAN DIETIL ETER DENGAN BAHAN BAKU ETANOL DAN KATALIS ZEOLIT DENGAN METODE ADSORBSI REAKSI Ananta Kharismadi (2306100112) Agy Yogha Pradana (2306100114) Pembimbing : Prof. Dr. Ir. Achmad Roesyadi,

Lebih terperinci

Bab IV Hasil Penelitian dan Pembahasan

Bab IV Hasil Penelitian dan Pembahasan Bab IV Hasil Penelitian dan Pembahasan Pada penelitian ini, proses pembuatan monogliserida melibatkan reaksi gliserolisis trigliserida. Sumber dari trigliserida yang digunakan adalah minyak goreng sawit.

Lebih terperinci

PRODUKSI BIOFUEL DARI MINYAK KELAPA SAWIT DENGAN KATALIS PADAT CaO/γ-Al 2 O 3 dan CoMo/γ-Al 2 O 3

PRODUKSI BIOFUEL DARI MINYAK KELAPA SAWIT DENGAN KATALIS PADAT CaO/γ-Al 2 O 3 dan CoMo/γ-Al 2 O 3 PRODUKSI BIOFUEL DARI MINYAK KELAPA SAWIT DENGAN KATALIS PADAT CaO/γ-Al 2 O 3 dan CoMo/γ-Al 2 O 3 Maya Kurnia Puspita Ayu 238.1.66 Pembimbing : 1. Prof. Dr. Ir. Achmad Roesyadi, DEA 2. Ir. Ignatius Gunardi,

Lebih terperinci

Prarancangan Pabrik Xylidine Dari Nitroxylene Dengan Proses Hidrogenasi Kapasitas Ton/Tahun BAB I PENGANTAR

Prarancangan Pabrik Xylidine Dari Nitroxylene Dengan Proses Hidrogenasi Kapasitas Ton/Tahun BAB I PENGANTAR A. LATAR BELAKANG BAB I PENGANTAR Sebagai negara berkembang diharapkan Indonesia dapat memproduksi banyak senyawa-senyawa strategis demi kemandirian dan kesejahteraan bangsa. Pertumbuhan industri Indonesia

Lebih terperinci

PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT

PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT PENGARUH UKURAN PARTIKEL BATU APUNG TERHADAP KEMAMPUAN SERAPAN CAIRAN LIMBAH LOGAM BERAT Aditiya Yolanda Wibowo, Ardian Putra Laboratorium Fisika Bumi, Jurusan Fisika FMIPA Universitas Andalas Kampus Unand,

Lebih terperinci

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA

PENGETAHUAN PROSES PADA UNIT SINTESIS UREA BAB V PENGETAHUAN PROSES PADA UNIT SINTESIS UREA V.I Pendahuluan Pengetahuan proses dibutuhkan untuk memahami perilaku proses agar segala permasalahan proses yang terjadi dapat ditangani dan diselesaikan

Lebih terperinci

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat

I. PENDAHULUAN. aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat I. PENDAHULUAN A. Latar Belakang Pembuatan mesin pada awalnya bertujuan untuk memberikan kemudahan dalam aktifitas yang diluar kemampuan manusia. Umumnya mesin merupakan suatu alat yang berfungsi untuk

Lebih terperinci

4006 Sintesis etil 2-(3-oksobutil)siklopentanon-2-karboksilat

4006 Sintesis etil 2-(3-oksobutil)siklopentanon-2-karboksilat NP 4006 Sintesis etil 2-(3-oksobutil)siklopentanon-2-karboksilat CEt + FeCl 3 x 6 H 2 CEt C 8 H 12 3 C 4 H 6 C 12 H 18 4 (156.2) (70.2) (270.3) (226.3) Klasifikasi Tipe reaksi dan penggolongan bahan Adisi

Lebih terperinci

Prarancangan Pabrik Isooktan dari Diisobutene dan Hidrogen dengan Kapasitas ton/tahun BAB I PENGANTAR

Prarancangan Pabrik Isooktan dari Diisobutene dan Hidrogen dengan Kapasitas ton/tahun BAB I PENGANTAR BAB I PENGANTAR A. Latar Belakang Di dalam mesin kendaraan bermotor, idealnya campuran udara dan bahan bakar (bensin) dalam bentuk gas yang masuk, ditekan oleh piston sampai volume yang sangat kecil, kemudian

Lebih terperinci

MAKALAH PENYEDIAAN ENERGI SEMESTER GENAP TAHUN AJARAN 2014/2015 GASIFIKASI BATU BARA

MAKALAH PENYEDIAAN ENERGI SEMESTER GENAP TAHUN AJARAN 2014/2015 GASIFIKASI BATU BARA MAKALAH PENYEDIAAN ENERGI SEMESTER GENAP TAHUN AJARAN 2014/2015 GASIFIKASI BATU BARA Diajukan Untuk Memenuhi Salah Satu Tugas Mata Kuliah Penyediaan Energi Dosen Pengajar : Ir. Yunus Tonapa Oleh : Nama

Lebih terperinci

KARAKTERISTIK BATUBARA DAN PENGARUHNYA TERHADAP PROSES PENCAIRAN

KARAKTERISTIK BATUBARA DAN PENGARUHNYA TERHADAP PROSES PENCAIRAN KARAKTERISTIK BATUBARA DAN PENGARUHNYA TERHADAP PROSES PENCAIRAN Harli Talla *), Hendra Amijaya, Agung Harijoko, dan Miftahul Huda Jurusan Teknik Geologi, Fakultas Teknik, Universitas Gadjah Mada Jl. Grafika

Lebih terperinci

BAB I PENDAHULUAN. pengolahan mineral. Proses-proses pemisahan senantiasa mengalami. pemisahan menjadi semakin menarik untuk dikaji lebih jauh.

BAB I PENDAHULUAN. pengolahan mineral. Proses-proses pemisahan senantiasa mengalami. pemisahan menjadi semakin menarik untuk dikaji lebih jauh. BAB I PENDAHULUAN 1.1. Latar Belakang Masalah Proses pemisahan memiliki peran penting dalam industri seperti industri kimia, petrokimia, pengolahan pangan, farmasi, pengolahan minyak bumi, atau pengolahan

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas Ton/Tahun BAB I PENDAHULUAN BAB I PENDAHULUAN Kelapa sawit merupakan salah satu komoditas utama yang dikembangkan di Indonesia. Dewasa ini, perkebunan kelapa sawit semakin meluas. Hal ini dikarenakan kelapa sawit dapat meningkatkan

Lebih terperinci

UJICOBA PERALATAN PENYULINGAN MINYAK SEREH WANGI SISTEM UAP PADA IKM I N T I S A R I

UJICOBA PERALATAN PENYULINGAN MINYAK SEREH WANGI SISTEM UAP PADA IKM I N T I S A R I UJICOBA PERALATAN PENYULINGAN MINYAK SEREH WANGI SISTEM UAP PADA IKM I N T I S A R I Ujicoba peralatan penyulingan minyak sereh wangi sistem uap pada IKM bertujuan untuk memanfaatkan potensi sereh wangi;menyebarluaskan

Lebih terperinci

Bab III Metode Penelitian

Bab III Metode Penelitian Bab III Metode Penelitian Metode yang akan digunakan untuk pembuatan monogliserida dalam penelitian ini adalah rute gliserolisis trigliserida. Sebagai sumber literatur utama mengacu kepada metoda konvensional

Lebih terperinci

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fisik Universitas

III. METODE PENELITIAN. Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fisik Universitas 39 III. METODE PENELITIAN A. Waktu dan Tempat Penelitian Penelitian ini dilakukan di Laboratorium Kimia Anorganik Fisik Universitas Lampung. Analisis distribusi ukuran partikel dilakukan di UPT. Laboratorium

Lebih terperinci

METODE PENELITIAN. Waktu pelaksanaan penelitian dilakukan pada bulan Juli-Desember 2012 bertempat di

METODE PENELITIAN. Waktu pelaksanaan penelitian dilakukan pada bulan Juli-Desember 2012 bertempat di III. METODE PENELITIAN 3.1 Waktu dan Tempat Waktu pelaksanaan penelitian dilakukan pada bulan Juli-Desember 2012 bertempat di empat lokasi digester biogas skala rumah tangga yang aktif beroperasi di Provinsi

Lebih terperinci

Pengaruh Suhu Terhadap Hasil Konversi Pencairan Batubara (Studi kasus batubara Formasi Klasaman Papua Barat dan Formasi Warukin Kalimantan Selatan)

Pengaruh Suhu Terhadap Hasil Konversi Pencairan Batubara (Studi kasus batubara Formasi Klasaman Papua Barat dan Formasi Warukin Kalimantan Selatan) Pengaruh Suhu Terhadap Hasil Konversi Pencairan Batubara (Studi kasus batubara Formasi Klasaman Papua Barat dan Formasi Warukin Kalimantan Selatan) The Influence of Temperature to Conversion Result of

Lebih terperinci

BAB IV HASIL DAN PEMBAHASAN Hasil Preparasi Awal Bahan Dasar Karbon Aktif dari Tempurung Kelapa dan Batu Bara

BAB IV HASIL DAN PEMBAHASAN Hasil Preparasi Awal Bahan Dasar Karbon Aktif dari Tempurung Kelapa dan Batu Bara 23 BAB IV HASIL DAN PEMBAHASAN Pada bab hasil dan pembahasan ini akan diuraikan mengenai hasil preparasi bahan dasar karbon aktif dari tempurung kelapa dan batu bara, serta hasil karakterisasi luas permukaan

Lebih terperinci

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI 1. Untuk membuat 500 ml larutan H2SO4 0.05 M dibutuhkan larutan H2SO4 5 M sebanyak ml a. 5 ml b. 10 ml c. 2.5 ml d. 15 ml e. 5.5

Lebih terperinci

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN

Prarancangan Pabrik Asam Stearat dari Minyak Kelapa Sawit Kapasitas ton/tahun BAB I PENDAHULUAN BAB I PENDAHULUAN 1.1 Latar Belakang Industri kimia memiliki peranan penting dalam kehidupan masyarakat dikarenakan industri kimia banyak memproduksi barang mentah maupun barang jadi untuk mencukupi kebutuhan

Lebih terperinci

BAB 1 PENDAHULUAN. meningkat, Peningkatan kebutuhan energi yang tidak diimbangi. pengurangan sumber energy yang tersedia di dunia.

BAB 1 PENDAHULUAN. meningkat, Peningkatan kebutuhan energi yang tidak diimbangi. pengurangan sumber energy yang tersedia di dunia. BAB 1 PENDAHULUAN 1.1. Latar Belakang Semakin lama kebutuhan energy di dunia ini semakin meningkat, Peningkatan kebutuhan energi yang tidak diimbangi dengan peningkatan sumber energy dapat mengakibatkan

Lebih terperinci

ZAHRA NURI NADA YUDHO JATI PRASETYO

ZAHRA NURI NADA YUDHO JATI PRASETYO SKRIPSI TK091383 PEMBUATAN HIDROGEN DARI GLISEROL DENGAN KATALIS KARBON AKTIF DAN Ni/HZSM-5 DENGAN METODE PEMANASAN KONVENSIONAL ZAHRA NURI NADA 2310100031 YUDHO JATI PRASETYO 2310100070 Dosen Pembimbing:

Lebih terperinci

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN :

PRISMA FISIKA, Vol. I, No. 1 (2013), Hal ISSN : Pengaruh Suhu Aktivasi Terhadap Kualitas Karbon Aktif Berbahan Dasar Tempurung Kelapa Rosita Idrus, Boni Pahlanop Lapanporo, Yoga Satria Putra Program Studi Fisika, FMIPA, Universitas Tanjungpura, Pontianak

Lebih terperinci

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI

FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI BAB VI FORMULASI PENGETAHUAN PROSES MELALUI SIMULASI ALIRAN FLUIDA TIGA DIMENSI VI.1 Pendahuluan Sebelumnya telah dibahas pengetahuan mengenai konversi reaksi sintesis urea dengan faktor-faktor yang mempengaruhinya.

Lebih terperinci

BAB IV METODOLOGI PENELITIAN

BAB IV METODOLOGI PENELITIAN BAB IV METODOLOGI PENELITIAN 4.1. Persiapan Bahan Baku 4.1.1 Silika Terpresipitasi Abu sawit yang berasal dari pabrik pengolahan sawit, terlebih dahulu dikonversi menjadi silika terpresipitasi dengan cara

Lebih terperinci

SKRIPSI. Diajukan untuk memenuhi salah satu persyaratan tugas akhir guna memperoleh gelar Sarjana Teknik

SKRIPSI. Diajukan untuk memenuhi salah satu persyaratan tugas akhir guna memperoleh gelar Sarjana Teknik SKRIPSI PENGOLAHAN LIMBAH CAIR KADAR COD DAN FENOL TINGGI DENGAN PROSES ANAEROB DAN PENGARUH MIKRONUTRIENT Cu : KASUS LIMBAH INDUSTRI JAMU TRADISIONAL Diajukan untuk memenuhi salah satu persyaratan tugas

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Energi merupakan salah satu kebutuhan wajib bagi seluruh masyarakat dunia, khususnya masyarakat Indonesia. Bahan bakar minyak (BBM) menjadi salah satu

Lebih terperinci

UJI PENINGKATAN MUTU BATUBARA PERINGKAT RENDAH SUMATERA SELATAN

UJI PENINGKATAN MUTU BATUBARA PERINGKAT RENDAH SUMATERA SELATAN UJI PENINGKATAN MUTU BATUBARA PERINGKAT RENDAH SUMATERA SELATAN Hartiniati Pusat Teknologi Pengembangan Sumberdaya Energi BPPT Gedung II Lantai 22 Jl MH Thamrin 8 Jakarta 10340 E-mail: hartiniati@yahoo.com

Lebih terperinci

BAB I PENDAHULUAN. Indonesia memiliki sumberdaya batubara yang cukup melimpah, yaitu 105.2

BAB I PENDAHULUAN. Indonesia memiliki sumberdaya batubara yang cukup melimpah, yaitu 105.2 BAB I PENDAHULUAN 1.1 Latar Belakang Indonesia memiliki sumberdaya batubara yang cukup melimpah, yaitu 105.2 miliar ton dengan cadangan 21.13 miliar ton (menurut Dirjen Minerba Kementrian ESDM Bambang

Lebih terperinci

BAB II TINJAUAN PUSTAKA

BAB II TINJAUAN PUSTAKA BAB II TINJAUAN PUSTAKA Minyak bumi terutama terdiri dari campuran senyawa-senyawa hidrokarbon yang sangat kompleks, yaitu senyawa-senyawa organik yang mengandung unsurunsur karbon dan hidrogen. Di samping

Lebih terperinci

4028 Sintesis 1-bromododekana dari 1-dodekanol

4028 Sintesis 1-bromododekana dari 1-dodekanol 4028 Sintesis 1-bromododekana dari 1-dodekanol C 12 H 26 O (186.3) OH H 2 SO 4 konz. (98.1) + HBr (80.9) C 12 H 25 Br (249.2) Br + H 2 O (18.0) Klasifikasi Tipe reaksi dan penggolongan bahan Substitusi

Lebih terperinci

c. Suhu atau Temperatur

c. Suhu atau Temperatur Pada laju reaksi terdapat faktor-faktor yang dapat mempengaruhi laju reaksi. Selain bergantung pada jenis zat yang beraksi laju reaksi dipengaruhi oleh : a. Konsentrasi Pereaksi Pada umumnya jika konsentrasi

Lebih terperinci

METODOLOGI A. BAHAN DAN ALAT 1. Bahan a. Bahan Baku b. Bahan kimia 2. Alat B. METODE PENELITIAN 1. Pembuatan Biodiesel

METODOLOGI A. BAHAN DAN ALAT 1. Bahan a. Bahan Baku b. Bahan kimia 2. Alat B. METODE PENELITIAN 1. Pembuatan Biodiesel METODOLOGI A. BAHAN DAN ALAT 1. Bahan a. Bahan Baku Bahan baku yang digunakan untuk penelitian ini adalah gliserol kasar (crude glycerol) yang merupakan hasil samping dari pembuatan biodiesel. Adsorben

Lebih terperinci

PENGEMBANGAN MATERIAL SEMEN BERBAHAN DASAR INSINERASI LIMBAH RUMAH SAKIT DENGAN TEKNOLOGI HIDROTERMAL

PENGEMBANGAN MATERIAL SEMEN BERBAHAN DASAR INSINERASI LIMBAH RUMAH SAKIT DENGAN TEKNOLOGI HIDROTERMAL PENGEMBANGAN MATERIAL SEMEN BERBAHAN DASAR INSINERASI LIMBAH RUMAH SAKIT DENGAN TEKNOLOGI HIDROTERMAL Ade Ramos Ferdinand *, Agus Tri Prasetyo, Athanasius Priharyoto Bayuseno Magister Teknik Mesin, Fakultas

Lebih terperinci

Perbandingan aktivitas katalis Ni dan katalis Cu pada reaksi hidrogenasi metil ester untuk pembuatan surfaktan

Perbandingan aktivitas katalis Ni dan katalis Cu pada reaksi hidrogenasi metil ester untuk pembuatan surfaktan Perbandingan aktivitas katalis Ni dan katalis Cu pada reaksi hidrogenasi metil ester untuk pembuatan surfaktan Tania S. Utami *), Rita Arbianti, Heri Hermansyah, Wiwik H., dan Desti A. Departemen Teknik

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN A. JenisPenelitian, Rancangan Penelitian atau Metode Pendekatan Jenis penelitian ini adalah quasi experiment (eksperimen semu) dengan rancangan penelitian non randomized pretest-postest

Lebih terperinci

Laju reaksi meningkat menjadi 2 kali laju reaksi semula pada setiap kenaikan suhu 15 o C. jika pada suhu 30 o C reaksi berlangsung 64 menit, maka

Laju reaksi meningkat menjadi 2 kali laju reaksi semula pada setiap kenaikan suhu 15 o C. jika pada suhu 30 o C reaksi berlangsung 64 menit, maka Laju reaksi meningkat menjadi 2 kali laju reaksi semula pada setiap kenaikan suhu 15 o C. jika pada suhu 30 o C reaksi berlangsung 64 menit, maka waktu reaksi berlangsung pada suhu 90 o C Susu dipasteurisasi

Lebih terperinci

PERENGKAHAN FRAKSI BERAT MINYAK BUMI MENGGUNAKAN Ni-H-FAUJASIT DARI ABU LAYANG BATU BARA

PERENGKAHAN FRAKSI BERAT MINYAK BUMI MENGGUNAKAN Ni-H-FAUJASIT DARI ABU LAYANG BATU BARA 15 PERENGKAHAN FRAKSI BERAT MINYAK BUMI MENGGUNAKAN Ni-H-FAUJASIT DARI ABU LAYANG BATU BARA Hydrocracking of Heavy Fraction Petroleum using Ni-H-Faujasite Synthesized from Coal Fly Ash Sunardi Program

Lebih terperinci

EVALUASI REAKTIFITAS KATALIS NiMo DALAM PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN AUSTRALIAN LOY YANG

EVALUASI REAKTIFITAS KATALIS NiMo DALAM PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN AUSTRALIAN LOY YANG EVALUASI REAKTIFITAS KATALIS NiMo DALAM PROSES PENCAIRAN BATUBARA BANKO SELATAN DAN AUSTRALIAN LOY YANG Hartiniati Laboratorium Pencairan Batubara, BPPT, Puspiptek, Serpong Abstract Indonesia South Banko

Lebih terperinci

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Penelitian

BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Penelitian BAB I PENDAHULUAN 1.1 Latar Belakang dan Permasalahan Penelitian Katalis umumnya diartikan sebagai bahan yang dapat mempercepat suatu reaksi kimia menjadi produk. Hal ini perlu diketahui karena, pada dasarnya

Lebih terperinci

Sulfur dan Asam Sulfat

Sulfur dan Asam Sulfat Pengumpulan 1 Rabu, 17 September 2014 Sulfur dan Asam Sulfat Disusun untuk memenuhi Tugas Proses Industri Kimia Dosen Pembimbing : Prof. Dr. Ir. Chandrawati Cahyani, M.S. Ayu Diarahmawati (135061101111016)

Lebih terperinci

EKSTRAKSI ASPHALTENE DARI MINYAK BUMI

EKSTRAKSI ASPHALTENE DARI MINYAK BUMI EKSTRAKSI ASPHALTENE DARI MINYAK BUMI Adharatiwi Dida Siswadi dan Gita Permatasari Jurusan Teknik Kimia, Fak. Teknik, Universitas Diponegoro Jln. Prof. Soedarto, Tembalang, Semarang, 50239, Telp/Fax: (024)7460058

Lebih terperinci

BAB 3 METODE PENELITIAN. Adapun alat alat yang digunakan dalam penelitian ini adalah :

BAB 3 METODE PENELITIAN. Adapun alat alat yang digunakan dalam penelitian ini adalah : 30 BAB 3 METODE PENELITIAN 3.1. Alat dan Bahan 3.1.1. Alat Adapun alat alat yang digunakan dalam penelitian ini adalah : Beaker glass 250 ml Blender Cawan platina Gelas ukur 200 ml Gunting Kertas saring

Lebih terperinci

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI

KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI KUMPULAN SOAL-SOAL KIMIA LAJU REAKSI 1. Untuk membuat 500 ml larutan H 2 SO 4 0.05 M dibutuhkan larutan H 2 SO 4 5 M sebanyak ml a. 5 ml b. 10 ml c. 2.5 ml d. 15 ml e. 5.5 ml 2. Konsentrasi larutan yang

Lebih terperinci

Hidrocracking Tir Batubara Menggunakan Katalis Ni-Mo-S/ZAA untuk Menghasilkan Fraksi bensin dan Fraksi Kerosin

Hidrocracking Tir Batubara Menggunakan Katalis Ni-Mo-S/ZAA untuk Menghasilkan Fraksi bensin dan Fraksi Kerosin Jurnal Penelitian Sains Edisi Khusus Juni 2010 (C) 10:06-08 Hidrocracking Tir Batubara Menggunakan Katalis Ni-Mo-S/ZAA untuk Menghasilkan Fraksi bensin dan Fraksi Kerosin Zainal Fanani Jurusan Kimia FMIPA,

Lebih terperinci

BAB III METODE PENELITIAN. Proses polimerisasi stirena dilakukan dengan sistem seeding. Bejana

BAB III METODE PENELITIAN. Proses polimerisasi stirena dilakukan dengan sistem seeding. Bejana 34 BAB III METODE PENELITIAN Proses polimerisasi stirena dilakukan dengan sistem seeding. Bejana reaktor diisi dengan seed stirena berupa campuran air, stirena, dan surfaktan dengan jumlah stirena yang

Lebih terperinci

NME D3 Sperisa Distantina BAB II NERACA MASSA

NME D3 Sperisa Distantina BAB II NERACA MASSA 1 NME D3 Sperisa Distantina BAB II NERACA MASSA PENYUSUNAN DAN PENYELESAIAN NERACA MASSA KONSEP NERACA MASSA = persamaan yang disusun berdasarkan hukum kekekalan massa (law conservation of mass), yaitu

Lebih terperinci

Pembuatan Gliserol Karbonat Dari Gliserol (Hasil Samping Industri Biodiesel) dengan Variasi Rasio Reaktan dan Waktu Reaksi

Pembuatan Gliserol Karbonat Dari Gliserol (Hasil Samping Industri Biodiesel) dengan Variasi Rasio Reaktan dan Waktu Reaksi Pembuatan Gliserol Karbonat Dari Gliserol (Hasil Samping Industri Biodiesel) dengan Variasi Rasio Reaktan dan Waktu Reaksi Jimmy, Fadliyah Nilna, M.Istnaeny Huda,Yesualdus Marinus Jehadu Jurusan Teknik

Lebih terperinci

3 Percobaan. Peralatan yang digunakan untuk sintesis, karakterisasi, dan uji aktivitas katalis beserta spesifikasinya ditampilkan pada Tabel 3.1.

3 Percobaan. Peralatan yang digunakan untuk sintesis, karakterisasi, dan uji aktivitas katalis beserta spesifikasinya ditampilkan pada Tabel 3.1. 3 Percobaan 3.1 Peralatan Peralatan yang digunakan untuk sintesis, karakterisasi, dan uji aktivitas katalis beserta spesifikasinya ditampilkan pada Tabel 3.1. Tabel 3.1 Daftar peralatan untuk sintesis,

Lebih terperinci

II. PEMILIHAN DAN URAIAN PROSES. dalam alkohol (Faith and Keyes,1957).

II. PEMILIHAN DAN URAIAN PROSES. dalam alkohol (Faith and Keyes,1957). II. PEMILIHAN DAN URAIAN PROSES A. Jenis-Jenis Proses Aluminium sulfat atau yang lebih dikenal dengan tawas merupakan salah satu bahan kimia yang sangat diperlukan baik dalam industri pengolahan air. Alum

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN 3.1. Tempat Penelitian Penelitian ini dilaksanakan di laboratorium kimia mineral Puslit Geoteknologi LIPI Bandung. Analisis proksimat dan bilangan organik dilaksanakan di laboratorium

Lebih terperinci

BAB I PENDAHULUAN. Universitas Sumatera Utara

BAB I PENDAHULUAN. Universitas Sumatera Utara BAB I PENDAHULUAN 1.1 Latar Belakang Pada masa sekarang kecenderungan pemakaian bahan bakar sangat tinggi sedangkan sumber bahan bakar minyak bumi yang di pakai saat ini semakin menipis. Oleh karena itu,

Lebih terperinci

BAB III METODE PENELITIAN

BAB III METODE PENELITIAN BAB III METODE PENELITIAN Eksperimen dilakukan untuk mengetahui proses pembakaran spontan batubara menggunakan suatu sistem alat uji yang dapat menciptakan suatu kondisi yang mendukung terjadinya pembakaran

Lebih terperinci

PIROLISIS CANGKANG SAWIT MENJADI ASAP CAIR DENGAN KATALIS BENTONIT: VARIABEL WAKTU PIROLISIS DAN RASIO KATALIS/CANGKANG SAWIT

PIROLISIS CANGKANG SAWIT MENJADI ASAP CAIR DENGAN KATALIS BENTONIT: VARIABEL WAKTU PIROLISIS DAN RASIO KATALIS/CANGKANG SAWIT PIROLISIS CANGKANG SAWIT MENJADI ASAP CAIR DENGAN KATALIS BENTONIT: VARIABEL WAKTU PIROLISIS DAN RASIO KATALIS/CANGKANG SAWIT Padil, Sunarno, Komalasari, Yoppy Widyandra Jurusan Teknik Kimia Universitas

Lebih terperinci

PROSEDUR DAN PERCOBAAN

PROSEDUR DAN PERCOBAAN BAB III PROSEDUR DAN PERCOBAAN 3.1 Prosedur Percobaan Prosedur percobaan yang dilakukan selama penelitian dapat dilihat pada Gambar 3.1. Gambar 3.1 Flow chart prosedur percobaan 24 25 3.1.1 Persiapan Red

Lebih terperinci

Catatan : Jika ph H 2 O 2 yang digunakan < 4,5, maka ph tersebut harus dinaikkan menjadi 4,5 dengan penambahan NaOH 0,5 N.

Catatan : Jika ph H 2 O 2 yang digunakan < 4,5, maka ph tersebut harus dinaikkan menjadi 4,5 dengan penambahan NaOH 0,5 N. Lampiran 1 Prosedur uji asam basa dan Net Acid Generation (Badan Standardisasi Nasional, 2001) A. Prinsip kerja : Analisis perhitungan asam-basa meliputi penentuan potensi kemasaman maksimum (MPA) yakni

Lebih terperinci

Bab III Metodologi Penelitian

Bab III Metodologi Penelitian Bab III Metodologi Penelitian III.1 Metodologi Seperti yang telah diungkapkan pada Bab I, bahwa tujuan dari penelitian ini adalah untuk membuat katalis asam heterogen dari lempung jenis montmorillonite

Lebih terperinci

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong,

III. METODOLOGI PENELITIAN. analisis komposisi unsur (EDX) dilakukan di. Laboratorium Pusat Teknologi Bahan Industri Nuklir (PTBIN) Batan Serpong, III. METODOLOGI PENELITIAN A. Tempat dan Waktu Penelitian Penelitian ini dilakukan di Laboratorium Biomassa, Lembaga Penelitian Universitas Lampung. permukaan (SEM), dan Analisis difraksi sinar-x (XRD),

Lebih terperinci